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BCS theory tested in an exactly solvable fermion fluid
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Remarkably the one-dimensional (1D) many-fermion fluid with pairwise-attractive 5-function interac-
tions is exactly solvable in that one can determine the exact many-body ground-state energy and chemi-
cal potential for all values of the coupling strength and/or density. Bardeen-Cooper-Schrieffer (BCS)
theory is tested in this model by numerically determining the BCS total ground-state energy and chemi-
cal potential as a function of the coupling strength and/or density, and comparing with the exact results.
As is the case for 2D and 3D theories, two regimes are apparent: (a) a BCS-proper regime of weakly
coupled, overlapping Cooper pairs and (b) a Bose-gas regime of strongly interacting fermions which pair
to form an ideal Bose gas at low density. In the two extremes the BCS energy and chemical potential are
identical to the exact values and are moderately close for intermediate coupling and/or density.

Recently the exactly solvable one-dimensional (1D) fer-
mion Quid with pairwise-attractive 5 interactions has
proved interesting for several reasons. For the case of
two distinct fermion species, for example, electrons with
spin up and down, there exist dynamical similiarities be-
tween the present 1D model and the 3D electron Quid jel-
lium model, and one reproduces for weak coupling the
essential singularity characteristic of standard 3D low-
temperature superconductivity. Furthermore, the model
displays a crossover transition from the strong-coupling
extreme of tightly bound noninteracting local Bose pairs
to the weak-coupling limit of large, overlapping Cooper
pairs. Crossover transitions of this type are of interest in
their own right and are also present in Fermi systems
with attractive interactions both in two and three di-
mensions, and in the extended negative-U Hubbard mod-
el. Since Bardeen-Cooper-Schrieff'er (BCS)-like theories
are frequently applied, we wish to investigate and test the
BCS theory in the present simple 1D model for which the
exact results are also known. We stress that the BCS
theory has been used in the context of providing a varia-
tional ansatz for the ground-state wave function and that
weak coupling is not assumed.

Consider a system of N ( ))1) spin- —,
' fermions of mass

m and degeneracy 2 in a box of length L interacting via a
pairwise-attractive 5 interaction of strength vo) 0. The
Hamiltonian in dimensionless form is

N d2H' =mH /fi p = ——g ——k g 5(x,' —x ' ),
dx

where p=N/L denotes the density, the dimensionless
coordinates are x,'=px, -, and A, —:mUO/A p is a dimension-
less parameter (0(A, ( oo). This parameter then corn

It has already been noted that the BCS approximation
gives the exact results in the two extremes of k, and we
now present the results in the intermediate region of
0(A, ( ~. The appropriate equations are the BCS gap
and number conservation equations,

N= dk 1—
27r —~ Qg2 + g2

Ak 1
(4)

One should note that only in the limit of weak coupling is
the chemical potential given by the Fermi energy, i.e.,
p=E~. In general, one must solve for the chemical po-
tential and the gap self-consistently for all values of the
dimensionless constant A, .

The dimensionless energy per particle in the BCS ap-

pletely specifies the ground-state properties of the system.
From the expression for k, one can see that high (low)
particle density is associated with weak (strong) coupling.

Using the Gaudin equations one can numerically
determine the exact ground-state energy E(N), i.e., the
lowest eigenenergy of the N-fermion Schrodinger equa-
tion, as a function of k. Table I gives the dimensionless
ratio, E(A, )—=E(N)/~Eo(N)~, where Eo(N) is the energy
evaluated at p=0. One can also determine the chemical
potential by

E (N) B[E(N)/N]p= +p
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TABLE I. The dimensionless chemical potential p(A, ) =(A /mvo)p and the dimensionless ground-
state energy e(A, ) determined exactly, from BCS theory through (3) and (4), and from plane-wave
Hartree-Fock theory, all as a function of the dimensionless parameter A,

' =A p/mvo.
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Exact

—0.1242
—0.1215
—0.1165
—0.1088
—0.0978
—0.0832
—0.0643
—0.0407

0.0220
0.1075
0.2169
0.3510
0.5100
0.6938
1.9848
3.8934
6.4191

28.3010

p, (A, )

BCS

—0.1120
—0.0979
—0.0825
—0.0657
—0.0470
—0.0262
—0.0030

0.0232
0.0864
0.1679
0.2716
0.4004
0.5556
0.7372
2.0259
3.9348
6.4606

28.3425

PWHF

—0.0219
—0.0377
—0.0472
—0.0507
—0.0479
—0.0390
—0.0239
—0.0026
—0.0584

0.1441
0.2545
0.3900
0.5493
0.7337
2.0258
3.9348
6.4606

28.3425

Exact

—0.9978
—0.9909
—0.9784
—0.9595
—0.9333
—0.8989
—0.8551
—0.8011
—0.6587
—0.4652
—0.2158

0.0931
0.4636
0.8971
4.0320
8.7994

15.2073
71.9030

e(A, )

BCS

—0.9488
—0.8947
—0.8374
—0.7766
—0.7117
—0.6421
—0.5674
—0.4866
—0.3037
—0.0858

0.1753
0.4872
0.8560
1.2858
4.4021
9.1594

15.5617
72.2467

PWHF

—0.0918
—0.1671
—0.2260
—0.2684
—0.2944
—0.3039
—0.2970
—0.2736
—0.1775
—0.0156

0.2120
0.5055
0.8648
1.2899
4.2022
9.5194

15.5617
72.2467

proximation is given by

2 3
2A, A'

IUD
dkk 1—

CO Qg2 +g2

For the BCS theory the corresponding limiting forms are

p(A, )= —
—,'+ —'A, '+O(A, ) (as A, —+ ~ ) (BCS) (8)

and
2 2

—2A, —8A,
mUO

Q2 e(A, ) = —I+A, '+
—,'A, +O(A, ) (as A,~ ~ ) (BCS) .

(9)
This and the chemical potential were calculated numeri-
cally, the results being listed in Table I. One sees that al-
though the BCS results are exact in the two extremes
A. ~O and A.~~, and interpolate smoothly between the
two limits, there is a sizeable discrepancy in the inter-
mediate range of X, particularly for the strong-coupling
interval 0& A, & 1. This may have significant implica-
tions for calculations in 2D and 3D Fermi liquids and in
the extended Hubbard model.

To better illustrate this discrepancy we consider the
(low-density) expansion of P(A, )=(iii /mvo)p(A, ) and e(A, )

in powers of A,
' for small X '. Using the Gaudin equa-

tions one can show that
2

e(k) = —1+ X +O(A, ) (exact)
12

These contain terms in A,
' not present in the exact ex-

pansions (6) and (7). The results are, however, far better
than those for other mean-field theories where pairing is
not included, for example the most general Hartree-Fock
result (not shown) and the plane-wave Hartree-Fock
(PWHF) result.

In summary the BCS ground-state energy (which coin-
cides with the exact ground-state energy for both zero
and infinite coupling and/or density) is moderately close
to the exact energy for intermediate values of the
coupling/density. It is exponentially close to the plane-
wave Hartree-Fock (PWHF) approximation for weak
coupling and/or high density and notably superior to
both PWHF and most general Hartree-Pock (HF) (Ref. 9)
for strong coupling and/or low density.

and from (2) we have

2

P(A, ) =—[e(A. ) —ke'(A, )]= ——+ k '+O(n, ')
8 8 32

(exact) . (7)
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