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Spatial coherence of nonlinear dynamics in a semiconductor experiment
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For the case of an experimental semiconductor system, it is shown how diferent dynamical states that
range from periodicity to hyperchaos are connected to distinct spatial patterns developing inside the
sample. Collective synchronization of subsystems gives rise to low-dimensional periodic states, whereas
the interaction of spatially localized oscillation centers leads to quasiperiodicity and ordinary chaos as
well as higher-dimensional chaotic dynamics.

I. INTRODUCTION

Nature fascinates us by spontaneously forming struc-
tures both in space and time. The challenging question
for the basic mechanism bringing about all those
structural forms is nowadays attributed to nonlinear spa-
tiotemporal processes. Specifically, investigating total ar-
rays of coupled nonlinear systems, i.e., taking space as a
discrete variable, has turned out to represent an elegant
and popular method. The separate uncoupled system
usually shows behavior described by simple dynamics.
The spontaneous formation of more or less complicated
patterns in such multicomponent systems is of current in-
terest. One typical result comprises the emergence of
coherent clusters of subsystems that exhibit low-
dimensional deterministic dynamical behavior (see, for
example, Ref. l). In this case, the multicomponent sys-
tem becomes locally reducible to a generic dynamics,
which is governed only by a few variables.

This paper reports on experimental results from one
exemplary semiconductor system, namely, the electric
avalanche breakdown of homogeneously doped p-type
germanium at low temperatures. In close analogy to the
introductory ideas above, we point out the way nonlinear
dynamics are caused by the mutual interaction of com-
petitive subsystems inside the semiconductor device.
Particular merits of our experimental system are the huge
diversity of different nonlinear dynamical phenomena ob-
tained under minute changes of the working conditions.
Thus, in an extremely small regime of parameter space,
transitions from fixed points to limit cycles, quasiperiodi-
city, as well as universal routes to chaos and hyperchaos
were found. To explain the creation of further degrees
of freedom as a consequence of the increasing attractor
dimensionality, we conjectured a model consisting of
many coupled oscillatory subsystems. ' Up to now,
the following experimental evidence has been delivered
for that working hypothesis. First, spatiotemporal dy-

namics is provided by the self-sustained development of
filamentary current structures coinciding with the ap-
pearance of spontaneous oscillations. Second, dis-
tinguished oscillatory centers are found to be localized at
the boundary of the filaments. ' Third, the location of
these oscillators is restricted to distinct finite regions in-
side the filament boundary, " in contrast to other semi-
conductor systems, where the boundaries of the spatial
structures obey a uniform breathing mode. ' Detection
of those space-time patterns was performed via the well-
established imaging technique of low-temperature scan-
ning electron microscopy. Since the above method takes
into account only the linear response of the system inves-
tigated, the understanding of nonlinear dynamics like
chaos has still remained an open question. At this point,
a different measuring procedure capable of proving the
nonlinear interplay between subsystems comes to the res-
cue, as described in the following.

Our paper is organized as follows. After a short intro-
duction into the basic elements of the experimental sys-
tem in Sec. II, Sec. III describes the spatial localization of
a periodically oscillating center of finite size. Such an os-
cillator is a result of synchronizing subsystems showing
independent dynamics when they are singularized. In
Sec. IV, we demonstrate the existence of two spatially
separated oscillation centers for the case of a quasiperiod-
ic state. Upon switching one center on and off, one can
furnish proof that there, indeed, is a nonlinear interaction
among the oscillators present. Furthermore, the develop-
ment of the spatial interrelation of diff'erent sample re-
gions has been analyzed for the case of chaotic dynamics
(Sec. V).

II. EXPERIMENT

The experimental system consists of a homogeneously
doped p-type germanium sample with ohmic contacts.
The concentration of shallow acceptors is about 10'
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cm, their binding energy about 10 meV. The spectro-
scopic characterization of the acceptors involved as well
as further material details can be found elsewhere. ' Out
o(' that single-crystalline semiconductor wafer, a sample
with the typical dimensions of 5X2X0.2 mm was cut.
After passivation of surface states by means of mechani-
cal polishing and subsequent chemical etching, ohmic
contact areas were arranged at one of the two largest
specimen surfaces. Hereto, either aluminum was eva-
porated and successively alloyed with the germanium
crystal or boron was ion implanted. Both methods gave
no significant difference in the electric behavior. In the
following, we present results obtained from a sample with
aluminum contacts. The arrangement of the contacts to-
gether with the experimental setup are shown in Fig. 1.
The local probes served to detect partial voltage drops, as
will be discussed later on in more detail.

The above sample configuration was mounted in a
liquid-helium cry ostage. A copper shield provided a
carefu1 screening against infrared radiation, which sensi-
tively influences the sample behavior at low tempera-
tures. By the help of a vapor-pressure regulation, the
temperature could be varied between 1.7 and 4.2 K. As a
further variable external parameter, a magnetic field
could be applied. It was oriented perpendicular to the
broad side of the sample, i.e., perpendicular to the direc-
tion of the electric field inside the sample.

The electric behavior of the above semiconductor ma-
terial is mainly determined by the reduced thermal ener-

gy owing to the low temperatures. There, the charge car-
riers freeze out at the impurities such that the semicon-
ductor becomes highly insulating. This temperature
effect can be inverted through application of an electric
field: the few remaining mobile charge carriers are ac-
celerated and, thus, gain kinetic energy. The energy gain
increases with increasing electric field, if the mean life-
time of the charge carriers remains constant (correspond-
ing to a constant carrier mobility). When the gain in ki-
netic energy surpasses the ionization energy of trapped
charge carriers, an avalanchelike multiplication of the
mobile carriers takes place. This effect is called
avalanche breakdown due to impurity impact ionization.
In terms of rate equations, ' we there have an increase of
the impact ionization coefficient so that the total genera-
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FIG. 1. Scheme of the experimental arrangement applied to
the semiconductor sample. The shaded areas on the specimen
surface indicate the ohmic contacts.

tion rate becomes larger than the recombination rate of
the mobile charge carriers. So far, avalanche breakdown
is a pure electric-field effect. To best verify the quality of
the ohmic contacts and also the validity of the model un-
derstanding, one checks this field effect upon changing
the sample length accordingly. The results of these ex-
periments (reported elsewhere' ), moreover, tell us that
the prevailing breakdown definitely is a bulk effect. Of
course, its concrete electric behavior sensitively depends
on the actual impurity concentration. '

For the present experimental system, avalanche break-
down takes p1ace at typical electric-field values of 5
V/cm. It manifests in a dramatic increase of the current
by more than six orders of magnitude. ' In the current-
voltage characteristic, the breakdown region excels in ei-
ther hysteretic or negative differential resistance behav-
ior, depending on whether the load resistor applied is
small or large, respectively (corresponding to the realiza-
tion of the two extreme cases of voltage and current con-
trol). Just during the above transition from a low to a
high conducting state, one discovers a multicolored col-
lection of nonlinear dynamical phenomena. ' In the fol-
lowing, we concentrate on a particular dynamics govern-
ing the immediate postbreakdown regime, the so-called
structure-limited oscillations, ' that take place only when
stable current filaments can exist permanently.

III. DYNAMICS OF THE WHOLE
MULTICOMPONKNT SYSTEM

Let us start with some comments on the experimental
setup. The spatial components of the tota1 system dy-
namics were investigated by means of local contact
probes attached to the broad surface of the germanium
crystal (see the sample geometry in Fig. 1). A dc bias
voltage Vo supplies the series combination of the sample
and the load resistor RL. In addition to the total voltage
V, the partial voltage drops V~ (i =1,2, 3) can indepen-
dently be measured along the sample. They provide spa-
tially localized system answers of the corresponding sam-
p1e parts. On the other hand, the resulting current I,
recorded via the voltage drop at the load resistor, gives
the integral whole answer of the semiconductor system.
We point out that phase portraits constructed from
different partial voltage drops not only reAect a two-
dimensional projection of the attractor, but also can be
interpreted as direct measurement of the temporal coher-
ence between distinct localized regions of the sample in-
vestigated. Say, there were no spatially inhomogeneous
dynamics present; the time signals of those partial voltage
drops would have to be proportional to each other.
Then, the resulting phase portraits would represent no
more than a straight line. From this, we conclude that
phase portraits of two distinct partial voltage signals
displaying any structural difference to a straight line indi-
cate the existence of different dynamical behavior in
different spatial regions of the system. The simplest case
would be a pure phase shift.

Figure 2 gives a sequence of phase portraits that are
constructed from different pairs of partial voltage drops
V, (i =1,2, 3). The corresponding dynamics ranges from
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a stable fixed point to hyperchaos. ' It immediately be-
comes obvious how the oscillatory behavior in distinct
sample parts gradually decorrelates with increasing de-
grees of dynamical complexity (i.e., with increasing

I a', i stable fixpoint

dimensionality of the overall system). For example, the
phase portrait of the periodic state [Fig. 2(b)] has nearly
the form of a straight line due to the strong coherence be-
tween both partial voltage signals. Note that the sign of

(d) chaotic state
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'i hyper chaotic state
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FIG. 2. Phase portraits for distinct nonosci11atory (a}, periodic (b), quasiperiodic (c), chaotic (d), and hyperchaotic (e) oscillatory
states obtained from the experimental setup sketched in Fig. 1 by plotting pairs of partial voltage drops V; (i =1,2, 3) versus one
another at diA'erent sets of parameter values: (a) bias voltage Vo =2.220 V, transverse magnetic field B= —0.4 mT, and temperature
T&=4.2 K (load resistance Rl =100 Q); (b) V0=2. 184 V, B=O mT, and TI, =4.2 K (RL =100 0), (c) V0=2. 220 V, B=0.21 mT,
and Tq =4.2 K (RL =100 A); (d) V0=2. 145 V, B=3.15 mT, and T& =4.2 K (RL =100 0); (e) Vo =2. 145 V, B=4.65 mT, and
Tb =4.2 K (RL = 100 0 ).
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its slope only refers to the signal polarity used for presen-
tation. In the case of hyperchaos, no order can be recog-
nized any more. The phase portrait [Fig. 2(e)j displays
trajectories running into all directions. Hence, one par-
tial voltage may increase, decrease, or stay constant,
while the other changes in one way. That is, both signals
develop totally independently from one another in time.
Compared to the hyperchaotic behavior, the phase por-
trait of the chaotic state [Fig. 2(d)j still indicates some

measure of correlation among the corresponding two
sample parts. It may be worth noting that the numerical
analysis of those partial voltage signals with respect to
their fractal dimension and their Lyapunov exponents
yielded no significant differences among each other. So
far, we conclude that there exists a close connection be-
tween structural changes in phase space and that in the
number of independent variables. The apparent loss of
spatial coherence among different sample parts indicates
the breakup of our multicomponent semiconductor sys-
tem from strongly coupled into more independent subsys-
tems (the partial voltages V,. become more independent).
In this way, new actively participating degrees of free-
dom are gained gradually.

The simplest access to the prevailing spatiotemporal
dynamics can be achieved by looking at the quasiperiodic
state. As is well known, its description at least requires
three independent system variables. Then, one may al-
ready observe some typical nonlinear effects. On the oth-
er hand, quasiperiodicity is very easily demonstrated by
means of a spatial structure embracing two localized os-
cillators. Figure 3 shows the measurement for a specially
chosen parameter set where the simultaneous presence of
two competing oscillation centers inside one semiconduc-
tor sample could be verified directly. There, the different
time traces of the partial voltages V& and V3 together
with that of the integral current I are plotted in Fig. 3(a).
The power spectra related to these signals can be found in
Fig. 3(b). Both the time traces and the power spectra of
the partial voltage drops bear witness to almost perfect
periodic oscillations distinguished by different frequen-
cies, whereas the current clearly displays quasiperiodic
behavior. The arrows drawn in between the power spec-
tra plainly indicate that the current signal reAecting two
apparently incommensurate frequencies and their har-
monics is composed of two portions originating from the
partial voltage drops. These experimental findings give
rise to the interpretation that quasiperiodic current Aow
may derive from the localized periodic oscillatory behav-
ior of at least two spatially separated sample parts. Such
spontaneous pattern-forming processes are commonly
denoted as synergetic spatiotemporal dynamics that arise
in a self-organized way inside the system considered (i.e.,
without being favored by external excitations or inhomo-
geneous boundary conditions).

IV. DYNAMICS OF SINGULARIZED SUBSYSTEMS

0-,
0.0

«

l

4,02.0
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FICx. 3. Temporal profiles (a) and power spectra (b) for a
quasiperiodic oscillatory state obtained from the partial voltage
drops V, ( t ) and V3 ( t ) and the current signal I( t ) according to
the experimental setup sketched in Fig. 1 at the constant param-
eters bias current I=0.811 mA, transverse magnetic field
B =0.722 mT, and temperature Tb = 1.975 K.

Next, we present further striking evidence that there
are localized oscillation centers by applying the voltage
bias only over part of the sample. A possible experimen-
tal setup is sketched in Fig. 4. Provided that we have an
oscillation center only due to the local conditions of the
sample, its dynamical behavior should also be observable
when just focusing our investigations solely to the corre-
sponding semiconductor region. On the other side, if the
local dynamics results from an interaction of this part
with the whole sample, a somewhat different behavior
can be expected for the present experimental situation.
In the following, we discuss these ideas along distinct ex-
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Cie sample

0 C

FIG. 4. Scheme of a particular experimental arrangement de-
viating from that in Fig. 1 by only biasing part 1 of the sample.

perimental findings.
First, the problem arises as to what the appropriate

control parameters to ensure that a specific part of the
sample is forced to identical working conditions under
the different experimental situations outlined in Figs. 1

and 4 are. Of course, the magnetic field and the tempera-

ture do not raise any difficulties. For the case of electric
conditions such as the bias voltage, the load resistance,
and the current, it has turned out satisfactorily that the
time-averaged current flow I (also called the bias current)
represents the best parameter. Keep in mind that the
current will be labeled by I, or I, , if application of the
bias voltage Vo is restricted to the sample part i or even
the sample parts i and j (i,j =1,2, 3), respectively T. he
corresponding partial voltages V; are specified accord-
ingly. Take note of the fact that the time-averaged
current in any case must flow through the semiconductor
sample, no matter how large the resistances of the ohmic
contacts are, whereas the voltages can be affected sensi-
tively by different contact resistances.

We start with the discussion of measurements per-
formed during a periodic state of our experimental sys-
tem. Figures 5(a) —5(d} provide the time signals I(t),
V&(t), Vz(t), and V3(t), respectively, obtained for sup-
plying the whole sample arrangement with the bias volt-
age (cf. Fig. 1). It is clearly evident that the periodic os-
cillation can be detected mainly inside the sample parts 1

and 2. For comparison, Figs. 5(e)—5(h) bring face to face

(a)

V1( t )

V2(t} V)(t)

(e)

(g)

FIG. 5. Temporal current and voltage profiles for two corresponding periodic oscillatory states obtained from the experimental
setups sketched in Figs. l and 4 by biasing either the whole [(a)—(d)] or different parts [(e)—(h)] of the sample arrangement, respective-
at the constant parameters bias current I =3.2004+0.0002 mA, transverse magnetic field B =0.171 mT, and temperature Tb =1.98
K. All signals are plotted on the same vertical and horizontal scale. Their amplitude refers to the 2.5-mV voltage bar indicated in
(a). The current was measured as voltage drop at a 10-kfL load resistor. The total time span amounts to 50 ms.
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(i.e., parts l and 2), one receives a different type of dy-
namics, obviously not any more correlated with the form-
er one [compare the signals I2(t) and V2(t) in Fig. 5j.
Not least this finding confirms our notion that the period-
ic current signal I(t ) in Fig. 5 derives from the interac-
tion of oscillatory subsystems that are located in parts 1

and 2 of the sample. This phenomenon can be set in
direct analogy to collective synchronization of subsys-
tems. ' For the present semiconductor experiment, the
appropriate model approach seems to proceed from a
hierarchical ordering of subsystems that create clusters of
spatially homogeneous dynamics. These clusters then, in
turn, represent nothing but mutually interacting subsys-
tems capable to form further cluster configurations. We
point out that the size of the smallest oscillatory unit ob-
served experimentally was in the range of 10 pm. '

FIG. 6. Phase portraits for the case of the two corresponding
periodic oscillatory states in Fig. 5 (same sample and control pa-
rameters) obtained from the current signals l(t ) and l»(t ) us-

ing a delay time of 100 ps.

800

f (Hz)

000-

2.0 3.0 4.0
B (G)

FIG. 7. Dependence of the frequency upon the transverse
magnetic field (1 G="0.1 mT) for the case of the two corre-
sponding periodic oscillatory states of the currents I and II2
(marked by dots and crosses, respectively) in Fig. 5 (same sam-
ple and constant parameters).

the corresponding time signals I,2(t), I~(t), I2(t), and
I3(t), respectively, obtained for separately biasing
different sample parts (cf. Fig. 4). Only in case of the ar-
rangement investigating part 1 together with part 2, there
results a periodic signal I,z(t) similar to I(t). The al-
most identical shape of the corresponding phase portraits
in Fig. 6 reconstructed from the time series of the
currents I (a) and I,2 (b) gives rise to the conclusion that
in the state considered the total system dynamics is locat-
ed inside sample parts 1 and 2. Further support can be
extracted from the magnetic field dependence of the fre-
quency of those current signals, displayed in Fig. 7. The
frequency scaling detected is characteristic for one gener-
ic bifurcation from. a fixed point to a limit cycle. *

Keeping in mind that bifurcations are highly sensitive
against smallest changes of the boundary conditions, we
can take the results of Fig. 7 as proof that the local dy-
namics of sample part 3 does not contribute to the pre-
vailing periodic state. In other words, it would be possi-
ble to cut off part 3 from the sample configuration
without examining any inhuence on the overall dynamics.
However, dividing up the sample into further subregions

V. DYNAMICS OF COUPLED SUBSYSTEMS

A second example of spatiotemporal behavior concerns
the quasiperiodic state to be presented in the following.
Analogous to the previous results of Fig. 3, quasiperiodi-
city in the current signal I(t ) of Fig. 8(a) can be attribut-
ed to the superposition of the two nearly periodic voltage
traces V&2(t ) and V3(t) shown in Figs. 8(b) and 8(c), re-
spectively. Since all three time signals were digitized syn-
chronously, the modulation of the amplitude of V, 2(t ) is
found to be highly correlated with the periodicity of
V3(t). The current signals I&2(t) and I3(t) that corre-
spond to these partial voltages (accordingly measured at
separate bias control of the sample parts under considera-
tion) are plotted in Figs. 8(d) and 8(e), respectively. Jux-
taposition of V,z(t) and I,z(t) yields very similar time
traces; even their frequencies coincide within an experi-
mental inaccuracy of some percent. If one compares
V3 ( t ) with I3 ( t ), again reasonable agreement in the shape
of both signals can be recognized, while the frequency of
the latter noticeably is higher. So far, these findings
prove this quasiperiodic state to arise from two compet-
ing oscillation centers located in spatially separated parts
of the semiconductor. One oscillator is localized inside
the region that embraces parts 1 and 2, the other inside
part 3 of the sample. An important result was that those
localized oscillation centers could be activated indepen-
dently from each other only by addressing the voltage
bias to the distinct sample part coming into question.

The characteristic magnetic-field dependence of the
frequency components involved gives prominence to the
mutual relationship between one oscillation and the oth-
er. Figure 9(a) displays the successive development of
two independent frequencies in the case of applying the
experimental setup of Fig. 1. The bifurcation to a quasi-
periodic state takes place at a transverse magnetic field of
slightly above 0.4 mT. The plot in the inset shows the
square-root scaling of the second frequency with the mag-
netic field close to the bifurcation point, a characteristic
of this bifurcation. ' On the other hand, Figs. 9(b) and
9(c) unveil the relating frequency behavior for the two
particular arrangements of separately biasing different
parts of the sample (cf. Fig. 4). In accordance with the
conclusions drawn from the time signals in Fig. 8, the
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50
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-10
7.1 7.2 7.3 7.4

FIG. 10. Dependence of the difFerence between the two in-
trinsic frequencies upon the transverse magnetic field (1 G ="O. 1

mT) for the case of the 1/1 locking oscillatory state of the
current I in Fig. 9 (same sample and constant parameters).

(c). Second, the power law of the scaling in the vicinity of
the bifurcation point changes from the exponent 1/2 in
situation (a) to the exponent 1/4 in situation (c), as indi-
cated by particular plots in the relating figure insets. Ap-
parently, the interaction between the two oscillation
centers manifests in the way that the presence of the first
intrinsic system frequency (say, f, ) can prevent the ap-
pearance of the second one (say, f 2) over an extended
control parameter interval. This finding is clearly
different from that expected for a driven damped oscilla-
tor. In the latter case, the damped oscillator becomes ac-
tivated due to the interaction with the external driving
force.

A similarly unambiguous signature for the existence of
a nonlinear coupling between the oscillators can be pro-
vided by looking at the existence of mode locking phe-
nomena. In a quasiperiodic scenario, such a kind of dy-
namics represents an important step towards the onset of
chaos, as demonstrated elsewhere for the case of the
present semiconductor system. ' Upon analyzing more
thoroughly the frequency scaling behavior of the whole
sample arrangement in Fig. 9, we disclose the 1/2 and
1/1 locking states at the magnetic-field parameter values
B=0.55 mT and B=0.72 mT, respectively. Experimen-
tal evidence of the latter case is illustrated in Fig. 10 by
plotting the control parameter dependence of the
difference b,f=f, f2 between t—he two existing frequen-
cies f, and f2. Obviously, the 1/1 locking region with
b f=0 extends over a finite magnetic-field range of 0.006
mT. The 1/2 locking state was found to cover about
0.005 mT (not shown here). If one readily carries for-
ward those findings to that obtained from investigating
only parts of the sample arrangement (see Fig. 9), there
appear considerable deviations in the frequency difference
of the corresponding locking states.

Another experimental point of view concerns the spa-
tiotemporal aspects underlying a quasiperiodic state,
where the power spectrum is dominated by protruding
frequency mixing components. They provide a further
proof for the presence of a nonlinear interaction between
the intrinsic oscillatory modes. Figures 11(a)—11(c) give
the power spectrum of the integral current signal I(t ) to-

M
xy ye( ~

M M~)

where 8 denotes the Heaviside function. The conditional

gether with that of the partial voltage drops V,2(t) and
V3 ( t ), respectively, obtained for applying the bias voltage
to the whole sample arrangement (cf. Fig. 1). The
different spectral peaks are distinguished by the indices
(n, m) according to the frequency notation
f=nf, +mf2. There is no doubt that all three power
spectra contain mixing components of the two fundamen-
tal frequencies f, and f2. Upon separating both oscilla-
tion centers via independent bias application to the relat-
ing sample regions (cf. Fig. 4), the power spectra of the
resulting integral current fiow I,z(t ) and I3(t ) displayed
in Figs. 11(d) and 11(e), respectively, do not continue ex-
hibiting any mixing component. Hence, the nonlinear
coupling has been clearly switched off. Moreover, in
both cases remaining single frequencies are shifted to
slightly different values. The lower frequency f, de-
creases further by 125 Hz, while the higher frequency f2

increases by 62 Hz. We draw the conclusion that the in-
teraction of both oscillation centers, which can take place
only when applying the experimental setup in Fig. 1,
causes the two fundamental frequencies to attract each
other.

Finally, we extend our analysis from the spatiotem-
poral dynamics of regular periodic and quasiperiodic
states to that of the more complex cases of ordinary
chaos and hyperchaos, the phase portraits of which are
outlined in Figs. 2(d) and 2(e), respectively. As we have
already mentioned above, no significant differences in the
diverse chaotic properties (like, e.g., fractal dimensions
and Lyapunov exponents) were found if one investigates
either the integral current flow or the partial voltage
drops in the whole sample arrangement (cf. Fig. 1). Nev-
ertheless, the phase portraits constructed from plotting
different partial voltages versus one another clearly indi-
cate loss of spatial coherence. The phenomenon will be
quantified numerically as follows.

In order to evaluate the degree of spatial correlation,
we have adapted a recently proposed method to the
present situation of chaotic and hyperchaotic dynamics.
Compared with standard correlation measurements, the
above procedure has been demonstrated to excel by seri-
ous advantages, i.e., extremely fast convergence proper-
ties and the feasibility of capturing nonsymmetric rela-
tions. The basic idea is that two simultaneously recorded
signals, (tx)=( „x.. . , x) and y(t)=(y, , . . . , yz), are
interrelated if for one signal (say, x ) two points x,M and
x in the reconstructed M-dimensional phase space lie
inside an c. neighborhood. It follows for the other signal
(say, y) that ~y;

—y ~
depends on c,. In contrast, if

~y,
—y.

~
is independent of s, we take x(t) and y(t) as

being not interrelated. The M-dimensional points in
phase space are defined as x; =M ' (x;, . . . , x;+M &

)

and y; =M '~ (y;, . . . ,y;+~, ). Their E interrelation
can be expressed by the mean conditional dispersion

1/2
y iy,

—
y, I'e(E —lx, —x, I)
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K„=lim e{) /e,„.~~ oo
(2)

Here, the normalizing value c. ,„

is just the size of the at-
tractor.

In Fig. 12, we present the numerical results obtained
for the case of the interrelation coefficient E,2 and E2,
(with indices 1 and 2 corresponding to the voltage signals
V, and V2, respectively). Hereto, the partial voltages V,
and Vz were digitized simultaneously (each time 100000

dispersion depends on M and c. For large M, we have
convergence against a limiting curve. At large c, it is a
constant, i.e., independent of c. Upon decreasing c, a
transition to the regime of c. dependence takes place.
The transition point co marks the onset of c. dependence
of o. and, thus, the interrelation of the signals x and y,
given by

data points). In order to characterize the development of
the spatial interrelation coeScients as the system transits
from chaos to hyperchaos, we have employed five
different control parameter values. It can be clearly seen
how the interrelation is affected during the transition be-
tween the two dynamical states. First, a pronounced de-
crease of the interrelation coefficients accentuates the
transition onset. Second, there exists a strong asymmetry
in E,2 and Ez, . %'e conclude that the transition between
the different chaotic states is closely related to structural
changes in space.

At last, we point out that investigating only parts of
the sample arrangement (cf. Fig. 4) did not unveil further
new insight —in contrast to the intriguing results of the
periodic and quasiperiodic states. In the case of higher-
dimensional dynamics, both chaotic and hyperchaotic
states reAect a totally different spatiotemporal behavior in
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FIG. 11. Power spectra for two corresponding periodic and quasiperiodic oscillatory states of the currents and voltages I (a), V»
(b), V, (c), I,z (d), and I3 (e) obtained from the experimental setups sketched in Figs. 1 and 4 by biasing either the whole [(a)—(c)] or
different parts [(d) and (e)] of the sample arrangement, respectively, at the constant parameters bias current I=1.774+0.001 mA,
transverse magnetic field B=0.225 mT, and temperature Tb =2.10 K. The spectral lines labeled by (n, m ) are subject to the frequen-
cy f=nf, +mf2. The differences of the two frequencies f, and f2 existing simultaneously in the current and voltage signals I(t),
V, 2(t ), and V3(t ) to the corresponding single frequencies of the current signals I,z(t ) and I3(t ) are indicated by Af in (d) and (e).
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FIG. 12. Dependence of the spatial interrelation coeKcients
upon the transverse magnetic field (1 G ="0.1 mT) for the case
of the transition from the chaotic to the hyperchaotic oscillato-
ry state in Fig. 2 (same sample and constant parameters). The
coef5cients K» and K» are distinguished by the dashed and
solid curve, respectively.

of localized oscillation centers. The observation of
different dynamical states obeying a hierarchical order of
complexity is, therefore, a pure consequence of gradual
rearrangements among distinct spatiotemporal transport
structures in low-dimensional phase space. On the one
hand, the spatially separated oscillatory subsystems de-
velop in a self-organized way, i.e., without being favored
by external periodic excitations or boundary conditions.
On the other hand, the mutual interaction between these
oscillators can be sensitively influenced by the help of ap-
propriate control parameters. Such a picture of a cou-
pled multicomponent synergetic system creating the spa-
tiotemporal dynamics measured stands in contrast to a
nonlocalized physical mechanism, so far taken as a con-
venient ansatz for the nonlinear dynamical behavior of
various semiconductor experiments.

the various partial voltage drops, particularly with
respect to signal amplitudes and typical revolution times.

VI. CONCLUSION

We have disclosed several striking indications that the
emergence of spontaneous oscillations in our semiconduc-
tor system must be closely linked to the spatial formation
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