
PHYSICAL REVIEW B VOLUME 47, NUMBER 17 1 MAY 1993-I

Monte Carlo simulation of energy relaxation in the two-dimensional Ising model
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The energy relaxation in the two-dimensional Ising model, with temperature greater than T, and in a
spin system having a 5120X5120 lattice, is studied using supercomputer-conducted Monte Carlo simula-
tion. The critical exponents of the linear and nonlinear relaxation times of the internal energy are re-
spectively estimated to be 6&'=2.064+0.026 and A~"=1.132+0.080, being consistent with the Racz
scaling law 5&' —b,&"= 1 —cx, where a is the critical exponent of the specific heat. Based on the author' s
previous result in which the critical exponent of the linear relaxation for magnetization was determined
as A~ =2.076+0.005, it is strongly suggested that 6&'= 4'M'.

Following the pioneering work by Ogita et al. ' on the
kinetic Ising model using Monte Carlo (MC) simulation,
many studies have utilized computer modeling techniques
to investigate the dynamics of a second-order phase tran-
sition. The vast improvements in both computer system
hardware and MC simulation algorithms have
significantly contributed to obtaining more accurate ex-
ponents near the critical point, as have several theoretical
estimates, e.g. , the high-temperature expansion method,
real-space renormalization-group analysis, and the
finite-size-scaling method. In particular, various esti-
mates were obtained of the exponents of the relaxation
time of magnetization, with the associated linear and
nonlinear critical exponents having been previously re-
ported to, respectively, be AM' =2.076+0.005 and
b,(""= 1.932+0.018 (Ref. 5). This led to the present study
which uses MC simulation under nearly similar condi-
tions to better estimate the critical exponents of the linear
and nonlinear relaxation times of internal energy, Az' and
AE", respectively. These estimates are additionally
shown to correlate with the Racz scaling law.

In a two-dimensional (2D) Ising system the relaxation
of the internal energy near the critical point is considered
from a critical dynamics perspective. When far from
equilibrium, the nonlinear relaxation time ~E" ' of the
internal energy is defined as

(E)= J E(t)dt .
2 1

(2)

Equation (2) was adopted following a comparison of the

(„)) ~ E(t) E(oo ) d— (1)
0 E(0)—E( ~ )

where E(t) is the internal energy. Divergence of rz'"" is
g(nl )

expected as r~z" ~E,where E = ( T T, )IT„Tis the-

temperature of a spin system, and T, is the critical tem-

perature. Although it is not difficult to numerically cal-
culate ~E, a much longer simulation time is necessary to
obtain E( ~ )(%0) in equilibrium than to obtain the mag-
netization M( ~ )(~0). As a result, here we represent
E( ~ ) as time averages (E ) in equilibrium, where ( E ) is

defined by

g( I) g(nl) +pQ Q Q ' (4)

where 5&' and b&" are, respectively, the critical ex-
ponents of the linear and the nonlinear relaxation times
of quality Q. If Q is magnetization, then p& is p, i.e., the
critical exponent of the order parameter. This magneti-
zation scaling law was shown to correlate with the corre-
sponding critical exponents of A~ and A~" obtained by
our previous study. Here, however, Q is energy and p&
is 1 —o., where a is the critical exponent of the specific
heat.

The present study utilizes the kinetic Ising model
which considers nearest-neighbor interactions on a 2D
square lattice in the absence of an external field, and
which also incorporates a periodic boundary condition.
The Metropolis method was employed to enable updating
each spin stochastically. In order to numerically solve
the MC simulation algorithm, a FACOM VP-2600 super-
computer was applied to perform the super-spin coding
technique (lattice size 5120X 5120) by Williams and
Kalos' in which the temperature is quantized and
discrete. The reduced temperature T~ is an interger
presented in two dimensions as T& =2N exp( 4/T ), —
where X is a quantum number of bits and T the tempera-

resultant (E) value with the exact Onsager's solution
value.

The linear relaxation time ~F' of the internal energy is
similarly defined as

(t) i. ~ ((E—(E))[E( )t—(E) j) d«—«) ')
where ~z' is expected to diverge as ~z' ~ c . If a com-
pletely ordered state is originally present, then a third re-
laxation time ~E, termed here as the initial relaxation
time, can be defined for an intermediate stage occurring
in the approach to equilibrium by

E(t ) = (E ) —(1+( E ) )exp( t lrz ) . —

Hence by applying a scaling argument, ' the initial relax-
(I)

ation time ~z is also expected to diverge as 7g ~ E,

With respect to the Racz scaling law,
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ture of a spin system. Several simulation programs were
coded in FORTRAN77 for X =4—8 with all simulation
temperatures being greater than T, . A maximum num-
ber of 2.23 X 10 spin-Aip attempts was obtained at N =8.
The algorithm R250 by Kirkpatrick and Stoll" was used
as a random number generator. The MC simulation re-
sults were verified to correlate exceptionally well with the
exact results obtained using Onsager's solution, e.g., the
energy at T& =45 was —0.670 696 versus the exact value
of —0 670 694, and at T& =46, —0 646 665 versus
—0.646 669.

Figure 1 shows the resultant relaxation process of ener-
gy E(t ) with respect to MC time increments for a
5120X5120 lattice at temperatures T&=45, 52, and 68;
where E(t) approaches equilibrium as E(t) ~ (E)—(1+(E ) )exp( —t/rE). The initial relaxation time 1g
was calculated using this relation, as was the nonlinear
relaxation time rE" [Eq. (1)]. Table I summarizes results
at various temperatures, whereas Fig. 2 shows a log-log
plot of ~E and ~E"" versus c.. For the linear relaxation, the
following relation for ~E versus E was obtained after

several trials to correct ~E ~ c.

rz =const X E,
~
lne

~
(5)

Least-squares analysis gave const=0. 1295, hE"=2.064
+0.026, and co = —0.3653 in the temperature region
0.014 a~0.27. The error in AE" indicates a standard
error, with the best-fit curve being shown in Fig. 2. The
results at c ~ 0.28 are not reliable. The slight logarithmic
correction in Eq. (5) should be noted.

On the other hand, the relation between the nonlinear
relaxation time ~E" and E is rather simple, with the best
fit being determined by the least-squares method to be

g( nl )

(E"1)=const X c. E (6)

TABLE I. Simulation results of ~E and ~&" for a 5120X 5120
lattice. The system temperature T is given by
T~ =256 exp( —4/T) for N =8.

TN

45
46
47
48
49
50
52
54
56
58
60
62
64
66
68

Linear

505.098+3.793
142.316+4.924
68.061+2.366
36.938+1.244
24.215+0.831
17.401+0.946
10.373+0.251
6.436+0.220
4.419+0.032
3.324+0.072
2.561+0.042
2.124+0.047
1.826+0.065
1.608+0.053
1.514+0.082

Nonlinear

31.598+0.377
14.315+0.115
9.270+0.093
6.698+0.109
5.244+0.088
4.227+0.077
2.988+0.019
2.358+0.008
1.941+0.030
1.636+0.065
1.365+0.067
1.195+0.038
1.073+0.018
0.955+0.039
0.866+0.029

where const=0. 2422 and hE""=1.132+0.080 in the tem-
perature region 0.014 ~ c. ~ 0.32.

In a finite-size system, simulation results are affected
by the shift of T, and 6T„where 6T, is expressed' as

b. T, /T, = —0.36/&n

with n representing the number of spins of the system. In
the present system it is estimated that AT, = —0.000 16,
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FIG. 1. Energy vs MC simulation time intervals in a two-
dimensional, 5120X5120 lattice, Ising model at various T&.
The initial state is completely ordered.

FIG. 2. Initial relaxation (linear) and nonlinear relaxation
times vs c. for a 5120X 5120 lattice. ~E contains the logarithmic
correction from Eq. (5), whereas ~F"" utilizes Eq. (6).
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and since the closest temperature to the critical tempera-
ture ( T, =2.269 1 8} in the spin system of the present data
is T=2.271 45, the subsequent results will not be
signifIcantly afFected by this shift. In addition, when
these results are compared to those using a
10 240 X 10240 lattice, nearly the same critical ex-
ponents were obtained, although the resultant errors were
difterent.

The values of 2 E(l) =2.064+0 026 and
AE =1.132+0.080 are consistent in comparison to esti-
mates of 6E"—-2 obtained by Yahata' using the high-
temperature expansion method. Achiam' obtained a
larger value of AE"=2.203+0.03 with real-space
renormalization-group analysis by assuming v = 1.0,
where v is the critical exponent of the correlation length.
Further support (within errors} was provided by Stoll,
Binder, and Schneider' using a standard MC simulation
to obtain AE'" =2.00+0.10 in a small lattice system
(200 X 200}. Recently, using the finite-size-scaling
method, Tang and Landau' estimated AE"=2.13+0.07.
Few estimates have been obtained for b,E"",however, Bol-
ton and Johnson' used MC simulation to calculate
hE" =0.40+0.04, although their data were fairly distri-
buted. On the other hand, Kretschmer, Binder, and
Stauffer' applied the same method and estimatedAz"-0. 9, with this be1ieved to be a more reliable value,
being in good agreement with the present one.

Using the Racz scaling law, the difFerence between AE"

and AE"" can be predicted as

and, in fact, the present results correlate well with Eq (8}.
In the one-dimensional Ising model, Csepes and Racz'
showed this relation to exactly hold. It is realized,
nonetheless, that since the above-described previous esti-
mates lack consistency, especially with respect to AE"",
this scaling prediction cannot be fully established in two
dimensions. However, the difFerence AE" —AE""
=0.932+0.084 is slightly less than unity. The reason of
the slight disagreement may be why ~z" cannot be
characterized by a single exponent.

%'hen the critical exponents of A~ and b&' were com-
pared, their closeness led many researchers ' ' to sug-4, 13, 14

gest that AM'=DE". Schneider ' derived this relation us-
ing various inequalities to obtain the exponents of critical
slowing down in the 20 Ising model. Furthermore, pre-
vious results using the same numerical model, but in a
spin system having a 10240 X 10 240 lattice, gave6~=2.076+0.005, i.e., coinciding with AE'" within er-
rors. StoH, Binder, and Schneider' also obtained

(M) =1.85+0.10 and EE(') =2.00+0.10 by MC simulation
using similar conditions, and although these two ex-
ponents are slightly difFerent, they similarly coincide
within errors. Therefore, the present MC simulation re-
sults strongly support the hypothesis that A~~" =6'E').
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