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Statistics of spectra of disordered systems near the metal-insulator transition
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We study the nearest-level-spacing distribution function P (s) in a disordered system near the metal-
insulator transition. We claim that in the limit of an infinite system there are only three possible func-
tions P(s): Wigner surmise P~(s) in a metal, Poisson law Pp(s) in an insulator, and a third one PT(s), ex-
actly at the transition. The function PT is an interesting hybrid of P~(s) and Pp(s), it has the small-s be-
havior of the former and the large-s behavior of the latter one. A scaling theory of critical behavior of
P(s) in finite samples is proposed and verified numerically.

where 6=—(s ) is the mean spacing between two adjacent
levels. Equation (1) demonstrates a strong repulsion be-
tween levels. On the other hand, in the trivial case of a
random matrix with zero off-diagonal elements, there is a
completely random sequence of eigen values, and the
spacing between adjacent levels has a Poisson distribution

1 sP (s)= —exps

In a number of works, the crossover between the
Wigner and Poisson distributions in a disordered system
was related to the localization of wave functions, which
reduces the role of repulsion between levels. The conven-
tional way to describe the localization transition is to use
the Anderson Hamiltonian (AH) (Ref. 7)

II=g e;a; a; —g a'i~at t (3)

where a; and a; are the electron creation and annihila-
tion operators at site i, subscript j denotes adjacent to i,
and e,. is the random energy of site i in units of the over-
lap energy of adjacent sites and is uniformly distributed
in the range from —8 /2 to 8 /2. It is well known that

The statistical properties of the spectra of complex sys-
tems such as molecules, nuclei, and mesoscopic solids can
be represented by random matrix spectra. Characteris-
tics of such spectra are well known for the so-called
Gaussian orthogonal ensemble (GOE) for which all ma-
trix elements (diagonal and off'-diagonal) have the same
Gaussian distribution. ' The probability density P(s) of
the nearest-neighbor spacing s is shown to be extremely
close to the Wigner surmise'

2
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eigenstates of AH in the vicinity of the energy @=0 ex-
perience a localization transition with increasing O'. For
a simple cubic lattice, the "metal-insulator" (MI) transi-
tion occurs at S"= 8'& =16+0.5.

Numerical diagonalization of AH for simple cubic lat-
tices L XL XL at small L =5 (Refs. 3 and 4) revealed a
crossover between Pii (s) and Pt (s), with W increasing
from 8'&(8'c to 8')) 8'~. However, the distribution
P (s) in the critical region was not studied at that time.

In this Brief Report, we (i) discuss P(s) in the limit of
L ~ oo; (ii) postulate for L —+ oo a new universal
P (s) =PT(s) exact—ly at the transition point and determine
it numerically; (iii) introduce a scaling hypothesis for
cubes of finite L; (iv) present results of the numerical di-
agonalization of AH at different 8'and L up to 16 which
confirm this scaling hypothesis; and (v) suggest a new
method for the location and the analysis of the MI transi-
tion.

It is quite obvious that in an infinite system
P(s)=P&(s) at any W) W'C. Indeed, energy levels con-
tributing to P(s) typically belong to localized states cen-
tered at very large distances of the order of L from each
other. That is why if L ~~, we can neglect their repul-
sion even when 8 is close to 8C and the localization
length g( W) is much larger than the lattice constant.

Now we argue that in an infinite system everywhere on
the metallic side of the transition ( W' ( Wc ), the function
P(s) coincides with P~(s). In Ref. 2, fiuctuations in the
number of levels inside an energy band of width e were
studied for metallic samples. They were shown to agree
with Dyson's results derived for the GOE if
e& e'c =—h/~, where ~ is the diffusion time of an electron
between two opposite faces of the cube. The ratio
ec /5 = Gh /e (where G is the cube conductance) tends to
infinity when L ~ Oo for any 8'( 8'z. Therefore one can
assume that all results known for GOE including the
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Wigner surmise are valid for the metal, even for energies
much larger than 6.

What happens with P (s) in an infinite system exactly
at W= Wz? We argue that there is a distribution PT(s)
at 8'= 8'c which is probably universal for some class of
MI transitions. At s ))6, it should decay like
exp( —s/~5), where ~=0.3. The reason for such behav-
ior is that exactly at the transition r.&=5, and repulsion
between levels is significant only for s ~ 6.

For s «5, the function Pz(s) sho. uld be linear in s.
This follows from the general symmetry theorem proved
by Dyson for the case of the orthogonal ensemble which
includes AH. From the point of view of this theorem, the
Poisson distribution for 8') 8'c is a result of the diver-
gency of the slope of the linear part in the limit of
L ~ ao, in which repulsion between adjacent levels disap-
pears. At the transition, repulsion is important for all
s & 5, and the slope differs from the slope of P~(s) by a
numerical factor only. Thus PT(s) is an interesting hy-
brid of P~(s) and Pp(s). It has small-s behavior resem-
bling the Wigner distribution and large-s behavior resem-
bling the Poisson one. In Fig. 1, the curve corresponding
to W =16 is the best approximation to PT(s) as obtained
from our numerical computations (see below). It looks as
expected.

At any finite L, we can expect a continuous crossover
from P~ to PI with growing O'. To discuss such a cross-
over, we characterize P (s) by one parameter, the weight
of the large-s part A—:f 2sP(s)ds (Pp and P~ cross at
s =2.002), normalized in the following way:

y(W, L)=
Ap —A~

If L = ~, then the parameter y=0 for 8'& W& and

y =1 for 8') O' . For finite L, it is natural to expect a
scaling behavior

y( W, L ) =f(L /(( W) ),
where g( W) is the correlation length of the MI transition
(at W ) Wc, one calls it the localization length). The in-

set in Fig. 2 shows schematically the expected evolution
of y( W) at different L. It is clear that if one obtains such
a set of curves one can easily find the transition point 8 c
as the point where all curves cross or, in other words, the
point at which the size efFect changes its sign.

We have tested these predictions numerically. We con-
structed matrixes representing AH for the simple cubic
lattice with periodic boundary conditions. The eigenval-
ues were obtained by diagonalizing the matrices on the
Cray-YMP at the San Diego Supercomputer center and
the Cray-XMP at the Minnesota Supercomputer Institute
using standard library routines. We studied cubes with
L =6, 8, 12, 16, and 8 = 10, 12, 14, 15, 16, 17, 18,20,
24,30. The number of random realizations varied with L
in such a way that the number of studied eigenvalues at
each combination of 8'and L was kept around 10 . In
order to minimize fiuctuations of P(s), we used levels
from a band around e=O containing 50% of all levels.
We verified that there were no significant changes in P (s)
if we used 25% or 10%. This is not surprising in view of
the fact that the phase trajectory of the MI transition in
the (e, W) plane is rather fiat up to

~
e~ =6 for the box dis-

tribution. ' To take into account the very weak energy
dependence of the density of states around e=O, we cal-
culated dimensionless function P, (s /5) =P (s)5 using
values for 5 obtained separately for 32 energy intervals.
In Fig. 1, we show P(s) for lattices of size L =12, for
various W. We note that P(s) progresses from P~ to Pp
as 8' increases. All the distributions cross near s =26.
To compare the P(s) for lattices of different size, we
evaluate y( W, L). The results are shown in Fig. 2. As ex-
pected, the transition between the Wigner (y=0) and
Poisson (y= 1) limits becomes more abrupt as L in-
creases. The curves cross at 8' = 8'c = 16.0+0.5, which
we identify as the transition point. This agrees with oth-
er determinations. At 8 = 8'c, we did not find any sys-
tematic dependence of the shape of P (s) on L. Therefore
P (s) at L = 12 and W = 16 (see Fig. 1) indeed represents
the function PT(s) at L = oo very well. To verify the scal-
ing hypothesis [Eq. (5)] in Fig. 3, we plotted y as a func-
tion of L/g(W), taking values of g(W) from Ref. 8. All
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FIG. 1. Nearest-neighbor spacing function P(s) for L =12
and difterent O'. Wigner and Poisson functions P~(s) and Pp(s)
are also shown for comparison.

FIG. 2. The parameter y as a function of 8' for different
sizes of system L as obtained by numerical diagonalization.
Schematic y(8 ) dependences are shown in the inset. The loca-
tion of the main plot is shown by dashed lines.
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s «5. We start from the case of the deep insulator
( W) 2Wc ). To evaluate P(s) for s «5, we can consider
the repulsion of two adjacent energy levels which most
likely belong to the states localized at a distance of the
order of L from each other. Solving the eigenvalue 2 X 2
problem for these two states, we obtain
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FIG. 3. Verification of the scaling hypothesis. The parame-
ter y as a function of [L/g( W)]', where g( W) is the correla-
tion length of the MI transition. The power 2

is used only for
the purpose of clear presentation of the data. The upper and
lower sets of data are obtained from 8'~ 17 and W ~ 15, respec-
tively.

the points collapsed on two separate branches for
W & 8'c and 8') 8 c. We consider Fig. 3 as a
confirmation of the scaling theory. Using Eq. (5) and the
expression

g( W) =go —1
c

for the correlation length g( W), we can find the exponent
v. For this purpose, we fit the data near the crossing
point in Fig. 2 with the help of the expansion

y(W, L)=y( WC, L)+C —'1 L'
c

This gives v= 1.50+0. 15 in agreement with Ref. 8.
We repeated the same kind of computations for the

two-dimensional case and obtained y as in Eq. (4). In
this case, the curves of y( W) for several choices of L (as
in Fig. 2) did not cross at any finite W. This means that
there is no MI transition in this case. At the same time,
all the data for y collapsed into one single-valued curve
when plotted against L/g(W). Thus analysis of these
spectra gives results consistent with the conventional un-
derstanding of the role of dimensionality" for the MI
transition.

Returning to the shape of P(s) in Fig. 2, we would like
to explain the observed linear dependence P(s)=Bs for

where E'& and e2 are bare energies of states 1 and 2, and V
is a matrix element describing tunneling from one to the
other. V appears in high orders of perturbation theory as
a sum over different paths from site 1 to site 2. ' The
contribution of each path has a random sign because of
random signs in the perturbation-theory expansion
denominators (e; —e, ). Therefore the probability density
of V, F( V) is finite at V=0. This leads' to the linear be-
havior of P(s) for s « Vo «5, where Vo is the typical
value of

~
V. '

It seems clear that if at finite L, equation P(s)=Bs is
valid both for 8 ))8'c and 8' « 8'c, it should be valid
for any 8' including 8' = 8'c. When L —+ ~, coefficient
8 tends to infinity for 8'& Pc and to B~—=m. /26 for
8' & Wc. At 8 = 8'c, it does not depend on L and is
equal to BT, the initial slope of PT(s). It follows from
Fig. 1 that BT-—1.3Bw.

To summarize, we have introduced and found numeri-
cally a distribution of nearest-level spacings PT(s) which
occurs exactly at the MI transition. It is shown that the
crossover between the Wigner and Poisson distributions
for finite samples can be described by scaling theory. The
MI transition point can be located as the point at which
the size effect on the distribution function changes sign.
We believe that this method of locating the MI transition
is conceptually the simplest: it deals only with the spec-
trum and does not involve conductivity calculations or
knowledge of eigenfunctions. At the same time, it is
quite accurate and practical.
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