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Critical and Gaussian conductivity fluctuations in YBa2cu3O7 —$

P. Pureur, R. Menegotto Costa, P. Rodrigues, Jr., J. Schaf, and J. V. Kunzler
Insti tuto de FI'sica, Uni Uersidade Federal do Rio Grande do Sul, P.O.B. 15051, 91501-970Porto A legre, Rio Grande do Sul, Brazil

(Received 11 January 1993)

We report on systematic conductivity fluctuation measurements on three different samples of
YBa2Cu307 q. We show, using the temperature derivative of the resistivity and the logarithmic deriva-
tive of the conductivity with respect to temperature, that the transition is a two-step process. In the nor-
mal phase, contributions from Gaussian and critical fluctuations are clearly evidenced. Far from T„ the
Gaussian exponents indicate that a fractal topology might be adequate to describe the space dimen-
sionality of the fluctuation spectrum. Closer to T, we observe a crossover to a three-dimensional (3D)
homogeneous Gaussian regime. Still closer to T, we unambiguously identify the exponent A.„-0.33,
predicted by the simplest full dynamic scaling theory of critical superconducting fluctuations. The ob-
tained exponent is consistent with a 3D, two-component, order parameter. Near the zero-resistance
state, the temperature dependence of our data is rather consistent with power-law behavior, suggesting
the occurrence of a phase-transition phenomenon related to the percolation granular network.

I. INTRODUCTION

The extremely small coherence length and the strong
anisotropy are among the most distinctive properties of
the high-temperature cuprate superconductors. A major
consequence of these characteristics is the occurrence of
large regions where effects of thermal superconducting
fluctuations are visible in several of their temperature-
dependent properties. Since the early stages in the exper-
imental work, this raises the question of observing or not
the scaling regimes dominated by genuine critical fluctua-
tions. Specifically concerning the electrical conductivi-
ty, however, up-to-date the most systematic reports avail-
able in the literature just evidence the regimes dominated
by Gaussian fluctuations, either in YBa2Cu307 s (Refs.
2 —5) and Bi2Sr2CaCu20&. ' This is in contrast with re-
cent results on the specific-heat anomaly near T&, which
are better described by supposing critical, as opposed to
Gaussian, fluctuations. ' Results concerning the upper
critical field and the Ettingshausen effect' were also in-
terpreted in terms of critical fluctuations. As known, the
experimental access to the critical region gives informa-
tion not only on the degree of anisotropy of the supercon-
ductor, but also on the symmetry of the order parameter,
which is important for modeling the pairing interaction.

In this paper we study carefully the resistive transition
of three independent samples of polycrystalline
YBa2Cu307 &. We show that the transition proceeds as
a two-step process. Using a simple but reliable method of
analyzing the fluctuation conductivity results, we unam-
biguously identify a fully dynamical critical regime with
the expected exponent for a 3D-XY transition. More-
over, we characterize the regime dominated by Gaussian
fluctuations and discuss their interplay with structural in-
homogeneities. We also briefly present results near the
zero resistance state.

II. EXPERIMENT

We have prepared in different times three polycrystal-
line samples of YBa~Cu3O7 g following the standard

powder solid-state reaction technique. Care was taken to
obtain well oxygenated and high-density sintered pellets.
Two samples labeled I and II were measured soon after
preparation. The third sample (sample III) was first
deoxygenated to 6=0. 15 in vacuum at 450 C. After 60
days approximately, sample III was reoxygenated back to
6=0. Then the present measurements were taken. Al-
though restoring the behavior of the normal resistivity,
the above procedure enlarges specifically the contribution
of weak links to the width of the transition.

Resistivity measurements were performed using a low-
frequency —low-current ac technique. A variable decade
transformer and a- lock-in amplifier were employed in a
compensating circuit and as null detector, respectively.
Relative sensitivities of 10 were easily attained. Tem-
peratures were determined with a Pt sensor with an accu-
racy of 1 —2 mK. Data points were recorded while in-
creasing or decreasing temperature in sweeping rates of
about 2 K/h. The large number of closely spaced points
allowed us to numerically determine the temperature
derivative of the resistivity near T, .

III. RESULTS AND DISCUSSION

A. Temperature derivative of the resistivity

Figure 1 shows dp/dT as a function of temperature for
samples I and III close to T, . The determination of
d p/dT is a simple procedure for magnifying details of the
transition. "' The asymmetric peak structure observed
in Fig. 1 occurs systematically in polycrystalline sam-
ples' and may be discerned in some single-crystal data. '

This indicates that the transition in YBa2Cu307 & is a
two-step process, a feature which should be properly tak-
en into account when analyzing fluctuation conductivity
data. The position T, of the sharp maximum in dp/dT
corresponds approximately to the bulk critical tempera-
ture. Above T, the transition is dominated by supercon-
ducting fluctuations in the normal phase. In the low-
temperature side of the dp/dT maximum of sample I, in
Fig. 1(a), one may discern a faint hump which develops
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FIG. 1. Temperature derivative of the resistivity near T, for
samples I (panel a) and III (panel b) described in the text.

B. Method of analysis

We analyze our data by adopting the simplest ap-
proach where Auctuation conductivity, or paraconduc-
tivity, diverges as a power law of the type'

into a secondary and rounded peak in sample III. This
feature is current dependent' ' and is related to a
thermally controlled percolation-type process, which is
strongly dependent on the meso- and macroscopic
inhomogeneities affecting superconductivity in
YBa2Cu307

ty in a ferromagnet, with the critical exponent playing
the role of the Curie constant. Thus, simple identification
of linear temperature behavior in plots of 1/y versus T
allows the determination of T, and A. . The amplitude A

remains undetermined. However, as far as the absolute
values of the intrinsic conductivity are not accurately
known, A is a less useful parameter.

The main source of uncertainty in our analysis comes
from the extrapolation procedure to estimate p~ near T„
as in most paraconductivity studies. Errors introduced
by the numerical calculation of the derivative

d
&

1 dp 1 dpi'
b,o

dT p dT p~ dT

are partially compensated because the term involving pz
in Eq. (5) is small compared to the term containing the
total resistivity p near the transition.

C. Fluctuations in the normal phase

Figures 2 and 3 show representative results for I/y as
a function of temperature for samples I and III, respec-
tively. Results for sample II look very similar to those
for sample I. The measurements were repeated from 5 to
8 times for each sample, under variation of conditions as
the sense of the temperature drift or the current density.

From Figs. 2 and 3 it is clear that the transition is a
two-step process, which should be described by different
phenomenologies above or below T, . Above T, , de-
tailed inspection reveals that the best description of 1/y
is given by successive straight lines which can be fitted to
limited but reproducible temperature ranges. In the ma-
jority of measurements we could fit four power-law re-
gimes, corresponding to different exponents. These are
labeled by the indices X&, 12, A, 3, and A.„, as shown in
Figs. 2 and 3 and Table I.

where E=(T—T, )/T, is the reduced temperature, A, is
the critical exponent, and A is a constant. Ao. =o.—o.z
is obtained from the measured o. by subtracting the regu-
lar conductivity o z. As commonly done, o.z is calculat-
ed from extrapolations of the high-temperature behavior:

1
o =og-

pu

dpi'
pe po+ T,dT

(2)

where po and dpi' /dT are constants. In our samples, the
linear resistivity behavior holds above 150 K, approxi-
mately. Instead of analyzing our results directly with Eq.
(1) we determine the logarithmic derivative of Acr from
the experiment and define

10

8-

6-

&l

c 4-

2-

A. =1 . 4

Using Eq. (1) we obtain

(3) 0—
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Temperature (K)

1=—(T —T )c (4)

which is formally analogous to a Curie-Weiss susceptibili-

FIG. 2. Representative plot of the logarithmic T derivative
of the paraconductivity as a function of T for sample I. Straight
lines correspond to fits to Eq. (4). The respective exponents are
quoted. T,~ indicates the maximum of dp/dT.
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FIG. 3. The same as Fig. 2 but for sample III.

1. Gaussian fluctuations

The regimes farther from T„A,, to k3 are dominated by
Gaussian fluctuations. The regime A, &, well above T„ is
the most affected by experimental errors and uncertainty
in pz. However, by performing averages over the several
measurements, we obtain the mean value of the charac-
teristic exponent, A,

&

= 1.32+0. 15. The second power-law
regime is characterized by the exponent A.&=0.85+0.09.
Closer to T„ the third Gaussian regime is described by
the exponent A,3=0.51+0.06.

On the basis of the Aslamozov-Larkin theory' for
fluctuation conductivity, one should expect exponents
given by

2
2

'

where d is the dimension of the fluctuation system. Our
exponents A. , and A, 2 do not correspond to integer dimen-

sionality. Nevertheless, we may reconcile these results
with the Gaussian theory by supposing that fluctuations
develop in a space having fractal topology. In this case,
as shown by Char and Kapitulnik, ' the conductivity ex-
ponent should be written as

2 7

d
2 '

where d is the fracton dimension of the fluctuation net-
work. It is indeeded known that inhomogeneities in the
microscopic and mesoscopic scales strongly affect several
properties of the high-T, superconductors. Concerning
paraconductivity in particular, claims for fractality have
been reported in the Bi-based systems ' ' and
YBa2Cu307 &.

' ' The third Gaussian exponent, k3,
corresponds to a homogeneous 3D regime, according to
Eq. (6).

In the following discussion we assume that the coher-
ence length varies as in the Ginzburg-Landau theory,
g(T)=g(0)E ', and all the anisotropy is contained in

g(0). Then, using the value g,&(0)-=13 A, we obtain
that in the quasifilamentary A, , regime, the length of the

0

superconducting droplet ranges about 50—70 A. This is a
rather short-range scale, where fractality should come
from microscopic defects as oxygen vacancies. Domi-
nance of the 1D character could indicate some role of the
Cu-0 chains along the b axis. In spite of the large error
bar we note that the average value of A,

&
is consistent with

d =—', , which is the well-known fracton dimensionality of
the percolation network.

The exponent A.z corresponds to a crossover regime be-
tween 2D and 3D geometry. Using g, (0)=2 A, one cal-
culates that the superconducting droplet reaches about
12—16 A along the c direction in this temperature range,
showing that fractality in this case could result mainly
from imperfect coupling between superconducting
planes. It is noticeable that the value A,2-—0.85 corre-
sponds to d =2.3, which is close to 1+ 4, a value already
found by Ausloos et ai. in a Bi-based compound. Thus,
the quasi-2D A, 2 fluctuations might be roughly visualized
as homogeneously planar in the ab plane and percolation
structured perpendicular to the plane.

The exponent A,3-—0.5 is just the predicted one for
homogeneous three-dimensional fluctuations. In the cor-
responding temperature range, the droplet would reach
sizes of 100—150 A in the plane and 17—24 A in the c
direction. In this length scale fractality becomes unob-
servable probably because the superconducting coherence
length g becomes larger than the percolation coherence
length, g . Indeed a crossover from the fractal regime
(g (g ) to a homogeneous regime ( g ) g ) would be ex-
pected for bulk intragranular fluctuations, as in this case
the percolation backbone would be linked to the defect
structure, which gives a g essentially temperature in-

dependent. '

2. Critical fluctuations

The fourth power-law regime in Figs. 2 and 3 and
Table I is labeled by the exponent A,„.This corresponds
to genuine critical fluctuations which were predicted to
occur by Lobb' but was not unambiguously identified in
previous Auctuation conductivity results in
YBazCu307 &. Figure 4 is an expanded view of the criti-
cal regime for sample I.

In the critical region, the full dynamical scaling
theory predicts that the paraconductivity diverges at T,
as

—v(2+z —d +q)
7

where v is the coherence length critical exponent, z is the
dynamical critical exponent, and g =0 describes the
departure from the Ornstein-Zernike behavior in the or-
der parameter correlation function. The simplest
description of the superconducting transition supposes
that the Ginzburg-Landau order parameter is just de-
scribed by the O(2) rotation group. This means that the
thermodynamic properties of superconductor in the criti-
cal region are the same as a 3D-XY model. Then, as
done by Lobb, ' one should substitute v= —', , z =—', , and
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TABLE I. Exponents that characterize conductivity fluctuations in the normal phase of
YBa2Cu307 q. Values are obtained from fits of experimental data to Eq. (3) (see text). The reduced
temperatures indicate the range of validity of each regime.

YBa2Cu307 —$ Critical fluctuations Gaussian fluctuations

Exponents
Reduced temperature

Sample I
Sample II
Sample III
Averages

~cr
0.0026 & c &0.0064

0.30+0.04
0.36+0.06
0.32+0.01
0.33+0.03

A3

0.008 & c. &0.015
0.55+0.09
0.49+0.06
0.49+0.04
0.51+0.04

X2

0.016&c &0.032
0.85+0.07
0.88+0. 1

0.81+0.1

0.85+0.05

0.038 & c. &0.07
1.4 +0. 1

1.25+0.3
1.32+0.06
1.32+0. 11

d = 3 in Eq. (8) to obtain b,o =(T —T,),which is ex-
pected to be valid very close to T„where dynamic scal-
ing effects become dominant. This is just the behavior
observed in our samples, where we obtained
X„=O.33+0.03. Consequently, critical fluctuation con-
ductivity in YBa2Cu&07 & is consistent with the simplest
superconductivity theory, corresponding to s-wave pair-
ing, which has a single complex (two-component) order
parameter.

From our results we may estimate the Ginzburg re-
duced temperature eG = ( TG —T, ) /T, below which
mean-field theory ceases to be valid. We calculate a criti-
cal width, T, cG =0.6 K, which falls in the range of other
estimations in Ref. 25.

D. The approach to the zero resistance state

Decreasing the temperature below the minimum where
T, is located we enter into a region where 1/g goes to
zero, as shown in detail in Fig. 5 for samples I and II.
This regime is diFicult to explain. Interpretations have
been proposed in terms of dissipative Aux motion, which
are likely to be co&rect in the presence of strong magnetic
fields. On the contrary, some authors argue on a phase
transition phenomenon involving quenched disor-

r 21,27, 28

Most conventional Aux-creep formulas do not describe
results in Fig. 5. The simplest empirical description of
these data is given by power laws of the type

Ao. —c,', ,

where the reduced temperature c,, =( T —T„)/T„ is re-
lated to another critical temperature, T„, which is close
to the so-called zero resistance temperature. We general-
ly identify two straight lines in plots like those of Fig. 5,
corresponding to exponents s, and s2, displayed in Table
II. Our exponents seem to be sample independent for a
certain interval of (low) current density. This probably
does not hold for large current variations. ' '

Power-law behavior is rather suggestive of a phase
transition phenomenon. Indeed, the exponent s1 ——2.7
have been encountered by Rosenblatt and co-workers in
granular superconductors constituted by assemblies of
small metallic particles embedded in an insulating matrix,
and in ceramic YBa2Cu&07 & as well. Rosenblatt pro-
poses an interpretation based on a paracoherent-coherent
transition of the granular array, where the Auctuating
phase of the order parameter in each grain becomes
long-range ordered as a consequence of activation of
weak links between the grains.
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FIG. 4. Expanded view of data in Fig. 2 (sample I} near T, .
The power law denotes the critical regime with the quoted ex-
ponent (see Table I}.
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FIG. 5. Expanded view of data in Fig. 3 (sample III) in the
regime approaching the zero-resistance state. Straight lines cor-
respond to power-law behavior with the quoted exponents (see
Table II). The inset shows similar results for sample II.
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TABLE II. Exponents corresponding to power-law behavior
in the regime approaching the R =0 state, Eq. (8). Values are
obtained from fits of the experimental data to Eq. (3).

Exponents

Sample I
Sample II
Sample III
Averages

$2

3.9+0.6
4.0+0.9
4.3+0.6
4.1+0.4

s)

2.9 +0.7
2.6 +0.2

2.59+0.05
2.7 +0.3

IV. CONCLUSIONS

We study experimentally the fluctuation conductivity
and the nature of the resistive transition in three samples
of polycrystalline YBa2Cu307 &. Analysis of the ternper-
ature derivative of the resistivity near T, reveals that the
transition is a two-step process, a feature which should be
properly taken into account when discussing fluctuation
conductivity results. Using a method based on the deter-
mination of the logarithmic derivative of the conductivi-

The exponent s2 -—4 is harder to understand. This un-
common and rather high value might be consequence of
fractal-related effects, in analogy to the case of intragrain
Auctuations. For instance, certain physical fractals are
more compact at short-length scales than in large aggre-
gates. This would imply a crossover in the appropriat-
ed fractal dimension as large clusters are coming into
play closer to T„. For the moment, because of the lack
of an appropriate theory, we should not discard the possi-
bility that the exponent s2 refers to a noncritical effect.
Clearly more detailed studies, either experimental and
theoretical, are needed to clarify the behavior of the resis-
tivity very close to the R =0 state in the high-T, super-
conductors.

ty, we are able to demonstrate the occurrence of Gauss-
ian and critical conductivity fluctuations in the normal
phase.

We identify three Gaussian regimes. Far from T„ in
the Gaussian region, the obtained exponents indicate that
the fluctuation spectrum is defined in a space character-
ized by fractal topology. Specifically, the exponents cor-
respond to the fracton dimension of a percolation net-
work in the quasi-1D and in the quasi-2D geometries.
Closer to T, a crossover occurs to homogeneous and
three-dimensional Gaussian fluctuations. Still closer to
T„we observe a full dynamical regime dominated by
genuine critical fluctuations. The value obtained for the
exponent, X„=0.33, is entirely consistent with a super-
conducting transition isomorphic to that of a 3D-XY
model, in analogy to superAuidity in He. This means
that the Ginzburg-Landau order parameter in
YBa2Cu307 & has two components, as expected on the
basis of simple s-wave pairing. We estimate a critical
width of -0.6 K above T, .

In the regime approaching the zero-resistance state,
the data are better described in terms of power-law be-
havior. This is rather suggestive of the occurrence of a
phase-transition phenomenon involving the percolation
granular arrangement, where the long-range ordering is
achieved through activation of weak links between the
grains.
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