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Multiple-quanta vortices at columnar defects
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The possibility of the formation of multiple-quanta vortices on columnar defects (CD s) produced by
ion irradiation is discussed. It is shown that the upper-critical field for localized superconductivity near
CD's depends nonmonotonously on the CD radius.

I. INTRODUCTION

Recently the influence of ion irradiation on the critical
current of high-T, superconductors Bi2Sr2CaCu20, (Ref.
1) and YBa2Cu307 (Ref. 2) has been investigated. Along
their paths ions create columnar damage tracks with
thickness of the order of 50 A and an average distance

0
between defects, d =—100—500 A. These columnar defects
(CD) influence dramatically the vortex pinning and can
increase the critical current many times. Presumably, the
damage tracks are amorphous regions where supercon-
ductivity is suppressed.

In this work we consider the columnar defect as a cy-
lindrical dielectric region of a radius R parallel to the c
axis. If the vortex core coincides with the columnar de-
fect there is no loss of superconducting condensation en-
ergy in the core and it contributes to vortex pinning.

Moreover, if the radius R is larger than the supercon-
ducting coherence length g, then not only is the vortex-
core energy changed but the energy of the superconduct-
ing current (which gives the main contribution to the to-
tal energy) will also be different. This effect would give
the leading contribution to the vortex pinning energy.

The energy (per unit length) of the Abrikosov vortex in
the superconductor is
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where 4o=miiic/e is the flux quantum; A, is the London
penetration depth; and a cutoff in the integration of the
superconducting current is performed at g, the normal
core radius. The numerical constant c is approximately
0.12 and describes the contribution of the normal core to
the total energy. In the case of the columnar defect the
only difference in the vortex energy calculation is the
cutoff at R rather than at g, and the resulting vortex ener-

gy is
2
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For R &)g it leads to an essential decrease of the lower
critical field and vortices start to appear at columnar de-
fects at H )H„, where

and H, j is smaller than the bulk lower critical field H, I.
When the magnetic field continues to increase, more

and more columnar defects become occupied by the vor-
tices and finally at the field H* = n, @o, (where n, = 1/d,
is the defect's concentration) there is a vortex at each de-
fect. Further increase of the magnetic field may create
vortices between CD's. However, there exists an alterna-
tive option, the appearance of two-quanta vortices at a
CD.

II. THE CONDITIONS
OF TWO-QUANTA VORTEX FORMATION

In order to answer the question of which option is real-
ized, we need to compare the energy of an additional sin-
gle vortex creation and the energy of the appearance of a
two-quanta vortex instead of a usual one. The free ener-
gy of an arbitrary vortex configuration (see, for example
Ref. 4) may be written as

F=gE, ;+—g U;, ,
I I,J

(4)

where E, , is the self-energy of the ith vortex which, for a
single-quantum vortex, is given by (1). The interaction
energy U, between the i and j vortices reads

UJ= h;J,

where h, . is the magnetic field created by the ith vortex
at the center of the jth vortex. In the case of a triangular
lattice the Fourier components of the magnetic field are

neo
h

1+k k

where n =2/')/3a is the concentration of vortices and k
are the reciprocal-lattice vectors.

When the magnetic field increases and vortices start to
enter into the sample they occupy randomly positioned
CD sites. The energy of a vortex on the CD is much less
than elsewhere and this prevents the formation of a regu-
lar vortex lattice. If all CD's are occupied by single-
quantum vortices the possibility of creation of a two-
quanta vortex appears. To perform the corresponding
calculations we assume that CD's form a regular triangu-
lar lattice which fits the vortex lattice and the vortex con-
centration coincides in this particular case with CD con-
centration, i.e., d =a. This does not affect our result ob-
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tained with logarithmic accuracy but simplifies the calcu-
lations significantly. When the first two-quanta vortex is
formed at the point i =0, its self-energy
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Note that it is necessary to subtract the integral from the
sum over reciprocal-lattice vectors to exclude the field
created by the i =0, vortex itself. Then, finally, the
change in free energy due to two-quanta vortex formation
may be written as
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When an additional single-quantum vortex appears,
the minimum of its energy will correspond to the center
of a triangular unit cell po=(a, +a2)/3, where a, and az
are the basis vectors of the vortex lattice. The change of
the energy

No g 4o @oexp(ikpo)bF„= ln —+ n
(4 k)' g 4ir 1+A,'k' (10)

Within logarithmic accuracy we may write that

@o
AF2, —EFi, =
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and then under the condition

R )ga (12)

it turns out to be energetically more favorable to create
two-quanta vortices after all CD's are occupied. Note
that the assumption that CD's form a regular lattice does
not affect qualitatively the physical picture and condition
(12) for two-quanta vortex formation (obtained with the
logarithmic accuracy calculations) remains the same for
the real situation with a random CD distribution.

Our consideration is adequate for the case k)&d, when
the CD concentration is relatively high. In the case when
the opposite inequality is satisfied we may neglect the in-
teraction between vortices and the condition of two-
quanta vortex formation (when all CD's have just been
occupied by single-quantum vortices) yields R 3 )gk2, i.e.,
it is more favorable to create a two-quanta vortex at a
CD then an additional vortex far away from a CD. This
is because of the presence of the cutoff' at R (rather than

and the energy of interaction with other vortices of the
lattice is
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at g) in expression (2) for the vortex energy at the CD.
For the high-field limit (a «A, ) formula (12) starts to
work again, but in this case the concentration of vortices
will be higher than the concentration of the CD.

In principle, when two-quanta vortices appear, one can
expect a change in the magnetization curve slope. If the
external field corresponds to two-quanta vortices at a CD
(H —=2@ond ), its further increases in H may create three-
quanta vortices, etc. This also affect the magnetization.
However, the irreversibility effects can strongly inAuence
magnetization processes in real crystals and it may be
difficult to verify this prediction. The direct visualization
of vortex lattices by the decoration technique seems to be
the best way to observe multiple-quanta vortice forma-
tion.

III. UPPER CRITICAL FIELD
IN THE PRESENCE OF CD

In the high-field regime CD's may carry multiple-
quanta vortices and this circumstance strengthens their
role in vortex pinning. The favorable conditions of vor-
tex formation at CD's is also reflected in the local in-
crease of the upper critical field near the CD—the effect
that is quite similar to the surface superconductivity.
Indeed, in the case of a CD with a large radius R ))g su-
perconductivity must appear near the interface of the
superconductor-amorphous region inside the CD at
H H 3 where the critical field for surface superconduc-
tivity H, 3=1.69H, 2. On the other hand, for a CD with
a very small radius, R «g, the critical field must coin-
cide with H, 2.

In this section we calculate, in the framework of
Ginzburg-Landau (GL) theory, the critical field H,'3 for
superconductivity nucleation near the columnar defect
with an arbitrary radius R for parallel field, i.e., directed
along the z axis. The linearized GL equation for the su-
perconducting order parameter 0' in the presence of a
magnetic field is analogous to the equation for an electron
wave function in a uniform magnetic field. In cylindrical
coordinates (p, y, z) with the z axis along the CD it may
be written as

18 B% 18'0
P4M p(jp Qp 2g 2

i Aco~0+ McoH+ p %=a%, (13)
20cp 4

with a =a(T,o T) the coefficien—t at ~%~ in the GL free-
energy expansion, (1/4M) the usual coefficient at the gra-
dient term, coH=eH/Mc the cyclotron frequency, and
the vector-potential gauge A= —,'(HXr) is chosen. Since
the region of CD's is treated as an insulator it implies
that the boundary condition for 4 at CD's is (see, for ex-
ample, Ref. 4)

(14)

The solution of Eq. (13) can be presented in the form
%=(1/i/2')exp(img)F(p), where the function F
satisfies the following differential equation:
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The orbital number m corresponds to the number of flux
quanta in the solution for the superconducting order pa-
rameter. In principal, the solution of (15) with the
boundary condition (14) gives the complete answer.
However, as has been demonstrated in Ref. 8, the varia-
tional approach for the calculation of H, 3 is very
effective, it gives the H, 3 value within 2% accuracy. In
what follows we will use the approach to calculate H, 3

for the CD. The solution of (15) is equivalent to the
problem of searching for the minimum of the functional

I I(m —x ) F (x)+x [F'(x)]2)(dx/x)
0

4 I xF (x)dx
0
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where the dimensionless coordinate x =p&(eH/cA) is
used. The minimum of a =a( T,p T) corr—esponds to the
maximum temperature at fixed magnetic field when su-
perconductivity can appear, in other words its gives the
T, (H) dependence. Choosing for F(x) a trial function
which satisfies the boundary condition at
xp =R &(eH/cA), dimensionless radius of CD,

F(x)=exp
b (x —xp)

we obtain for T, (R) the characteristic nonmonotonous
dependence, presented in Fig. 1. The origin of this pecu-
liar dependence is the transition to the solutions with
higher orbital momenta m when the radius of the CD in-
creases. Note that for R going to zero the critical field
H 3 approaches H, 2, whereas for R going to infinity the
result H,*3=1.66H, 2 of the variational calculation is
reproduced.

The temperature dependence of H,*3 for a columnar de-
fect with dimensionless thickness R /go = 10 is presented

2
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FIG. 2. Example of the temperature dependence of critical
field H,*3 for a columnar defect with dimensionless thickness
R/(0=10, where $0 is the superconducting correlation length
extrapolated to T=O. The discontinuities of the slope corre-
spond to the transitions between states with different orbital
momenta m.

in Fig. 2, where gp is the superconducting correlation
length extrapolated to T =0. Since the critical field goes
to zero when the temperature approaches T,o this means
that the dimensionless radius xo —+0 at T—+T,o. Then,
near T,o the solution with m =0 corresponds to the
highest critical field and H ~H, 2. When the temperature
decreases the transition to the solution with higher orbit-
'.l momentum becomes possible and this is reAected in the
discontinuous change of the slope of H,*3 dependence on
the temperature. Note that, in principal, the predicted
dependence could be observed in the experiments on su-
perconducting films with artificial regular arrays of holes.

As is known, the surface superconductivity which ap-
pears at H =H, 3 does not screen the external magnetic
field. This is connected with the fact that the density of
superconducting current changes its sign at some dis-
tance from the surface and the total current is equal to
zero. In the case of superconductivity localized near CD
there is no such compensation for low-m solutions and
some small magnetic moment appears.

As localized near a CD, superconductivity appears at a
field H,*3 )H, 2, this must be rejected in the increase of
conductivity in the field range H,*3 )H )H, 2, where the
bulk sample is in the normal state. Naturally, this in-
crease will be more pronounced for c-axis conductivity
and if CD are continuous, c-axis resistivity will be equal
to zero. Then the experimental observation of the change
of anisotropy of resistivity at the field above H, 2 could in-
dicate the existence of localized CD superconductivity.

FIG. 1. The oscillatory dependence of critical temperature
on the CD thickness. Different branches of the dependence cor-
respond to solutions with different orbital momenta I,
xo=R&(eH/ch), a dimensionless radius of the CD, H, 2 is the
bulk upper critical field at T =0 extrapolated from linear depen-
dence near T o (H 2( T) =H2[( T 0

—T)/T 0]).

IV. CONCLUSIONS

We have demonstrated that the presence of rather
thick columnar defects may lead to multiple-quanta vor-
tices formation. The pinning of the vortices on CD's is
determined not by a core energy change but by the de-
crease of the total magnetic energy of the vortex.

At high magnetic fields the superconductivity must
first appear near the CD and this may result in essential
resistivity decrease. The dependence of the critical field
of localized CD superconductivity on CD thickness
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proves to be nonmonotonous.
Note that the region of the CD has been treated as an

insulating one. If it is not the case and CD's should be
considered as metallic regions, it does not change the
conclusion about the possibility of multiple-quanta vor-
tices formation at CD's but prevents the appearance of
localized superconductivity near CD's.

ACKNOWLEDGMENTS

The author would like to thank A. A. Abrikosov for
helpful discussions and useful suggestions, and M. B.
Brodsky, V. V. Dorin, and A. V. Tartakovski for critical
reading of the manuscript. This work was supported by
US DOE BES No. W31-109-ENG-38.

'W. Cxerhauser et al. , Phys. Rev. Lett. 6S, 879 (1992).
~L. Civale, et al. , Phys. Rev. Lett. 67, 648 (1991).
3A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957) [Sov.

Phys. JETP 5, 1174 (1957)].
~P. G. de Gennes, Superconductivity of Metals and Alloys (Ben-

jamin, New York, 1966).
5A. A. Abrikosov, Fundamentals of the Theory of Metals

(North-Holland, Amsterdam, 1988).
D. Saint-James and P. G. De Gennes, Phys. Lett. 7, 306 (1963).

7L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Per-
gamon, New York, 1958).

sA. A. Abrikosov, Zh. Eskp. Teor. Fiz. 47, 720 (1964) [Sov.
Phys. JETP 20, 480 (1965)].


