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EfFects of cyclic four-spin exchange on the magnetic properties of the Cu02 plane
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For the Cu02 square lattice, as a parent system of high-T, superconductors, a numerical study
has suggested that the effective-spin model contains a large cyclic four-spin exchange interaction
J,. This paper investigates the effects of J, upon magnetic Raman scattering and upon properties
of the ground state by an exact numerical method mainly for a 16-site cluster. It is found that
the main Raman peak with the Bzg symmetry is shifted by 20% to the lower-energy side with a
realistic magnitude for J„which is about one fourth the size of the nearest-neighbor exchange J.
Accordingly a value of J extracted from analyses of experimental data becomes larger by 10% than
that estimated with the use of the Heisenberg model. Furthermore the four-spin exchange enhances
a shoulder due to multimagnon states at an energy of about 4J, and this result compares favorably
with the experimental line shape. Detailed discussion is given on the effect of the four-spin exchange
upon the ground-state properties such as the staggered magnetization, the ground-state energy,
weight of various spin configurations, and the spin-spin correlation function.

I. INTRODUCTION

In some copper oxides such as LaqCu04, which is
known as a parent insulator of the high-i, superconduct-
ing systems, electronic states of the Cu02 plane are fre-
quently described in terms of the two-dimensional spin-
1/2 Heisenberg model. For these materials the Raman-
scattering spectrum with the B~~ symmetry has a main
feature associated with the two-magnon bound state. A
large antiferromagnetic exchange interaction J between
nearest-neighbor copper sites has been deduced from
analysis of Raman-scattering experiments. For exam-
ple, about 1000 cm is estimated as the value of J for
La2Cu04. This value is roughly consistent with that ob-
tained from inelastic neutron scattering and is larger
than that of other magnetic materials.

In contrast to spin-1 magnetic materials, where the
conventional spin-wave theory without taking account of
the magnon-magnon interactions explains the spec-
tral line shape reasonably well, the spectra of the high-i,
oxides have the following distinctive features. First, the
linewidth of the two-magnon peak s is much broader
than the prediction of the spin-wave theory. Secondly,
the intensity of the spectra extends up to 8000 cm
which is well beyond the cutoff energy at 4J predicted by
the spin-wave theory. Thirdly, at low temperatures a
shoulder has been found at the high-energy side ( 4500
cm ~) of the two-magnon peak in the Bqs spectra. It
is interesting that La2Ni04, which is isostructural with
La2Cu04 but has spin 1, does not have this feature.

On the theoretical side it has been found by an ex-
pansion from the Ising limit that the large quantum
spin Buctuations in the ground state are intrinsic to the
two-dimensional spin-1/2 Heisenberg model. The spec-
tral moments deduced by the theory is consistent with
the broad linewidth of the B&z spectra. ' However, by
the nature of the theory it is not possible to derive the
spectrum itself. On the other hand, with the use of the
exact diagonalization method for small clusters, the

Raman spectrum has been computed for the Heisenberg
model and the t-J model.

Apart from the analysis of the magnetic Raman scat-
tering with use of the Heisenberg and t-J models, search
for a more accurate effective model for the Cu02 plane
has been made. ~s ~s A motivation of the present study is
a theoretical report, ~ which has proposed the existence
of a large cyclic four-spin exchange interaction J, in the
Cu02 plane. J, has been estimated as about one-fourth
of the nearest-neighbor exchange interaction J. It is nat-
ural to expect that this large four-spin exchange inBu-
ences the magnetic property of the Cu02 plane in various
aspects. Thus in this study we investigate the effect of
the four-spin exchange upon the magnetic Raman scat-
tering. Of particular interest is whether the high-energy
shoulder appearing in the Raman spectrum at low tem-
peratures is related to the cyclic four-spin exchange. We
also estimate the Heisenberg exchange J from analysis of
experimental results with account of J,. A preliminary
report on the theory of the Raman spectrum has been
published.

In addition, we study the effect of the four-spin ex.—

change on the ground-state properties of the system
such as the ground-state energy, staggered magnetiza-
tion, weights of various spin configurations, contributions
of each interaction to the total energy, and spin-spin cor-
relation functions. Though J, has been estimated to be
about one fourth of J in the actual Cu02 plane, we vary
J, up to 1.5J in order to see more clearly some conse-
quences of the four-spin exchange.

We use the exact diagonalization method mainly for a
4x4 square lattice and restrict ourselves to the insulating
phase of the CuOq plane.

II. SPIN HAMILTONIAN AND RAMAN
INTERACTION

In the Cu02 plane the large Coulomb repulsion (U
8 —10 eV) prevents two holes from doubly occupying a
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copper site. Then the insulating phase of the system is
usually described with one use of the two-dimensional
spin-1/2 Heisenberg model. However, in copper oxide
the energy di8'erence between hole levels at copper and
oxygen sites is not much larger than the hybridization
energy between 3d and 2p orbitals. This causes some
higher-order effects of hybridization significant. For ex-
ample, in addition to the Heisenberg exchange between
nearest-neighbor spins, cyclic four-spin permutations are
likely to occur in the CuOz plane. The eyelie spin ex-
change has been known in other materials such as solid
He. 2 Thus we work with the following effective Hamil-

tonian

&, = J, ) ((S; Sj)(SA S)+(S; S)(Sj'S )
(z,j,k, l)

—(s, s„)(sj.s&))

where S, denotes a spin-1/2 operator at site i of a two-
dimensional square lattice. n, is a number operator at
site i. J and J, represent the nearest-neighbor exchange
interaction and a cyclic four-spin exchange interaction,
respectively. 'MH describes the isotropic spin-1/2 Heisen-
berg model. In this Hamiltonian the sum is over nearest-
neighbor pairs of spins. In 'H4„(i, j, k, t) means the sum
over groups of four spins in a unit square. The meaning
of 'M4, may become clearer if it is rewritten in terms of
cyclic four-spin permutation operator P,~k~ as

(s, . s, )(s . s)+(s, . s,)(s, s, ) —(s, . s,)(s, s, )
= 4(&"~i+ &,,5)

—4(S, Sj + Sj SA,. + Si, Si+ Si S,)
——,'(s, . Si, + s, si) —

—,', . (2)

It has been found that J, amounts to about one-fourth
of J in a numerical study of CuOp plane. We note
that; two-spin exchanges between nearest-neighbor and
next-nearest-neighbor sites appear in Eq. (2). It has
been shown that the next-nearest-neighbor exchange
not contained in the form of Eq. (2) is negligibly small
in the Cu02 plane.

The two-magnon Raman interaction, which couples
the light and the pairs of spins is given by

HR = +R ) (Einc ' a ij)(Esc ' rrij )Si ' Sj
(i j3

where E;„,and E„are unit vectors of the electric fields
for incident and scattered light respectively. o,z is an
unit vector between the nearest-neighbor i and j sites.
We take unit magnitude for the coupling constant C~.
This Raman interaction Hips nearest-neighbor spins and
makes two magnons in the adjacent sites. These magnons
interact strongly with each other because of their close-
ness. Hence, the spectrum given by this Raman interac-
tion cannot be interpreted in terms of a simple picture of
noninteracting magnons.

III. MAGNETIC RAMAN SCATTERING

A. Numerical method

We diagonalize the efFective Hamiltonian '8 on the 4 x 4
square lattice with the periodic boundary condition in the
subspace where the z component of total spin is zero. We
use a modified Lanczos method.

The Raman spectrum Ip(u) at T = 0 is given by

Ip(~) = ~ ).I(@'l&RI@p)I'b(~ - (&. —&p)), (4)

where p gives a width to each excited state. In the limit
of small p one recovers Ip(ur) defined by Eq. (4).

Let us introduce a function A(z) as follows:

A(z) =—(0
1

where l0) is defined by

I0) —= &Rl~p)

Then the spectral intensity I(u) is given by

1
I(cu) = — ImA(~+ Ep+ ip) .

We use a continued fraction method~4 and represent
A(z) as follows:

Z —Gp—
z —ay-

z —Gg—

where the eoefBeients (a„,b„) are derived through the
following relations:

(nl'Rln)

(nln)
(n —1 l'Mln)

(n —iln —1)
'

l
n + 1) —= 'M [n) —a„ln) —b„ ln —1) .

(io)

(12)

A set of about a hundred eoefBeients (a„,b„j are needed
to get good convergence of the spectra.

In comparing our results with experimental results we
introduce the spectral moments by

I(~)d~,

~I(cu) Cku/IT, (14)

where l@p) is the ground state of 'R with energy Ep and
l@;) is the ith eigenstate with energy E,. For numerical
calculation it is convenient to introduce a related quan-
tity I(u) as follows:

1 1t(~) = — Im so 'MR . VtR @o)Nm ~+ p
— +&P
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(~ —Mi)"I(cu)d~/IT .

IT = (0~0), Mi = ap —EP,
M2 'I/I 1 Ms "I/(&1 &0)bl

(16)

(»)

The spectral moments and total intensity are derived di-
rectly from the continued fraction coefficients as
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B. Spectra and moments

The energies of those excited states that are coupled
by the Raman interaction appear as poles of A(z) with
p —+ 0. Figure 1 shows the excited state energies in
the Bi~ spectra as a function of J,/J. In the case of
the Heisenberg model (J,/J = 0.0), the state with the
strongest Raman intensity has the energy 2.98J,
and is due to the two-magnon bound state. A simple
interpretation of the value of this excited-state energy is
as follows. In the Ising limit, the ground state is Neel
ordered as in Fig. 2(a). The Raman interaction Hips
a pair of spins at nearest neighbors so that six bonds
with parallel spins at both ends appear as in Fig. 2(b).
This excitation costs energy 3J. It is remarkable that
3J is close to 2.98J obtained by an exact diagonalization
method for the isotropic Heisenberg model, despite large
quantum spin Huctuations in the ground state.

Two other excited states appear, which have relatively
strong Raman intensity at about 4.5J and 5.5J. They
have energies more than 4J, which is the cutoff energy
of two magnons obtained by the classical spin-wave the-
ory. This demonstrates the importance of the quantum
spin fluctuations in the ground state and of multimagnon
contributions to the understanding of the broad Raman
intensity in high-energy region of copper oxides.

The nature of these two excited states may be visu-
alized by going to the Ising limit. Namely, we consider

6
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FIG. 1. The J,/ J dependence of excited-state energies E, .
The three states dominating the spectrum are shown by filled
marks: the two-magnon bound state (circle), the four-magnon
bound state in a plaquette (square), and that in a column
(diamond) .
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FIG. 2. Spin configurations in the Ising limit. (a) Neel
ordered state, (b) two-magnon bound state, (c) four-magnon
bound state in a plaquette, and (d) four-magnon bound state
in a column.

two pairs of spins flipped in a plaquette or in a column,
which are shown in Figs. 2(c) and 2(d). The excitations
of these four-magnon bound states cost energies 4J and
5J, respectively. We note that these energies are not
much difFerent from the positions of filled squares (4.5J)
and filled diamonds (5.5J) in Fig. 1. Hence, we call these
two excited states a four-magnon bound state in a pla-
quette and one in a column, respectively. Since these
flipped configurations extend to the boundary of the 16-
site cluster, the Gnite-size effect plays a more important
role than in the two-magnon bound state.

Let us now discuss influences of the four-spin exchange
interaction upon the Bi~ spectra. As shown in Fig. 1
the strongest Raman peak due to the two-magnon bound
state is shifted to the lower energy side as J,/ J increases.
The dependence of the other excited-state energies on
J,/J is qualitatively similar to that of the two-magnon
bound-state energy. However, we notice that the energy
of the four-magnon bound state in a plaquette is less
sensitive to J,/J than the energies of other states such
as the four-magnon bound state in a column.

In Fig. 3, we present evolution of Bq~ spectra as we
increase the cyclic four-spin exchange starting from the
Heisenberg model. We choose a value p = 0.2J to have
smooth spectra. In the case of the pure Heisenberg model
the intensity of the four-magnon bound state in a pla-
quette [Fig. 3(c)] with energy about 4.5J is less than that
of the four-magnon bound state in a column [Fig. 3(d)]
with energy about 5.5J. As J,/J increases the inten-
sity of the two-magnon bound state [Fig. 3(b)] decreases.
Furthermore, at about J,/J = 0.25, the intensity of the
four-magnon bound state in a plaquette becomes stronger
than that of another four-magnon bound state. This
change of relative intensities is an important consequence
of the four-spin exchange.

It should also be noted that a new excited state
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I IG. 3. The evolution of spectra with Bz~ symmetry with
increasing J,/J. The spectral intensity is normalized by a
total intensity obtained from Heisenberg model: (b) two-

magnon bound state, (c) four-magnon bound state in a pla-
quette, (d) four-magnon bound state in a column, and (e)
a new excited state. These sublabels correspond to those in
1 ig. 2 except for (e). We choose p = 0.2J.

[Fig. 3(e)] with energy of about 5J appears for J,jJ )
O.l. The energy of this new excited state as a function of
J, is shown by triangles in Fig. 1. This excited state has
a remarkably large Raman intensity, which is comparable
to the main peak for J,/J ) 1.0 and survives up to the
maximum ratio J,/ J = 1.5 we have taken.

In the region of the parameter J,/J = 0.3—0.6, both
the plaquette and the column four-magnon bound states,
and this new excited state have nearly the same energy
of about 4J. Thus in the broadened spectrum they form
a conspicuous shoulder in the high-energy side of the
main peak. As a result the computed spectral shape with
the Big symmetry becomes similar to the experimental
results at 30. K. It should be remarked that this value
J,/J = 0.3—0.6 is roughly consistent with the indepen-
dent theoretical estimate J,/J = 0.28.~s

In the region with J,/J ) 0.6 the spectral line shape
is separated into two parts, which stem from the two-
magnon bound state and the new excited state, respec-
tively. Thus we conclude that in the large J,/J region
the nature of the spectrum is different from that in the
small J,/J region and the boundary between these two
regions corresponds to J,jJ = 0.3—0.6.

Let us now turn to quantitative study of spectral mo-
ments. M2 is related to width of the whole spectrum and

M3 to asymmetry of the spectrum. The ratios M2/Mq
and Ms/Mq are independent of J, and represent charac-
teristic shape of the Raman spectrum. The ratios have
been measured for some materials experimentally. If one
takes average over ratios obtained at room temperature
for various copper oxides and for a few laser wavelengths,
one obtains Ms/Mq 0.26 and Ms/Mq 0.21 for the
B&~ symmetry. i The theoretical values obtained by
the Ising-type expansion have been compared favorably
with these experimental values. On the other hand, the
ratios calculated from the experimental spectra with the
high-energy shoulder at T = 30 K are larger than those
at room temperature. The averaged ratios at low tem-
perature are M2/M~ 0.36 and Ms/Mq 0.31.

The computed spectral moments are shown in Table
I for the present model with J,/J = 0.25. The ratios
M2/Mq and Ms/Mq for our model are larger than those
for the Heisenberg model. In addition to these ratios we
also calculate the ratio between the energy of the two-
magnon bound state u2M and Mq. We obtain 0.88 as
a value of &2M/Mq with J,/J = 0.25. This value is
smaller than that for the Heisenberg model and agrees
very well with experimental results. Namely the experi-
mental value of cu2M/Mq are about 0.88 at room temper-
ature and 0.84 at 30 K. We note again that the experi-
mental ratios are averaged values for some copper oxides
and for a few laser wavelengths.

One can extract the value of J from comparison be-
tween theory and experiments. Using the calculated val-
ues of Mi we have determined J from experimental data
at 30 K for La2Cu04 and Nd2Cu04. We use the value for
Mi determined by the average for different laser wave-
lengths. Table II shows J thus extracted. It is evident
that J determined with account of the four-spin exchange
is larger than that of the Heisenberg model. Since our
result is affected by a size effect and special symmetry
of the 16-site cluster, we should be careful in discussing
the absolute value of J. However, the four-spin exchange
should influence the determination of J in the same di-
rection even in the macroscopic size of the system.

We have investigated a spectrum with Ai~ symme-
try as well. Because the Heisenberg Hamiltonian and a
Raman interaction for Aiz symmetry are commutative,
the spectral intensity should be absent in the Heisen-
berg model. On the other hand our Hamiltonian does
not commute with the Raman interaction because of the
four-spin exchange. Thus the model gives finite intensity
to the Aqg spectrum. However, the numerical calculation
shows that the ratio of the integrated intensity with the
A» symmetry to that with Bj~ symmetry is about one
to thirty. This is much less than the ratio experimentally
observed. Hence, it is unlikely that the cyclic four-spin

TABLE I, Calculated spectral moments with B&~ symmetry and their ratios obtained by the
exact diagonalization method; u2M is the energy of the two-magnon bound state making the main
peak. M2/Mq and M3/M& depend only on J/ J, .

Heisenberg model
This study

J./ J
0.00
0.25

~2M
2.98J
2.60J

Mg
3.24J
2.97J

Mg
0.80J
0.84J

M3
1.14J
1.11J

Mg/My
0.25
0.28

Mg/Mg
0.35
0.37

~2M/Mi
0.92
0.88
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TABLE II. Theoretical estimates of J with and without
account of the four-spin exchange.

J,/J = 0.0

J,/J = 1/4

Sample
La2Cu04
Nd2Cu04
La2Cu04
Nd2Cu04

J (cm ')
1200
1060
1300
1160

exchange interaction is responsible for the large Aq~ in-
tensity in actual Cu02 planes. This result suggests the
presence of another Raman interaction. For example, the
small charge-transfer energy in Cu02 planes may induce
a considerable size of the Raman interaction, which fIips
a pair of next-nearest-neighbor spins.

B. Staggered magnetization

In the finite size of the cluster there is no long-range
order such as the Neel order, but Neel-like correlations

IV. EFFECTS OF FOUR-SPIN INTERACTION
ON THE GROUND STATE

A. Ground-state energy and symmetry

We varied cyclic four-spin exchange interaction J,/J
from zero (pure Heisenberg model) up to 1.5. Figure
4 shows the J,/J dependence of the ground-state energy
and a low-lying energy, which has the I'2 (Btz) symmetry
in the 16-site cluster. The ground-state energy becomes
maximum at J,/J 0.6. In the whole parameter re-
gion the ground state has the I'q (AI~) symmetry and
there is no change in the ground-state symmetry. On the
contrary, for 10- and 18-spin systems the change of the
symmetry does happen in the ground states. Thus the
symmetry depends on a way to take spin clusters. How-
ever, the J,/ J dependence of the energies are similar to
the case of the 16-site cluster. In subsequent discussions
on effects of the cyclic four-spin exchange, we concentrate
on 16-site spin system.

are present. In order to see the degree of Neel-like corre-
lations we take the following quantity:

4p ) (i8)

C. Contributions of each interaction to total energy

From Eqs. (1) and (2), we rewrite '8 as follows:

'8 = 'Ry + 'R2 + 'R~ + 7t'~,

(20)

(21)

where e, is +1 or —1, depending on whether i is on the
A or B sublattice. In the complete Neel state one has
m, = +3/4 0.87, and m, decreases as the wave func-
tion ~4o) loses the Neel-like correlation. Thus it is ap-
propriate to call m, the staggered magnetization. It is
necessary to discuss the size dependence 7 in order to
evaluate absolute value of m, for the macroscopic sys-
tem. However, we restrict ourselves to the 16-site clus-
ter here and discuss qualitative modification of staggered
magnetization caused by the cyclic four-spin exchange.

Figure 5 shows the dependence of staggered magne-
tization on J,/J. With increase of J,/J from zero m,
increases rapidly up to about 0.78 at a critical value of
J,/J = 0.8 and then decreases with further increase of
J,/J. The maximum value m, 0.8 is close to that of
the Neel state and is considerably larger than that of the
Heisenberg model (m, 0.52) with the same size of the
cluster. We note that the value J,/J = 0.8, which gives
maximum m, is larger than the one J,/J = 0.6, which
gives the maximum ground-state energy.

—18—
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FIG. 4. The J,/J dependence of the ground-state energy
and the lowest energy of states with the I'2 symmetry. The
ground state has the I & symmetry in the whole parameter
region and there is no crossover of energies in the case of the
4 x 4 square lattice.
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0 0.5 1 1.5

FIG. 5. The staggered magnetization m, as a function of
J,/ J.
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'Hp = —) (P,,i, i + P „',.). ,

( , , I ,t)

J
'Hii = ——) n, n — N—,4 16

(i,j)

(22)

(23)

D. Wave function of ground state

In the presence of quantum spin fIuctuations, many
spin configurations contribute to the wave function l4o)
of the ground state:

l@o) =) c.l~), (24)

where ln) denotes a spin configuration basis. The coeffi-
cient c is in general complex. Actually the coefFicients
numerically derived turn out to be real in the parameter
range we have studied, as in the case of the Heisenberg

where 'Hi and 'Hq represent nearest-neighbor and next-
nearest-neighbor spin exchanges, respectively. 'Hp gives
cyclic four-spin permutations in the smallest plaquette.
The diagonal part 'H~, which do not influence spin con-
figurations will not be considered hereafter. We define
'Hs = 'Hi + 'H2 + 'Hp as the sum of three types of ex-
change interactions.

We now discuss dependence of ('Hs) on J,/J and
contributions of each spin exchange Hamiltonian. Here

( ) means expectation value with respect to the ground
state. Figure 6 shows the result of calculation. It is
found that the value of J,/J, which gives the maxi-
mum of ('Hs) agrees with the value of J,/ J for the stag-
gered magnetization. This value of J,/J is remarkably
close to a point where the contribution of the four-spin
permutation to ('Hs) becomes larger than that of the
next-nearest-neighbor exchange. For instance in the 16-
site system, ('Hp) dominates over ('H2) beyond about
J,/J 0.9. This result suggests that there are two re-
gions of J,/J, each of which gives the ground-state spin
configuration with nature fundamentally different from
each other.

model. To be specific we discuss the spin structure of
the 16-site ground state. In contrast to a one-body wave
function, it is not straightforward to visualize the many-
body wave function. Hence we need a quantity that rep-
resents the character of the wave function in a compre-
hensible manner.

Let us introduce for this purpose a quantity b, which
represents the deviation of a spin configuration basis ln)
from the Neel basis. Namely, b is defined by

S~ N eel

( ) (i,j)

(25)

where lNeel) is one of the two bases with the Neel spin
configuration. The whole set of spin configuration bases
is classified in terms of the deviation 6 . Then with use
of 6 a ground state is characterized by a distribution of
weight W(b), which is defined by

W(6) —= ) c
~e(s =s)

(26)

where P e&& &&
means a sum over such spin configura-

tions that have the specified deviation b.
The results of W(6) are shown in Fig. 7 for some values

of J,/J. We notice that J,/J = 0.8 corresponds to the
maximum staggered magnetization m, . In the case of
the Heisenberg model (J,/J = 0), all spin configurations
with 6 less than eight have weights comparable to that
of the Neel spin configuration. However, the weight of
a spin configuration with 6 = 4 is small relative to the
others. This is, in fact, a common character of the ground
state in the region where J,/J is smaller than 0.8. With
inclusion of the cyclic four-spin exchange, the weight of
Neel configuration increases up to the maximum of about
70%%uo at J,/J = 0.8. On the other hand, the weight of spin
configurations with large 6 decreases.

We interpret the reason for the growth of the Neel
configuration as follows: Since J, is positive, the next-

I I I I
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I I I I
[

I I

0.4—

J, /I =0.00

J, /J =0.80

--~--- J /I =150C

—10

I I I I I I I I I I I I I I I I

0 0.5 1 1.5
Jc/J

FIG. 6. Contribution of various parts of the exchange
Hamiltonian to the ground-state energy as a function of J,/ J.

0— 8—
I I I I I I I I I I I I I

5 10

FIG. 7. The distribution of weight W(b) in the ground
state as a function of b which is de6ned in the text.
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nearest-neighbor exchange part 'Mz does not frustrate the
antiferromagnetic order caused by the nearest-neighbor
exchange 'HI. Therefore the Neel-spin configuration is
favorable for both types of exchanges. Within the region
where the four-spin permutation Hamiltonian 'R~ does
not contribute so much, the exchange Hamiltonians 'Hq

and 'Rz dominate the total energy. Thus the Neel config-
uration is enhanced in the ground state. At J,/J = 0.8
the structure of the ground state is closest to the Neel
order.

As J,/J increases beyond the critical value 0.8, an-
other structure grows. In this region of J,/J the spin
configurations with 6 = 4 plays an important role. The
structure of the ground state mainly consists of Neel-
spin configurations and one of the configurations with
6 = 4 in contrast with the region J,/J ( 0.8. The
weight of 6 = 4 comes mainly from such spin configu-
ration that involves neighboring four spins in a plaquette
Hipped relative to the Neel background [Fig. 2(c)]. In
the case of J,/J = 1.5, the relative weight of this par-
ticular configuration amounts to about 85Fo of such spin
configurations with 6 = 4. This result is consistent with
the fact that the four-spin permutation part of the full
Hamiltonian contributes to the total energy more than
the next-nearest-neighbor spin exchange in the region of
J,/J ) 0.8. Thus the critical value J,/J = 0.8, which
gives the maximum staggered magnetization, divides the
two regions of ground states, each of which has a different
nature of spin structures.

E. Spin-spin correlations

The spin-spin correlation function (S&S&) at equal
times has been widely used as a convenient quantity
showing the character of the magnetic system. We
present results of the spin-spin correlation in Fig. 8.
Let us first note a particular situation in the Heisen-
berg model on the 4 x 4 square lattice with the periodic

boundary condition. Namely, the spin-spin correlation
at distance R = v 2 is equivalent to that at R = 2. Here
a pair of spins separated by one of these distances are
coupled with each other via two spins, which belong to
another sublattice. Hence, the spin-spin correlations cor-
responding to R = v 2 and 2 have exactly the same value
in the Heisenberg model with only the nearest-neighbor
exchange.

Below the critical value J,/J = 0.8 corresponding to
the maximum staggered magnetization, the cyclic four-
spin exchange enhances spin-spin correlations at all dis-
tances. The difference between spin-spin correlations of
R = ~2 and 2 remain small in this parameter region,
though the distances are no longer equivalent with finite
J,. At the critical value J,/J 0.8 the spin-spin corre-
lation function takes the values closest to the Neel state.

Above the critical point, on the other hand, the Neel-
like spin correlations are disturbed by the plaquette spin
configurations in the ground state. In this parameter re-
gion we have found a large difference between the value of
spin-spin correlations with R = v 2 and that with R = 2
(Fig. 9). Namely, the spin-spin correlation with R = 2 is
more strongly disturbed than that with R = v 2. An in-
tuitive explanation for this difference is as follows. Let us
choose a spin in the plaquette with fIipped spins relative
to the Neel background [Fig. 2(c)]. This spin has four
next-nearest-neighbor spins separated by R = ~2, and
four third-nearest-neighbor spins separated by R = 2. In
the presence of the complete Neel order, all these spins
should be parallel to each other because a pair of spins
separated by these distances belong to the same sublat-
tice. In the plaquette spin configuration, however, all
third-nearest-neighbor spins become antiparallel to the
chosen spin. On the contrary, one of the four next-
nearest-neighbor spins is inside the plaquette and is par-
allel to the chosen spin. . Therefore, the spin-spin correla-
tion with R = ~2 survives the disturbance caused by the
four-spin exchange more stubbornly than the correlation
with B = 2.
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FIG. 8. The spin-spin correlation times the phase factor
(—1) +"(SIIS~) as a function of B(= gx + y ) for represen-
tative values of J,/J. The phase factor is —1 if R belongs to
the sublattice different from that of the site 0.
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FIG. 9. The dependence of (ScSz) on J~/ J for R = 2 and
R= ~2.
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V. CONCLUSIONS

We have investigated the inHuences of the cyclic four-
spin exchange interaction J, upon the magnetic Raman-
scattering spectra and properties of the ground states
with the use of the exact diagonalization method for
small clusters. Let us summarize the main results of the
present study. First, it is found that the cyclic four-spin
exchange reduces the energy of the two-magnon bound
state. The analysis of Raman-scattering data in the light
of this new information leads to a larger Heisenberg ex-
change interaction J than that obtained with use of the
pure Heisenberg model.

Secondly the cyclic four-spin exchange enhances scat-
tering intensities of some multimagnon states with the
energy of about 4J in the realistic case of J,/ J = 0.3. We
thus suggest a correspondence between this new scatter-
ing feature and the shoulder observed in the experimental
spectra at 30 K. In the hypothetical region, where J, is
larger than J, the Raman spectra have simple structures
consisting of two peaks only.

Thirdly we have derived the ratios of spectral moments
M2/Mi and Ms/Mi, which are larger than those in the
Heisenberg model. We have also calculated the ratio
w2M/Mi and have found better agreement with exper-
imental results both at room temperature and at 30 K.

Though our investigations are for a finite-sized cluster,
our results by an exact diagonalization method should
provide a qualitative information about the effect of J,
in macroscopic systems. Since the realistic value of J, is
comparable with the thermal energy of low temperature,
the effects of the cyclic four-spin exchange interaction
may be significant only for experiments at low temper-
atures. Actually the shoulders in the Bis spectra are
observed only in the experiments at 30 K. We suggest
that the peak around 4J, which grows with inclusion of
J, is closely related to the high-energy shoulder of exper-
imental spectra.

Finally we have shown that the four-spin exchange
leads to two kinds of ground states depending on the ratio
J,/J. In the boundary that corresponds to J,/J 0.8,
the Neel configuration dominates the ground state. For
larger J,/J, plaquette spin configurations also play an
important role. Our investigations in the present paper
have been limited to the insulating phase. It is a very in-
teresting subject to examine the role of J, in the metallic
phase of high-T, copper oxides.
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