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We report microwave surface resistance (R,) measurements on two very-high-quality
YBa2CusOe. 95 crystals which exhibit extremely low residual loss at 1.2 K (2 —6 pQ at 2 GHz),
a broad, reproducible peak at around 38 K, and a rapid increase in loss, by 4 orders of magnitude,
between 80 and 93 K. These data provide one ingredient in the determination of the temperature
dependence of the real part of the microwave conductivity, o &(T), and of the quasiparticle scattering
time. The other necessary ingredient is an accurate knowledge of the magnitude and temperature
dependence of the London penetration depth, A(T). This is derived from published data, from mi-
crowave data of Anlage, Langley, and co-workers and from high-quality @sr data. We infer, from a
careful analysis of all available data, that A (0)/A (T) is well approximated by the simple function
1 —t, where t = T/T„and that the low-temperature data are incompatible with the existence of
an s-wave, BCS-like gap. Combining the R, and A(T) data, we find that oq(T), has a broad peak
around 32 K with a value about 20 times that at T, . Using a generalized two-Quid model, we ex-
tract the temperature dependence of the quasiparticle scattering rate which follows an exponential
law, exp(T/To), where To 12 K, for T between 15 and 84 K. Such a temperature dependence
has previously been observed in measurements of the nuclear spin-lattice relaxation rate. Both the
uncertainties in our analysis and the implications for the mechanism of high-temperature supercon-
ductivity are discussed.

I. INTRODUCTION

Shortly after the discovery of high-temperature
superconductivity it was realized that even the normal
state properties of the oxide superconductors are quite
unusual. In particular the suggestion was soon made2
that in order to understand the microscopic mechanism
of the superconductivity it was first necessary to come
to grips with these peculiar normal state properties, the
most striking of which is the linear temperature depen-
dence of the resistivity, which persists to surprisingly
high temperatures and which, in the best samples, ex-
trapolates to a very small intercept at T = 0. Also, in
the far-infrared, a narrow Drude-like feature is observed,
superimposed on a relatively temperature independent
mid-infrared absorption. s The temperature dependence
of the Drude peak indicates that a quasiparticle scatter-
ing rate, 1/r(T), that varies linearly with temperature is
responsible for the linear temperature dependence of the
dc resistivity. It has been argued that the linear tem-
perature dependence of the resistivity can be attributed
to scattering by antiferromagnetic spin fluctuations5 and
experiments such as NMR (Refs. 6 and 7) and neutron
scattering have demonstrated the existence, in high-
T, superconductors, of strong antiferromagnetic fluctu-
ations. The presence of such fluctuations in these ma-

terials is not surprising in light of the fact that their
undoped, "parent" compounds are antiferromagnetic in-
sulators. What neutron scattering and magnetic reso-
nance show is that the interactions which drive antifer-
romagnetism in the insulating state also have important
consequences for the metallic phase.

The subject of this paper is the anomalous super-
conducting properties of high-temperature superconduc-
tors, particularly those of the best-studied compound,
YBa2Cu307 p. We report the results of a lengthy se-
ries of microwave surface resistance (R, ) measurements
on small YBa2Cu306 95 crystals of unusually high qual-
ity. Using published data for the imaginary part of
the conductivity, cr&(T), we extract from R, the tem-
perature dependence of the real part, oq(T), between
1.2 K and T,. On the basis of a generalized two-fluid
model for the conductivity of a superconductor, we ex-
tend our analysis to obtain the temperature dependence
of the quasiparticle scattering rate from T, down to 1.2
K. We find that below T, the scattering rate drops pre-
cipitously by about 3 orders of magnitude in such a way
that its logarithm is fairly linear in T at least over the
range from 15 to 84 K. This temperature dependence of
the charged-quasiparticle scattering rate is identical to
the temperature dependence found in all reported mea-
surements of the nuclear spin-lattice relaxation rate be-
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low T, .s We argue from this fact and from the detailed
temperature dependences of A and 0. that the dominant
mechanism for charged-quasiparticle scattering is elec-
tronic spin-fluctuations. Our results for 7 (T) are consis-
tent with the conductivity measurements of Nuss et al.
at terahertz frequencies and with the infrared results
of Tanner and co-workers who were able to measure the
quasiparticle conductivity in BiqSr2CaCu20s in a rela-
tively narrow range below T,. They are also strikingly
similar to results for the temperature dependence of the
vortex viscosity between 20 and 80 K in Bi2SrqCaCu20s
crystals at microwave frequencies which have been mea-
sured in our lab and which will be published elsewhere.

In the two-fluid model of superconductivity used here,
the conductivity is written as a sum of superconducting
and normal parts. The superconducting part consists of
a real b function at u = 0, together with its correspond-
ing imaginary part, both weighted with the "superfluid
fraction, " x, (T) = 1 —x (T) where x„(T) is the corre-
sponding normal fraction. The normal fluid results from
thermal excitations from the condensate. The response of
the superfluid fraction is responsible for the screening of
applied fields and its temperature dependence determines
the temperature dependence of o2 (T), the microwave sur-
face reactance and the London penetration depth, A(T).
The relationships between these quantities allow one to
use measurements of A(T) in order to extract err (T) from
surface resistance measurements. err(T) is determined
by the response of the normal fluid and its temperature
dependence is affected by the temperature dependence
of both 1/~(T) and x„(T). Thus, in order to extract
the scattering rate from Oi(T), x„(T) must be inferred
from x, (T) and this requires very accurate knowledge of
A(T), particularly at low T. Consequently, as part of the
analysis of the microwave conductivity, it was necessary
to reanalyze the best available data for the temperature
dependence of A(T). This analysis yielded the surpris-
ing and simple result x„(t) = t2 for 0 ( t & 1, where
t —= T/T„suggesting the existence of low-lying states
which might arise from nodes in the superconducting gap
function or possibly from collective excitations. The fact
that such a simple power law can be used to describe
x„(t) and hence the penetration depth for the entire tem-
perature range below T, is also surprising, although we
are not the first to draw this conclusion.

The remainder of this paper is organized as follows:
Section II contains details regarding crystal growth and
characterization and a description of the microwave tech-
nique along with the experimental data. A comparison
is made between the surface resistance of two crystals
measured at slightly different frequencies in order to as-
sess the consistency of the measurements. Section III A
reviews the relationship between the surface resistance
R„ the complex conductivity 0., and the London pene-
tration depth A. After a detailed discussion of microwave
and psr measurements of A(T) in Secs. III B and III C, re-
spectively, and discussion of the absolute values of T, and
A(0) in Sec. III D, results for the temperature dependence
of the conductivity of our crystals are presented in Sec.
IIIE. In Sec. IVA we discuss the generalized two-Quid
model in more detail in the context of weak-coupling BCS

theory and present our results for the temperature de-
pendence of I/w(T) in Sec. IVB. Section V contains our
conclusions and a discussion of what they tell us about
the mechanism for high-temperature superconductivity.

II. EXPERIMENT

The high-quality crystals used in the measurements
presented here were grown by a flux technique described
in detail elsewhere. The attributes of these crystals that
are most relevant to microwave measurements are clean,
specular surfaces and a high degree of purity and ho-
mogeneity. High purity is achieved by the use of zirconia
crucibles. The purity of the crystals was evaluated by ion
conductive plasma mass spectroscopy and it was found
that the total concentration of the principal contami-
nants, Al, Fe, and Zn, was less than 0.002 atoms/unit
cell. Homogeneous oxygen content is particularly impor-
tant in YBa2Cu307 p because T, is very sensitive to the
oxygen stoichiometry. The crystals described here were
annealed for 7 days in oxygen and the oxygen content
was set at 6.95 (6 = 0.05) using the empirical relationship
between annealing temperature, oxygen partial pressure,
and 6 determined by Schleger et al. This oxygen content
yields a T, near 93 K and outstanding bulk homogene-
ity is demonstrated by a specific heat jump at T, that is
very narrow, only 0.2 K wide. The transition measured
by magnetic susceptibility in a field along the c axis is
typically less than 2 K wide (10—90%) for a field of 100
G, and approaches the width of the specific heat jump
as the Geld is reduced below a few gauss. The microwave
loss itself is perhaps the most stringent test of a crystal's
quality and the manner in which inhomogeneity and dirty
or damaged surfaces might affect the measurements will
be discussed below.

The surface resistance of the crystals was measured
near 2 GHz by cavity perturbation of a superconducting
split-ring resonator with a high-quality factor (Q).i5 This
technique allows accurate measurement of a very wide
range of microwave losses in very small crystals. The
measurements are performed by introducing a sample,
mounted on a sapphire rod, along the axis of the res-
onator where microwave magnetic Gelds drive currents in
the ab plane of the crystal. The difference between the
cavity Q with the sample in (Q, ) and the Q with the sam-
ple out (Q, ) is used to determine the surface resistance
(R, ) via

where A is a constant that depends on the area and po-
sition of the sample. Thus, rneasurernent of low losses
depends on accurate measurement of Q's and a large
value of Q . The split-ring resonator used in the mea-
surements presented here had a Q of 2 x 10s at 1.2 K
which could be measured with an accuracy of +0.2%.
A value of 4(1/Q) typically measured in a small crystal
of YBa2Cu306 95 at low temperature is 2 x 10 with an
estimated uncertainty of 10% .

The calibration constant, A, can be determined by
measurement of A(1/Q) for a sample with a known sur-
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face resistance. This calibration has been performed with
a piece of electropolished stainless steel but with only lim-
ited accuracy because of the difBculty of cutting a piece
of stainless steel that is the same size and shape as the
small crystals of YBa2CusOs ss. A much more accurate
way of determining the calibration constant is to com-
pare the normal state microwave loss measurements to
dc resistivity measurements. Far-infrared measurements
indicate that at low frequencies the optical absorption of
YBagCu307 p in the normal state is consistent with the
classical skin effect;3 thus, the microwave surface resis-
tance should follow the relation

1/2

(2)

where pd, is the dc resistivity, cu is the angular frequency,
and c is the speed of light in free space. (Throughout this
paper, cgs units will be employed. The relevant conver-
sion factor is 9 x 10~~0 = 1 s/cm. ) Direct dc resistivity
measurements in the ab plane have been performed on
crystals from the same batch as those used in the mi-
crowave measurements. Calibration of the surface resis-
tance measurements is then simply a matter of using the
measured dc resistivity to calculate the surface resistance
at a convenient temperature (100 K) via Eq. (2), where

(2~pd, (100 K)u/c )
&(1/@)i = oo

tance for two crystals of YBa~Cu306 95. Sample A, mea-
sured at 1.7 GHz, was an 8-mm2 crystal with a relatively
high twin density (twin spacing ( 1 pm) and sample
B, measured at 2.0 GHz, was a small, nearly twin-free
corner broken ofF of the same crystal. The good agree-
ment at all temperatures above T, in Fig. 1 indicates
that the calibration at 100 K is a reasonable one. As
is observed in the dc resistivity, the square of the sur-
face resistance in the normal state falls below the linear
temperature dependence as the superconducting transi-
tion is approached. This behavior is generally attributed
to 2D superconducting Buctuations and we find 7 that
the departure from linearity is reasonably well described
above 94 K by the 2D fluctuation model of Aslamazov
and Larkin. ~8

The full temperature dependence of the surface resis-
tance of crystals A and B is displayed in a semi-log graph
in Fig. 2. The qualitative features are the same as those
found in a preliminary study of a crystal grown by a
somewhat different flux technique. After a rapid drop
below T, of 4 orders of magnitude the loss rises slightly
to a broad maximum near 38 K and then falls again at
lower temperatures. There are very few microwave loss
studies of crystals of YBa2Cu307 p with which to com-
pare these results. The cavity perturbation studies of Wu
et,' at. at 10 GHz and Rubin et at. at 5.95 GHz could
not resolve losses below 0.4 and 1.0 mA/, respectively,
limiting their measurements of temperature dependence
to the vicinity of the superconducting transition. Rubin

Figure 1 compares the measured dc resistivity to the
square of the calibrated measurements of surface resis-
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FIG. 1. The square of the surface resistance of two crys-

tals of YBa2Cu306. 95 compared to the ab-plane resistivity of
a crystal produced in the same Aux growth. The microwave
results are set equal to pg, at 100 K. The close agreement
between the measurements over a wide range of tempera-
tures supports the use of the classical skin effect expression for
the normal state surface resistance to calibrate the microwave
measurements.

FIG. 2. The surface resistance of two crystals of
YBa2Cu306. g5. Although the two samples exhibit somewhat
different transition widths and quite different low temperature
residual loss, the qualitative features of the measurements are
the same. Both have a large drop in loss of 4 orders of rnag-
nitude at T, and an unusual nonmonotonic temperature de-
pendence at lower temperatures.
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et al. also used a calorimetric technique to establish an
upper limit of 15 pA/ for the loss of a mosaic of crystals
at 4.2 K. This is in reasonable agreement with the mea-
surements presented here, although the loss at this low
temperature is probably strongly inHuenced by extrinsic
factors.

There are two noteworthy differences between the two
data sets in Fig. 2. First, sample B appears to have a
somewhat broader transition than sample A; there is a
broad tail extending down to 84 K. While it is natural to
consider the sharper transition to be closer to the intrin-
sic temperature dependence of the loss, this difference
between the two measurements should prompt one to
exercise caution in the interpretation of microwave mea-
surements near T, . Because the loss initially drops very
rapidly, a small degree of inhomogeneity could lead to a
substantial change in the appearance of the transition on
a logarithmic scale. It is possible that a measurement
of the transition by surface resistance is a particularly
stringent test of a sample's degree of homogeneity. The
second difference between the two measurements is in the
residual loss measured at the lowest temperatures. The
residual loss of sample A is 6 pA/ but that of sample B
is only 2 pA/, the latter value being near the limit of
what can be resolved with this experimental technique.
It is tempting to associate the higher residual loss in sam-
ple A with the higher degree of twinning, but the more
mundane explanation of damage or dirt on the surface
can only be ruled out by changing the degree of twinning
in a sample and remeasuring its loss.

Residual loss is a long-standing problem in microwave
studies of superconductors. Given a sufficiently sensi-
tive microwave technique the measurement of intrinsic
temperature dependent loss is largely reduced to the ma-
terials problem of reducing residual loss. Rather few of
the hundreds of crystals that have been grown with the
technique outlined in Ref. 13 are suitable for microwave
studies. Many crystals have some residual Hux on the
surface, or cracks on the edge, or growth steps, all of
which might contribute to large residual losses. Of the
8 crystals that we have studied so far, 4 had a residual
loss high enough to obscure the nonmonotonic tempera-
ture dependence, 3 had a residual loss comparable to that
of crystal A, and crystal B exhibited the lowest residual
loss that we have observed. Traditionally, the low tem-
perature residual loss is subtracted from the entire data
set in order to extract the temperature dependent part.
This approach, which is one of the two techniques used in
the following analysis, ignores the possibility of intrinsic
residual loss, a possibility which will also be considered
in the analysis that follows.

Figure 3 displays in detail the loss below T, of crystals
A and B after subtraction of residual loss. Assuming that
the intrinsic loss varies as w2, as is the case in the two-
Huid model, .the data for sample A has been scaled up by
38% in order to account for the difference in frequency of
the two measurements. The decrease in the scatter in the
data below 20 K is due to a slight difference in the mea-
surement procedure above and below this temperature.
Above 20 K the measurements are made by ramping up
and down in temperature over a period of 2—3 days. Be-
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FIG. 3. The surface resistance at 2 GHz of two crystals of
YBa2Cu306 95 in the low loss regime. The low temperature
residual loss in Fig. 2 has been subtracted from the data and
the measurements for sample A have been scaled up by 38Fo
in order to account for the difFerent frequencies used in the
two sets of measurements. The broad peak centered at 38 K
and the nearly linear temperature dependence below 30 K are
reproducible from sample to sample.

low 20 K, cooling is achieved by gradually introducing
helium exchange gas into the sample area and the data
is taken over a few hours and only in one direction. The
excellent overall agreement in Fig. 3 strongly suggests
that the nonmonotonic temperature dependence of the
surface resistance at 2 0Hz is intrinsic. Another strik-
ing feature of the measurements is the apparent linearity
of the data below 30 K. Neither this linearity nor the
nonmonotonic behavior are features that are observed in
conventional low-T, superconductors.

III. EXTRACTING THE CONDUCTIVITY
FROM Rs

A. Local electrodynamics

In YBa2Cu307 p the mean-free path in the c-axis di-
rection is considerably shorter than either the normal
state skin depth or the London penetration depth. In
this situation the low frequency electrodynamic proper-
ties are local and the surface resistance can be written in
terms of the complex resistivity as

(4)

where

1
P=Py+xp2 =

Oy + 2CT2

Instead of using the quantity B„we work with a con-
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+~2 + ~2
02

o.2+ a~

which, if 0.2 is known, is equivalent to a quadratic equa-
tion for the quantity go&z + az2, hence determining the
value of o i. The result is

(cr, o~—' —O2~,
~

—O.,',4 ') (8)

where the + (—) sign applies to the case err ) (()v 3cr2

In the normal state, the conductivity is essentially
real, i.e., o.2 ——0 and o.i ——o, In the superconducting
state, o.2 at microwave frequencies is completely dom-
inated by the effect of the 6 function at the origin in

That is, the Kramers-Kronig relation connecting
the real and imaginary parts of the conductivity implies
that the delta function at the origin in the real part,
oi(w, T) = 6(w)c /8A (T), gives rise to the dominant
term in the imaginary part of the conductivity24 and can
be written in terms of the penetration depth:

c2

4vr~Az (T)
(9)

Except for a very narrow region just below T„ the con-
ditions oi (( crq (( o, are satisfied, and Eq. (8) can be
expanded to give

202
Os

(10)

or, using Eqs. (6), (9), and (10),

R,c4

8~~~z As (T)

The exact expression, Eq. (8), is really only required
in the very narrow temperature region, just below T„ in
which o.2 is comparable to o.i. In our simple two-fluid pic-
ture, this corresponds approximately to the temperature
range

(12)

For the frequencies of our experiments (]—3 GHz) and
for our YBa2Cu306. 95 crystals, u7. —10 at T„and so,
the temperature region defined by Eq. (12) extends less
than 0.1 K below T, . Nevertheless we have in all cases
used the full expression, Eq. (8), in our analysis of the
data. On the other hand, Eq. (11) is particularly useful
for understanding various trends in the analysis.

Data such as that shown in Figs. 2 and 3 can be an-
alyzed using the exact relations, Eqs. (6) and (8), or

ductivity, o.„defined as

27( M
S g~g )c s

which is the real conductivity corresponding to Rs when
cr2 = 0. Equation (4) can then be rewritten as

the approximate expression, Eq. (11). In either case,
one must know the temperature-dependent penetration
depth, A(T).

B. The temperature dependence of A

(14)

One motivation for measuring the temperature depen-
dence of A is that it sheds light on the underlying mi-
croscopic model. In particular, at low T, the small dif-
ference between A(T) and its low temperature limiting
value A(0),

aA(t) = A(t) —A(0) = —,'A(0)x„(t), (15)

depends on the density of low-lying states of the super-
conductor. If the superconductor has a nonzero gap, then
z„(T) will have an activated temperature dependence.
On the other hand, if there are nodes in the gap or if
the excitation spectrum from the condensate is gapless,
then x (T) will follow some power law at low T.si The
chief difficulty of interpreting measurements of A(T) in
terms of either of these scenarios is that very accurate
measurements must be made in order to unambiguously
determine the behavior of x„(t).

There have been many reports of power-law behav-
ior for the low-temperature behavior of the penetration
depth in YBaqCu307 b. Some of these are discussed in
the paper by Annett et al. who found that kinetic in-
ductance measurements were best Bt by the form

AA b(t)
A b(0)

(16)

where t = T/T, . They obtained B = 0.63 and 1.6 for the
two films which they analyzed. We note that the value
B =0.5 corresponds to z„(t) = tz.

More recently, two groups have studied the tempera-
ture dependence of the penetration depth in microstrip
resonators. In the first of these, Anlage and co-workers s

interpreted their data in terms of two BCS-like gaps,
24(0)/kT, = 4.5 close to T, and 2E(0)/kT, = 2.5 at
lower temperatures. They also considered a weak link
model of weakly coupled grains.

Subsequently Anlage et aLss have published results,
for samples measured in a vacuum can, which suggest a
smaller low temperature gap, 2A(0)/kT~ = 1.0 or low

temperature power-law behavior. They point out that
early measurements of A(T) were influenced by a temper-

There have been many measurements of A(T) by a va-
riety of methods, including microwave techniques,
magnetic susceptibility, kinetic inductance mea-
surements, and @sr. These will be discussed in
great detail below. The London penetration depth can
be parametrized in terms of the normal Quid density by
the expression

A z(T) = A (0)[1 —2:„(T)]= A (0)x,(T). (13)

We will argue below that, to the accuracy of the available
data, x„(T) is given by
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ature dependent dielectric constant associated with the
presence of helium vapor, leading to somewhat enhanced
estimates of the low temperature energy gap. We have
analyzed data, similar to that of Ref, 33, which were sent
to us by the authors. The first step in this analysis con-
sists of finding the most reasonable extrapolation to the
phase velocity to I' = 0. To motivate our extrapolation,
we show the low temperature portion of this data set,
plotted as phase velocity squared versus T2, in Fig. 4.
Also indicated in the figure are two possible extrapola-
tions. The higher of these two extrapolations results in
an approximate power-law dependence for A(T) of the
form

~z(T)
—

~z(0) (' (17)

In Fig. 5 the analyzed data (the dots), assuming A(0) =
1450 A. , are compared with Eq. (17) with b=l We n. ote
that the fact that the coefIicient of t2 is the same over
the entire range of temperatures is both remarkable and
unexpected. Using the same A(0) and the lower extrapo-
lation from Fig. 4 leads to no visible difFerence in the fit
above t = 0.6. Below f, = 0.5 the data lie about 1% above
the curve 1—t . Uncertainties in the interpretation of the
above data arise from sample-dependent results, uncer-
tainties in the value of the efFective dielectric constant of
the dielectric spacer in the microstrip, and other experi-
mental problems which have been described elsewhere
by the authors.

We should emphasize that the interpretation by An-
lage and co-workers of their data, in terms of a large
intrinsic gap and a smaller grain-boundary gap, has been
the basis for the analysis of a large body of microwave,
dc, and optical measurements performed on the same set
of thin films. Our approach provides an alternative in-
terpretation of the data which can be tested by further
measurements.

Some support for our interpretation can be found in
the recent measurement by Pond et al. ~~ of a trilayer
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I'IG. 5. The temperature dependence of the London pene-
tration depth extracted from the phase velocity measurements
shown in Fig. 4 using the upper extrapolation shown in that
figure and taking A(0) = 1450 A.

transmission line resonator with a very thin (0.2p) di-
electric layer, a factor of 10 thinner than that used by
Anlage et al. zs The very large ratio of the width of the
resonator to the dielectric layer thickness greatly sup-
presses the eS'ects of fringing fields and dielectric shifts
due to material external to the device, thus efFectively
removing a major source of uncertainty. Although they
noted that their data could be fit by a BCS temperature
dependence with A(0) = 1350 A. , a noticeably better fit
was obtained, particularly below T,/2, using Eq. (17)
with b = 1 and A(0) = 1300 A. Unfortunately the data
of Pond et al. extend only down to 20 K. It would be
useful to have such high quality data at least down to 4.2
K to see whether the temperature dependence fIattens
out, as it would if there is a true gap, or whether the
data continue to follow a T~ law.

C. @sr data
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FIG. 4. The square of the phase velocity (squares) at low
temperatures plotted versus the square of the temperature
from the data of Langley et al. The solid lines represent two
possible extrapolations of the data.

Another experiment that is used to determine the Lon-
don penetration depth is muon spin relaxation (@sr).
Here we present new results for such measurements
and compare them to earlier work. The p,sr measure-
ments described below were performed on a mosaic of
YBazCusOs ss crystals grown by the same technique as
that used to produce crystals for the microwave measure-
ments. The crystals were mounted on a disc of 99.9985
% Ag with Apiezon N grease. In order to probe the ab-
plane penetration depth a static 0.25-T magnetic field is
applied along the c axis so that when a muon, with its
spin aligned perpendicular to the field, stops in the bulk
of the sample it precesses at a rate proportional to the
local field at the muon site. In a type-II superconductor
the applied field sets up a vortex lattice which gives rise
to a spatial distribution of internal local fields. In the
isotropic, modified London model the spatial field distri-
bution is given by
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K

where B is the average field in the superconductor, K is
the set of reciprocal lattice vectors for the vortex lattice,
and ( is the coherence length. In the 0.25-T applied field
used in this experiment K A2 )) 1 and at temperatures
below about 87 K, B(r) —B is field independent and
proportional to A . At higher temperatures considera-
tion of the effect of ( in Eq. (18) shows that the vortex
cores take up an appreciable area and this straightfor-
ward relationship between A and the fields is no longer
true. 36

The spatial distribution of internal magnetic fields
manifests itself in a probability distribution of muon pre-
cession frequencies, the psr line shape. The ideal line
shape corresponding to the field distribution of Eq. (18)
has, at a field lower than the applied field, a cusp-shaped
maximum whose source is the saddle point in B(r) be-
tween adjacent pairs of vortices. Imperfections in the
vortex lattice lead to smearing of this peak and can be
modeled by convolving a Gaussian with the ideal line
shape. A fit to a high statistics run taken at 10 K gives
A s = 1405+92 A. and a Gaussian convolution of 17.2+2.4
G. In order to take into account flux expulsion below T,
this fit assumed that B~ was 3.8 G less than the 0.25-
T applied field, a value that is taken from a fit to the
temperature dependence of the psr peak (see discussion
below) and that is consistent with the expulsion observed
in a SQUID measurement of the magnetization of one of
the crystals used in the mosaic. Assuming a smaller flux
expulsion of 0.5 G reduces the penetration depth by only
half the statistical error.

The difFerence between the field corresponding to the
cusp in the ideal line shape and B is proportional to
A 2. The detailed fit at 10 K indicates that the Gaussian
convolution shifts the peak of the @sr line shape from the
ideal cusp in such a way that the difference between the
average field and the field corresponding to the measured
peak is 85% of the difference between the average field
and the cusp of the ideal line shape. If the Gaussian
convolution truly reflects the disorder in the vortex lat-
tice due to pinning and is frozen in as the sample is field
cooled through the irreversibility temperature (which is
only a few degrees below T,), the size of the Gaussian con-
volution would have the same temperature dependence
as A . In this case the difFerence between the measured
peak and the average internal Geld is still proportional to
A . So, for the purposes of determining the temperature
dependence of A, one can fit lower statistics data using a
less computationally intensive function, provided that it
gives an accurate measure of the position of the measured
peak. We have chosen to fit with two Lorentzians (expo-
nentials in time-space); one models the background signal
for muons stopping in the silver disk rather than in the
crystals and the other fits the superconductor's cusp peak
well enough to give a good measure of the peak position.
Fitting with two Gaussians was also tried, but the fits
were much worse and the peak of the "sample" Gauss-
ian did not correspond to the experimentally observed
peak.

Figure 6 shows the difference between the applied field,
B@p and the field that corresponds to the peak in the p,sr
signal coming from the sample, B,(T). The data was fit
Using

B,(T) B—p = bB, [1 (T—/T, )"j+ arctan[(T —T,)/ cTj

(19)
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FIG. 6. The temperature dependence of the difFerence
between the applied magnetic field, B ~, and the field cor-
responding to the position of the maximum in the @sr line
shape, B,(T), is a measure of the temperature dependence of
A . The data (squares) is well fit by the solid line which is
derived from Eq. (19) and corresponds to p = 2.37+ 0.10.

between T = 5 and T = 87 K. The first term on the right-
hand side of this expression is proportional to A 2(T)
and we have chosen a power-law temperature dependence
to see if the @sr measurements are consistent with the
other measurements of A(T) discussed above. The arctan
function represents the temperature dependence of the
flux expulsion, where cT was fixed to a value of —1.24 K
from magnetization measurements and cia was allowed to
vary. Since we limited the fit to temperatures below 87 K,
only the total amount of flux expulsion c~ is important
in the determination of the temperature dependence of A.
With T, fixed to the onset value of 93.5 K measured by
specific heat, the fit gives a flux expulsion of c~ = —3.8
G, a shift of the cusp from the average internal field of
bB, = —27.8+0.6 G and a power p of 2.37+0.10. This
power is quite close to the t2 behavior observed in the
phase velocity measurements described above.

The fact that this interpretation is at odds with other
interpretations of p,sr measurements ' again highlights
the problem that the crucial difference between power-
law behavior and s-wave BCS theory occurs at temper-
atures below T,/2 where the temperature dependence of
A is relatively weak and difficult to measure with suffi-
cient accuracy. The measurements of an oriented poly-
crystal by Pumpin et at.3 are consistent with our data
but they only show three data points below T,/2 and the
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uncertainty in the data is too large to make any strong
conclusion about the behavior of A(T) at low tempera-
tures. On the basis of measurements at six temperatures,
only three of which were below T,/2, Harshman et aL2s

claimed that the temperature dependence of A(T) in the
ab plane is consistent with s-wave BCS theory. Although
the three low temperature points in their data set were
relatively temperature independent, the sparseness of the
data and a scatter of the data points which appears to
be larger than the statistical error estimate makes the
claim of s-wave BCS behavior a weak one. The more
complete data set that we have presented is consistent
with the power-law temperature dependence observed in
the kinetic inductance and microwave measurements and
exhibits too much temperature dependence below T,/2
to be consistent with 8-wave BCS behavior.

the use of Eq. (14), are the conductivities shown in Figs.
7(a) and 7(b). Figure 7(a) is extracted directly from the
data of Figs. 2 and 7(b) follows from analysis of the data
after subtracting a sample dependent, temperature inde-
pendent residual loss. In both cases the conductivity for
sample B has an abrupt peak between T, and 84 K that
is nearly absent in sample A. This peak, which results
from the broad tail in the transition in sample B, may be
related to the sharp peak near T, observed in some mi-
crowave measurements on films of YBa2Cus07 b,

s7 crys-
tals of YBa2Cus07 b, and crystals of BizSr2CaCu20s
(Ref. 39) in the 60-GHz range. In particular, Glass and
Hall have used a model based on effective medium the-
ory to calculate the effect of a broadened transition on
the conductivity. Their model suggests that the abrupt

D. The determination of T, and A(0)

The use of Eqs. (13) and (14) to model A(T) intro-
duces two parameters, T, and A(0), into the analysis of
the surface resistance. We find that the value of T, is
quite accurately determined by our data, particularly for
sample A which exhibits the sharper transition. Choos-
ing T, slightly too large or too small pulls cr&(T (T,) up
or down quite noticeably, creating a spurious peak or dip
just below the transition. The value T, = 92.7 K mini-
mizes this tendency. However even for this value, there
are four points between 92.2 and 92.9 K which form a very
narrow peak. This peak indicates that, for one reason
or another (perhaps because of sample inhomogeneity or
thermal fiuctuations), our model is inadequate within a
few tenths of a degree of T,. However, the condition that
there be no anomalous dip or rise just below T, suffices
to determine a value of T, to within +0.2 K. The 92.7 K
T, is 0.5 K below the value determined by magnetization
and resistivity measurements, but this is probably due
to some variation in thermometer calibration or a small
thermal gradient.

The absolute value of A(0) is more difficult to deter-
mine. The measurements discussed above most corn-
rnonly yield a London penetration depth near 1450
A. ~2 2s 2s In principle, analysis of the surface resistance
measurements near T, can also be used to make an esti-
mate of A(0) for the crystals used in the study described
here, but broadening of the superconducting transition
by Buctuations and sample inhomogeneity limit the use-
fulness of this approach. Throughout the remainder of
this paper we will simply adopt a value of 1450 A. for
A(0) and point out that further improvements in sam-
ple quality and measurements at higher frequency may
eventually lead to a reliable estimate of A(0).
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E. The conductivity

Using the expressions for crq in Sec. IIIA [Eqs. (4)—
(8)] and the temperature dependent London penetration
depth discussed in detail in Secs. III B—III D one can ex-
tract the real part of the conductivity from the surface
resistance. The results of the above analysis, including

Tern pe rat ure (K)

FIG. 7. The real part of the optical conductivity extracted
from the surface resistance of crystals A and B; (a) shows
the conductivity obtained directly from the surface resistance
without subtracting any residual loss; (b) is obtained after
subtracting a temperature independent loss of 6 pA for sample
A and 2 pO for sample B.
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rise in conductivity observed below T, in a thin film of
YBa2Cus07 —$ (Ref. 37) might partly be the result of
sample inhomogeneity. Despite the potential problem
with interpreting the surface resistance near T„ the mea-
surements made on sample A seem to be close to intrinsic
for temperatures a degree or more below T, . Sample B is
quite anomalous in our experience. The broad tail in its
surface resistance is the largest that has been observed
in any crystal grown by the technique described in Ref.
13 and this might be due to the fact that the sample was
stressed when it was broken off of the corner of sample

The main effec of the subtraction of residual loss is
to force the conductivity to approach zero at zero tem-
perature, which is equivalent to forcing the normal Quid
density to approach zero with decreasing temperature. It
should be noted that the subtraction also has an effect on
the qualitative behavior of the conductivity for T —70 K
in sample A. When the residual loss is not subtracted, the
resulting conductivity for sample A smoothly increases as
the temperature falls below 80 K, as is observed in sam-
ple B whether its smaller residual loss is subtracted or
not. However, when a 6-pA residual loss is subtracted
from the surface resistance of sample A, the resulting
conductivity is relatively Hat below 80 K and only starts
increasing with decreasing temperature below 70 K. This
suggests that the subtraction of a temperature indepen-
dent residual loss may not be an appropriate way to deal
with the residual loss in these crystals, a possibility that
will be discussed in more detail in the next section.

Regardless of whether or not a constant surface resis-
tance is subtracted, the conductivity below T, increases
with decreasing T to a maximum value of about 20 times
its normal state value, peaking at about 32 K, and then
falls, roughly linearly, to its value at T = 1.2 K. This
large peak in oi(T) is strikingly different from the con-
ductivity of a conventional BCS superconductor with a
temperature-independent scattering time. It is clearly
not a coherence peak, which is not surprising since co-
herence effects are also not apparent in the temperature
dependence of the NMR and NQR spin-lattice relaxation
rates. 4~ Instead, we argue that the strong rise in the con-
ductivity below T, must result from a temperature de-
pendent scattering rate, which drops precipitously below
T„much more rapidly than the decrease in the normal
Huid density. At the relatively low frequency of the mea-
surements presented here (cdr « 1), cri(T) is roughly
proportional to the product x„(T)r(T) and competition
between these two sources of temperature dependence
can lead to a peak in the temperature dependence of cri
and, consequently, in B,. Measurements by Nuss et O,l.
have revealed a similar peak in oi(T) at terahertz fre-
quencies that was also explained in terms of a rapidly
falling scattering rate below T, . The general trend is
for the peak to become smaller and move to higher tem-
perature as the frequency is increased. In addition to the
large peak in or(T) the relatively weak (linear) temper-
ature dependence below 30 K is also quite different from
the rapid exponential decrease that results from the en-
ergy gap in an s-wave BCS superconductor.

In the next section we elaborate on the "two-fluid"

model which allows us to extract the temperature de-
pendence of 7. from the temperature dependence of o.

q

and A, and we discuss the connection between this model
and BCS theory.

IV. EXTRACTING v FROM A AND cry

A. A generalized two-Quid model

cr2(cd, T) ~ A (0)/A (T) as cd ~ 0. (22)

We find that the real part, err(cd), has the approximate
form

o.i (cd, T, 1/r) = x„(T)f Bcs (cd T, T) . (23)

The normal Huid fraction, x„(T),can be determined from
the superfluid fraction

The model which we consider is a generalized two-Quid
model for the microwave conductivity of superconduc-
tors. The model makes no assumption about the tem-
perature dependence of the superfluid fraction x, (T). In
particular it does not make the arbitrary assumption of
the Gorter-Casimir model that x, oc 1 —(T/T, ) . In-
stead, the temperature dependence is inferred from the
penetration depth via Eq. (13).

It is useful to consider the dimensionless function

o.(cd) = oi(cd) + io2(cd) —=
47Bd cr (cd ) (20)

where o.(cd) is the complex conductivity and
(4vrnoez/m*)i~z is the plasma frequency corresponding
to the density, no, of conduction electrons with effective
mass m*. For a simple Drude metal above T, the density
of charge carriers is independent of temperature and

(21)
1 —ZMT

where w is the scattering time, is strictly a function of
the product cd'.

We erst consider the low frequency behavior of the
complex conductivity of BCS superconductors. In a BCS
superconductor below T„ the function o will depend not
only on r but also on the energy gap 6 and on the tem-
perature, T. The detailed frequency, temperature, and ~
dependence of the conductivity of weak-coupling super-
conductors has been derived by Lee and Rainer, 4 using
the quasiclassical formalism of energy-integrated Green's
functions. The resulting expressions, together with a con-
venient computer program for evaluating them, are given
in a paper by Zimmerman et al. 4 Here we consider the
limiting case of these expressions (or rather, the corre-
sponding expressions for the functions o.i and o.z), for
the "clean" limit, rE » 1 (t » (0).

Because of their very short coherence lengths, and the
results of far-infrared measurements4 the high-T, super-
conductors are generally thought to be in the clean limit.
In the clean limit, and at low frequencies (cdr « 1), the
function 8.2(cd, T) reflects the temperature dependence of
the London penetration depth:
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2:,(T) = = 82(O, T),
Az(Q)

and the relation 2:„(T)= 1 —x, (T).
For a Drude metal above T„x„(T)= 1 and

(24)
creasing T, and

3. a maximum value which is less than or equal to
1/2. The equality holds above T, where f is given
b, fD,„,. ~Eq. (25)].

4)7o.
g (~, T, 1/r) = fD,„d,(~r) =—

1+ (25)

Note that in the Drude case f(ur) is only a function
of cur and temperature dependence can only come into
play via a temperature dependent scattering time, r(T).
f~«~, (wr) has the following properties.

1. An initial linear slope, fD,„d,(ur) —wr for ur ((
1

2. a broad peak centered at ur = 1 with a maximum
value of 1/2, and

3. a fall-off that approaches fD«d, (wr) = (wr) for
u7 )) 1.

In the case of a BCS superconductor below T, the func-
tion fgcs(wr, T) has a weak temperature dependence
in addition to any temperature dependence that might
come from r. In principle Eqs. (23) and (24) and our
knowledge of the function fBgs(wr, T) would allow us
to extract the temperature dependence of 1/r (if there
is any) from microwave conductivity measurements of
a BCS superconductor. The dependence of the func-
tion fBc,s(ur) for various temperatures and scattering
rates is illustrated in Fig. 8. In particular, the function
f~cs = crq/x„has the following properties.

Despite the fact that the BCS conductivity spectrum,
with its logarithmic divergence at low frequency, is dif-
ferent in detail from the Drude spectrum the overall fea-
tures of fBcs(cur) are similar to the behavior of the Drude
form, fD,„d,(cur).

We would like to use the generalized two-fluid model
to analyze the real and imaginary parts of the conduc-
tivity obtained from surface resistance and penetration
depth measurements. The temperature dependence of
the penetration depth can be used to determine 2:, and
consequently x„. Then the normalized real part of the
conductivity, f, can be used to estimate the value of r
using curves such as those shown in Fig. 8 for f~gs(wr).

Of course one can imagine numerous pitfalls to such an
approach. Leaving aside, for the moment, the question
of experimental artifacts, we consider the possibility that
the high-T, superconductor in question may not be an s-
wave BCS superconductor. For example, it could be a
p- or d-wave superconductor with nodes in the gap, or it
could be some other completely different kind of super-
conductor (anyon, RVB, etc.). In such cases, the analysis
described above would yield, at best, an effective scatter-
ing time because of the lack of a detailed knowledge of
the frequency dependence of the function f Given t.his
uncertainty, a plausible approach, which we will adopt,
is to interpret the data in terms of

1. An initial linear slope with a logarithmic factor,
fp~s ur in(ur) fo—r wr (( 1,

2. a broad maximum occurring around u~ = 1, for
T —T, and moving to lower frequency with de-

0.5

0.4

0.3

0.2

0.1

(26)

where for simplicity we use the Drude form of f(ar)
[Eq. (25)] to extract the temperature dependent scat-
tering time. This choice for the form of f corresponds
to diffusive motion of excitations from the condensate
and is appropriate for a thermally excited gas of weakly
scattered quasiparticles. It completely ignores coherence
effects (the log factors) which are characteristic of weak-
coupling BCS theory. This approach is justified by the
absence of a coherence peak in the NMR spin-lattice re-
laxation rate data and also by the apparently Drude-
like shape of the conductivity found below T, in the far-
infrared. Ultimately, it will be clear from the analysis
in the next section that the temperature dependence of
1/r(T) is so dramatic that corrections due to coherence
effects or non-Drude forms of f(ur) are relatively unim-
portant.

0.0
0.0 0.5 1.0 1.5 2.0

B. The temperature dependence of f(ur) and 1/r

M7
FIG. 8. The function f(err) at various temperatures for a

BCS superconductor in the clean limit [5/r (( 2b.(0)]. The
general shape of these curves is only weakly temperature de-

pendent, and the function remains bounded below a value of
1/2 at all temperatures.

Following the preceding discussion, it is possible to ex-
tract the function f(ur) from measurements of the tem-
perature dependent surface resistance. One strategy for
doing this is as follows.

l. A temperature independent residual loss is sub-
tracted from the measured surface resistance.



11 324 D. A. BONN et al. 47

2. Assuming local electrodynamics, the real part of
the conductivity is extracted from the surface resistance
using Eqs. (4)—(9) and the experimentally determined
form of A(T) [Eq. (17)]. A value of 1450 A. has been used
for A(0) and T, is fixed at 92.7 K. However the results of
the analysis are not very sensitive to these precise values.

3. Using the experimental observations that the nor-
mal fluid fraction x„(t) varies with temperature as t and
that YBa2Cus07 ~ is in the clean limit, Eqs. (20) and
(23) are used to extract f(u~) from the real part of the
conductivity.

Figure 9(a) displays the results of this analysis for the
two crystals, both of which exhibit a striking increase in

f(u~) with decreasing temperature. At the low frequency
of measurement used here (ww & 1) the large increase in

f(aw) indicates a rapid increase in the quasiparticle scat-
tering time ~(T) with decreasing temperature. There are
two problematic features in Fig. 9(a) that result from the
subtraction of residual loss from the surface resistance.
First, the two samples give rather different results in the
range T —70 K, the vicinity of the minimum in the sur-
face resistance. As mentioned above, the comparatively
weak temperature dependence in this range for sample
A results from the larger residual loss subtracted from
this sample. Second, at low temperatures f(ur) diverges
with decreasing temperature, exceeding the upper bound
of 0.5 that this function has in the BCS and Drude mod-
els. This divergence is easily discerned by noting that
the temperature dependence of the conductivity is quite
linear below 30 K [Fig. 7(a)]; so, if x~(t) varies as t,
then f(wr) varies as t . The situation is even worse
if one does not subtract residual loss from the surface
resistance. Then the conductivity linearly approaches a
constant at low temperature [Fig. 7(b)] and f(w~) di-
verges as t

An alternative way of handling the residual loss in the
surface resistance measurements is to attribute it to a
residual normal fluid fraction that varies from sample to
sample. One way to model this is to replace the expres-
sion for the normal fluid fraction, x„(t) = t, used in the
foregoing analysis, with
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Figure 9(b) displays the temperature dependence of
f(u7.) that results from employing Eq. (27) as a model
for the normal fluid density. The values used for x„(0)
were 0.015 and 0.005 for samples A and B, respectively.
These values of residual normal fluid density keep f(a~)
bounded below a value of 0.5 and reflect the factor of 3
difference in the residual loss observed in the two crystals.
Besides keeping f(a~) from diverging, this treatment of
the residual loss brings the temperature dependence of
f (aw) for the two crystals into very good agreement over

*„(t)= ~'[1 —~„(0)]+ x„(0), (27) (b)

where 2:„(0)is a sample dependent residual normal fluid.
The two methods of handling the residual loss are phys-
ically distinct. Simply subtracting a constant from the
surface resistance implies that the loss is due to some-
thing outside of the superconductor, such as a spot of
flux or a lossy, insulating dielectric layer on the surface,
and that this loss is temperature independent. Using a
residual normal fluid density implies that the source of
the residual loss is in the bulk of the sample, although
it is probably not intrinsic. A source of residual normal
fluid density in YBa2Cu307 p might be twin boundaries,
a possibility that is suggested by the observation that
the sample with the lowest residual loss that we have yet
measured (sample B) was almost twin-free. One further
assumption built into the use of Eq. (27) is that the
residual normal fluid has the same scattering time as the
intrinsic normal fluid.

I I I

o t-I o f
I I I ~
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FIG. 9. The function f(uw) extracted from the tempera-
ture dependent conductivities shown in Fig. 7(a). The rapid
increase with decreasing temperature indicates a rapid in-
crease in the lifetime of charge-carrying quasiparticles below
T, ; (a) is the result of simply subtracting the residual loss
from the surface resistance measurements; (b) results from
an analysis that assumes that the residual loss comes from
a remnant normal fluid density, 2.„(0), at low temperature.
x„(0) is chosen to have the minimum value such that f(~~)
stays below 1/2, z„(0) =0.005 and 0.0015 for samples A and
B, respectively.
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the entire temperature range below 84 K. Although these
values of x„(0) are the minimum ones required to keep
f(wr) & 1/2 they generate f's that approach T = 0 with
nonzero slope, suggesting that somewhat larger values of
x„(0) might be needed. A plausible maximum value of
x„(0) is the one that causes f(wr) to approach its low
temperature value with zero slope. Larger values give rise
to a low temperature peak in f(ur) that would imply a
Kondo-like peak in the scattering rate, a possibility that
we will not consider here. By assuming this maximum
value of x„(0) (0.040 and 0.013 for samples A and B, re-
spectively) the temperature dependence of f (iver) is sim-
ilar for both samples and approaches a low temperature
limit of 0.15. The meaning of this is clear if one uses the
Drude form for f (iver), Eq. (25), to extract the tempera-
ture dependence of 1/r from the values of f As s.hown
in Fig. 10, the scattering rate below T, falls rapidly and
then approaches a low temperature limit. The value of
1/r above T, is 2.8 x 10 ss i, which is in reasonable
agreement with the value inferred from far-infrared mea-
surements of thin films, and the low temperature limit
is about 7 x 10 s, a drop by a factor of 400. So it ap-
pears that the strong inelastic scattering responsible for
the large dc resistivity of YBa&CusOr s is rapidly sup-
pressed below T, until 1/r reaches a limiting value that
is perhaps determined by impurity scattering.

Such a large increase of the scattering time at first
seems problematic. For example, if the mean-free path
at T, is l(T, ) = 40 A. , then the increase in r which we
have inferred from our data implies l(0) —1.6 pm which
is about ten times the assumed value of A(0). In an
isotropic metal, this would correspond to the anomalous
skin eKect regime in which carriers can move freely into
and out of the region where the field penetrates without
scattering from anything but the surface. In such a sit-
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FIG. 10. The temperature dependence of the quasiparti-
cle scattering rate extracted by assuming that the spectral
shape of the normal Buid conductivity is Drude-like. The
scattering rate falls by a factor of 400 before reaching a limit-
ing value of 7 x 10 s, perhaps due to impurity scattering.

r(Ti) x„(T2) (1 —x„(Ti)5 ' R, (Ti)
r(T2) x„(Ti) q 1 —x„(T2)p R, (T2)

(28)

Thus the two principle sources of uncertainty in this part
of the analysis are the assumed temperature dependence
of x„(T), particularly at low T, and the relative tern-
perature dependence of R, (T). With regard to R, (T),
a central assumption of this paper is that the tempera-
ture dependence of R, (T) is, to a good approximation,
intrinsic between 20 and 84 K. Below 20 K, there is a
residual, sample-dependent loss which we model either
as a residual loss or as a residual fraction of normal elec-
trons. Above 84 K, a small peak appears in a.i and r for
sample B which we attribute to some kind of extrinsic
broadening of the transition. (On the other hand, the
sharp transition observed in sample A may be close to
intrinsic behavior. ) If the temperature dependent loss
which we observe between 20 and 84 K (e.g. , the data
of Fig. 3) is, in fact, intrinsic, then the rapid drop in
1/r(T) which we infer follows directly.

Uncertainty about the detailed temperature depen-
dence of x„(T) is rather less of a problem. We find,
quite generally that assuming a BCS temperature de-
pendence for x„(T) gives unphysical results at low T
because the activated temperature dependence, for any
meaningful value of the gap, is too strong. The relatively
weak temperature dependence of the observed conduc-
tivity can only be reconciled with the strong tempera-
ture dependence of the BCS x„(T) by using an f(iver)
with a strong temperature dependence that nearly can-
cels the BCS contribution. But, there is a limit to this
because f(iver) is bounded below a value of 1/2, so that
a large value of the residual normal Quid density is also
needed to suppress the strong BCS form for x~(T). This
amounts to including a residual normal Quid density that
obscures the activated behavior of the BCS x„(T),which
is a rather contrived way of interpreting the experimental
conductivity in terms of s-wave BCS theory. As discussed
in detail in Sec. IIIB a wide variety of measurements
that have been analyzed by us and by others 2 give

uation the response of the charge carriers to an ac field
is nonlocal and Eq. (4) no longer applies. However, we
should emphasize that the large mean-free path that we
find is for motion in the ab planes. We do not expect
large mean-free paths in the c-axis direction. In fact, on
the basis of recent results of Timusk and co-workers on
the c-axis infrared conductivity, we expect the oppo-
site, namely, very short mean-free paths along c. In this
nearly 2D situation local electrodynamics are preserved,
even for long mean-free paths in the ab plane, and Eq.
(4) applies even when r is quite large.

We also note that the large increase in v. at low tem-
peratures is not sensitive to either the assumed value of
A(0) or to the normalization of R, (T). As noted above,
oi(T) can be derived quite accurately from Eq. (11) for
temperatures more than a few tenths of a Kelvin below
T, . This means that the temperature dependence of v

below 92 K depends only on the measured temperature
dependence of R, (T) and on the assumed temperature
dependence of x„(T):
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a weaker quadratic temperature dependence of x„(T).
Such a power-law dependence for x„(T) with small val-
ues of x„(0) provides a more reasonable way to interpret
the weak temperature dependence of o.

q at low tempera-
tures.

In summary we find that
1. The linear temperature dependence of the surface

resistance and conductivity below 30 K cannot easily be
reconciled with the exponential temperature dependence
expected for an 8-wave BCS energy gap.

2. The nonmonotonic temperature dependence of the
surface resistance, which we take to be intrinsic, results
from two competing sources of temperature dependence:
the normal fluid fraction decreases, but the scattering
time of that normal fluid increases with decreasing tem-
perature.

3. 1/~(T) is found to fall by roughly a factor of 400
between T, and 15 K.

V. DISCUSSION AND CONCLUSIONS

In this paper we have presented microwave sur-
face resistance measurements on two very high quality
YBa2Cu306 95 crystals which are representative of four
that we have studied. These crystals exhibit very sharp
drops of about 4 orders of magnitude in surface resistance
below T, and temperature dependent low temperature
loss that peaks around 38 K and then falls oK gradually
to low residual losses at T = 1.2 K of 2 to 6 pA/ . We
have argued that at least most of this temperature de-
pendent surface resistance is an intrinsic loss associated
with thermal excitations from the superconducting con-
densate.

We assume that the surface resistance is related to the
complex conductivity by Eqs. (4)—(8). Using Eq. (9) the
imaginary part of the conductivity can be determined by
the London penetration depth which we have obtained
from a careful analysis of recent microwave and p,sr mea-
surements. These measurements show that there is still
substantial temperature dependence left in A(T) even be-
low T,/3. This temperature dependence is, to a good
approximation, quadratic. The microwave data of An-
lage and Langley and of Pond et at. is well Bt by the
relation A2(0)/A2(T) = 1 —(T/T, )2 for 7 K ( T ( T, .
The temperature dependence of A(T) found in the psr
measurements described in Sec. III B are also consistent
with this quadratic temperature dependence.

With the imaginary part of the conductivity deter-
mined by A(T), the real part can be extracted directly
from the surface resistance measurements. This analysis
shows that the behavior of R, (T) is due to a conduc-
tivity with a large peak at 32 K and a weak (roughly
linear) temperature dependence below the peak. This
weak temperature dependence of crq(T) below T, /3 and
the power-law temperature dependence of A 2(T). in the
same temperature range provide strong evidence for the
existence of low-lying states in the superconducting phase
below T . These two quantities provide complementary
information. oq(T) depends on the temperature depen-
dence of the normal fluid density and A(T) depends on
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FIG. 11. The temperature dependent part of the quasi-
'particle scattering rate obtained by subtracting the low tem-
perature limiting value, 7 x 10 s, from the curves shown in
Fig. 10. The nearly straight line on a semi-log scale indicates
a scattering rate that varies as exp(T/To), a temperature de-
pendence that is also seen in NMR and NQR measurements
(Ref. 6).

the superfluid density. The energy gap of an s-wave BCS
superconductor leads to a rapid, exponential decrease in
normal fluid density below T,/3 and a superfluid density
that quickly reaches its low temperature value and be-
comes rather temperature independent below T,/3. In
YBa2CusOs ss the relatively slow decrease in o.q(T) be-
low 30 K and the fact that A(T) has substantial tem-
perature dependence in this low temperature range both
indicate that the normal fluid density does not have the
exponential, activated behavior expected for an s-wave
BCS superconductor. Instead, these measurements both
suggest a density of states that extends down to zero
energy. Either the spectrum of excitations from the su-
perconducting condensate is gapless or it has a gap struc-
ture with nodes. As the present measurements have been
performed on twinned crystals, it cannot yet be deter-
mined to what extent this behavior is influenced by the
anisotropy in the ab plane associated with the presence
of CuO chains.

Equation (26) provides the basis for deriving the tem-
perature dependence of the scattering rate, 1/~(T), from
the real part of cr in terms of the normal fluid density
x„(T) and the function f(ar) for which we assume a
simple Drude form, Eq. (25). Below T„ the temper-
ature dependent scattering rate derived from our data
decreases by nearly 3 orders of magnitude before reach-
ing a low temperature limit of roughly 7 x 10 s . The
temperature dependent part of the scattering rate can
be examined by subtracting the low temperature limit-
ing value from the measured scattering rate before plot-
ting it on a semi-log graph. As shown in Fig. 11, this
procedure uncovers an overall exponential behavior for
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the temperature dependent part of the scattering rate;
1/~(T) oc e ~ '. The value of To depends somewhat
on the choices made for the parameter x„(0) and ranges
between 12 and 14 K. This unusual exponential behav-
ior is not the activated temperature dependence, e
that one might obtain for a spectrum of scatterers with
a gap. A comparison of this to NMR and NQR relax-
ation rates reveals a striking similarity. Barrett et al.
noted that all measurements of the relaxation rate, de-
noted Wi (o.' = a, 6, c for magnetic fields applied along
the three principle axes of the crystal), follow the same
exponential behavior, Wi /T oc e ~ ', with similar val-
ues of To.s NQR measurements compare most simply to
the microwave measurements because they are performed
in zero magnetic field. The NQR measurements of Bar-
rett et al. are included in Fig. 11 where it is clear that
1/~(T) follows an exponential behavior that is similar to
Wi, /T.

Since the unusual exponential behavior of 1/w(T) is
not the activated behavior expected for a spectrum of
scatterers with a gap, it must result from inelastic scat-
tering by excitations whose spectrum extends down to
rather low energies. So, we find that both the current-
carrying excitations from the superconducting conden-
sate and the excitations that scatter this normal Quid
have spectra with states extending down to low ener-
gies. We would emphasize, however, that the scatterers
which damp the current-carrying excitations are almost
certainly not just those excitations themselves. This is
clear from Eq. (26) which says that oi(T) depends on
the product of x„(T) and r(T). If the scattering is due
to charged excitations whose density is x„(T), then this
temperature dependence should cancel out in the prod-
uct x„(T)r(T) and the resulting conductivity would be
only weakly temperature dependent. Experimentally we

find that cri(T) increases rapidly below T„reaching a
peak around 32 K which is 20 times its value at T, . Thus
it would appear that some other kind of excitation is re-
sponsible for damping the current and that these other
excitations freeze out below T, more quickly than the
normal "electrons. " A good candidate for these other
excitations would be antiferromagnetic spin Huctuations
which are also responsible for nuclear spin relaxation.
This may also account for the identical temperature de-
pendence of the two rates.

We should also note that preliminary measurements in
our lab of the surface resistance of similar high quality
crystals at 35 GHz are completely consistent with the
lower frequency results described above. In addition, we
have measured the high field vortex viscosity, ri(T), of
superconducting Bi 2:2:1:2crystals. We And a temper-
ature dependence for rl(T) similar to that found above
for 7.(T), as one would expect from Bardeen-Stephen
theory. Both the 35 GHz and vortex viscosity measure-
ments will be published elsewhere.
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