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Josephson-coupled systems in perpendicular magnetic fields
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We calculate the critical current along the c axis of a stack of Josephson-coupled layers when the
applied magnetic field is perpendicular to the junctions plane. The anisotropy parameter and the
Josephson interlayer critical current in the Lawrence-Doniach model are renormalized by the vortex
fluctuations and have to be determined self-consistently. This leads to the existence of a decoupling
phase transition in the (H, T) plane. The decoupling phase transition is first order for moderate
(bare) anisotropies and second order for large anisotropies. We consider the effect of pinning centers
and show that only strong disorder affects the critical current. Application of the formalism to single
crystals, tapes, and films of highly anisotropic, layered superconductors is discussed. The magnetic
field and temperature dependence of the critical current in tapes is calculated for the brick-wall
model.

I. INTRODUCTION

The distinguishing feature of the high-T, supercon-
ductors is the existence of superconducting, Josephson-
coupled layers. The consequences of this peculiar struc-
ture are manifold and to a large extent responsible for the
unusual electrodynamic properties of these materials in
the superconducting state. These systems seem to be well
described by the Lawrence-Doniach (LD) formalism, i

which is often used as a conceptual framework to in-
terpret experimental data. We point out that the most
important parameter of the model, the anisotropy pa-
rameter p = A, /A i„depends strongly on the tempera-
ture in the presence of magnetic field perpendicular to
the layers. It has to be calculated self-consistently when
a magnetic field is applied perpendicular to the layers.
For this reason, the anisotropy parameter acquires a field
and temperature dependence it does not have in the more
conventional Ginzburg-Landau (GL) model. The c-axis
critical current is inversely proportional to p and is a
physical quantity directly accessible to experiment. It
displays most dramatically and directly the consequences
of the renormalization of p. Therefore, the present article
focuses on the critical current along the e axis in these
systems in the presence of a magnetic field applied per-
pendicular to the layers.

More pragmatically, the "Lorenz-force-free" configu-
ration considered here is important for two other rea-
sons. First, recent magnetoresistivity measurements by
Kapitulnik and Briceno, Crommie, and Zettl of the re-
sistivity in the c direction (with the applied magnetic
field parallel to the c axis) show a remarkable behavior
below T, that was interpreted in terms of a decoupling
transition. We show that the existence of this phase tran-
sition is directly related to the peculiar form of the LD
free-energy functional and is a new and distinctive fea-
ture of Jospehson-coupled systems as opposed to the GL
description.

Second, it is well-known experimentally that the criti-
cal current of films and tapes of the high-T, materials is

lower when the external field is applied perpendicular to
the layers than when the field is applied parallel to the
layers. In order to account for the dependence of the
critical current on magnetic field and temperature, the
brick-wall model was suggesteds 7 as a crude way to take
into account the material microstructure. In this model,
the current flows mostly inside the grains ("bricks") mak-
ing up the tape (or film) but is forced to transfer along
a c-axis grain boundary to flow from one grain to the
next. The critical current associated with that weak link
is lower than the bulk critical current inside a grain and
constitutes the bottleneck for current transport along a
tape. The effect on the Josephson intergrain current of
a magnetic field parallel to the layers was calculated in
Ref. 7, but the effect of a perpendicular field was not
considered.

Below we discuss in detail the physical mechanism re-
sponsible for the reduction of the critical current in per-
pendicular fields and calculate the temperature depen-
dence of the decoupling field. We also determine the na-
ture of the phase transition that takes place at the decou-
pling field. We believe the mechanism responsible for the
depression of the critical current density in perpendicular
fields to be the following. The magnetic field nucleates
pancake vortices in the layers. s s These two-dimensional
vortices are coupled electromagnetically as well as by the
presence of Jospehson tunneling between the layers. If
the vortices are perfectly aligned from one layer to the
next, their coupling is maximal and so is the critical cur-
rent density. However, if a pancake vortex is displaced
from its equilibrium position (thermal distortion or pin-
ning for example) a phase difFerence is generated across
two adjacent layers and the critical current is reduced
locally [Fig. 1(a)]. (Because of the nonlinear, sinusoidal
dependence of the interlayer current on the phase differ-
ence, the appearance for whatever reason of a finite phase
difference reduces the current density. ) It is this reduc-
tion of the local value of the Josephson current due to the
misalignement of the pancake vortices that is responsible
for the lower value of the critical current density when
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The local supression of the current density by two mis-
aligned Abrikosov vortices in a Josephson junction was
studied originally by Miller et al. Recently, Glazman
and Koshelev pointed out that the thermal fluctuations
of pancake vortices supress the superconducting long-
range order along the c axis, but they did not study
the behavior of the critical current and did not take into
account in a self-consistent manner the renormalization
of the current and anisotropy parameter. A summary of
some of the results presented here appeared in Ref. 12.

The next section describes in more detail the physical
mechanism sketched above and develops the LD formal-
ism when the external field is perpendicular to the layers.
Sections III and IV deal with various sources of disorder,
namely thermal distortions of the lattice and pinning-
induced disorder. These two types of disorder are quite
distinct, and they affect the critical current in totally
different ways. In addition, Section III discusses the c-
axis resistivity. Section V applies the results obtained in
Secs. III and IV to the particular case of films and tapes
within the framework of the brick-wall model. We state
our conclusions in the last section.

II. MODEL AND FORMALISM

FIG. 1. Schematic representation of the two types of
Josephson-coupled systems considered in the text. (a) Stack
of Josephson-coupled superconducting layers and (h) Joseph-
son junction parallel to the c axis.

the magnetic field is applied perpendicular to the lay-
ers. In addition, the square of the London penetration
depth in the c direction, A„ is inversely proportional to
the critical current density j„which in turn depends on
the disorder in the vortex positions. The lattice distor-
tions are determined by the elastic moduli, which depend
on A„and therefore A, and j, have to be determined
self-consistently. It is this self-consistence, absent in the
GI formalism, that is responsible for the existence of
the decoupling phase transition. Notice that in the GL
formalism, the relationship between the current density
and the phase difference is linear insofar as the the mag-
nitude of the order parameter remains constant (London
limit). A similar mechanism of the supression of critical
current by the vortex fluctuations is at work in a Joseph-
son junction when the external field is applied parallel to
the junction plane and pancake vortices are nucleated in
the superconductors making up the junction [Fig. 1(b)].
This situation is discussed briefly below. A more detailed
account within the framework of Malozemoff's brick-wall
model will be given elsewhere.

V , +r(p) = 0 —4 +r— (2.2)

The I D model for the highly anisotropic layered su-
perconductors is well established. by now and has been
used extensively and successfully to describe the proper-
ties of the high-temperature superconductors at the phe-
nornenological level. The essence of the formalism is the
Josephson nature of the interlayer coupling, and, corre-
spondingly, of the interlayer current. In the LD forrnal-
ism, the current density, j„„+r,between layers n and
n + 1 is defined by

i'...-+r(p) = j.»n[V-, -+r(p)] (2.1)
(n+1)s

A, (r)dz,
ns

where p„,„+r(p) is the gauge-invariant phase difference.
P„(p) is the phase of the order parameter in the nth
layer, s is the interlayer spacing, and A, (r) is the c-axis
component of the vector potential. p = (x, y) designates
coordinates in the ab plane and r = (p, z). jo depends on
the value of the order parameter inside the layers as well
as on temperature and magnetic field, just as for standard
Josephson junctions. 3 The critical current jp along the
c axis determines the London penetration depth for that
direction (and consequently the anisotropy parameter):

(2.3)8a sjp
'

A~b

The form of the LD free-energy functional considered
here is

&(&-(r) A(r)) = Co2s . ( 2~ ) 2) dr
~

V'P„+ A„~ + 2 (1 —cosy„,„+r) + (2.4)

where Ag = ps is the Josephson length and A b is the London penetration depth in the ab plane. The amplitude of
the superconducting order parameter has been assumed constant. This approximation is correct to the extent that



47 JOSEPHSON-COUPLED SYSTEMS IN PERPENDICULAR. . . 11 293

(&*&0—&u&*)V -,-+~ = ) .2~t~(p p-—) ~(p —p+~;—-)] (2.6)
m

where p„= (2:n~, yn ) are the positions of the two-dimensinal (2D) vortices in the nth layer. The second index
m labels the pancakes in a given layer. The Dirac 6 functions in the right-hand side of Eq. (2.6) indicate the
presence of vortices. Notice that the right-hand side of Eq. (2.6) vanishes for straight, undistorted vortices for whichp„=pn+q. . In this case yn „+q(p) = 0. It follows from Eq. (2.5) that at distances smaller than A~ away from the
vortices, the effect of the interlayer Josephson current is negligible and the main contribution to the phase difference
at p can then be obtained by solving a linearized form of Eq. (2.5), namely the following 2D Laplace equation with
the boundary condition, Eq. (2.6):

~p Vn, n+i(p) =0:
The general solution of this equation is given by

pn, n+q(p) = ) I
arctan " —arctan (2.8)

'g gnrn —gnarl;m )
The physical origin of Eq. (2.8) is easy to understand. In layer n, a vortex located at p„m contributes a phase P„(p)
at p. This angle P„ is simply the polar angle around p„. Notice that this result differs from that given in Refs.
16—18 where other definitions of the phase difference were introduced [the definitions given by these authors are not
solutions of Eq. (2.5) or its linearized form]. In order to take into account the 3D screening caused by the interlayer
currents, we approximate sin pn n+q by &pn, n+q and express the latter in terms of the distortions un = p„m —p
(displacement of the vortices from their equilibrium positions, p~, in a perfect lattice):

p„,„+g(p) = ) e '~"(1 —e'q)27(p, k)u(q, k).
sCO

k, q

The Fourier components of the distortions u„are
u(q, k) = ) u„exp(ik p + iqn), (2.10)

(2.7)

(2.9)

n, m

and, for a square vortex lattice, & is given by

we are interested only in considering the effect of the Josephson coupling between the layers. Notice that in what
follows, we neglect the effect of the the normal cores on the interlayer tunneling current because of their small size in
high-T, materials.

In order to obtain a general expression for the critical current density in the presence of pancake vortices, we use
the following equation relating the gauge-invariant phase difference y„„+q(p) to the positions of the vortices:~4

1
pn, n~]. & (2 sin &pn n+y —sin pn~y n~2 —sin &pn ],n)——

.
—

&
sin &pn n+y = 0,2 (2.5)J C

which should be solved with the boundary condition: s

17(p, k) = 27riB ) (ky+ Gy)x (k + G )y
C'o

& ~
k+ G ~2+2A& (1 —cosq) + A,

(2.11)

In Eq. (2.11), the summation is over the reciprocal lattice vectors C. The linear approximation used gives a lower
limit for y„„+q because it overestimates the effect of screening: sing„, „+q «p„,„+y. Notice that in the continuous
limit (all C = 0) the phase difference depends only on the transverse component of the distortion field.

Once the gauge-invariant phase difference p„„+q has been related to the vortex positions, the critical current
between layers n and n+ 1 can be obtained from

+1 —

gaol

dp(exp[ipn, n~z(p)]) I. (2.12)

Here (. ) denotes either thermal averaging,

J' Du„A(u„) exp( —PX(u„))jDu„exp( —PX(u„j) (2.13)

where X(un~) is the free-energy functional of the distorted lattice, or impurity averaging, or both depending on the
temperature regime and the presence or absence of pinning centers. Well above the irreversibility line, the main effect
is the thermally induced disorder, whereas at low temperature, pinning-induced disorder represents the main effect.
These two situations will now be examined carefully.
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A. Stack of superconducting layers

In the absence of pinning, i.e. , above the irreversibility line, the phase difference from one layer to the next is
generated by the thermal motion of the pancake vortices, and the determination of the critical current requires the
evaluation in Eq. (2.12) of the thermal average Eq. (2.13). For simplicity, we describe the lattice distortions in the
harmonic approximation and use for the free energy of the distorted lattice the following expression:

) ) (c»k'Pl. „+«sk'PT „+6,,c44Q )u;(q, k)u*(q, k),
2sC'o

q, k .,~

(3 1)

where k = (k, k„), Q2 = 2(1 —cos q) js2, and i,, j = x, y. 'PI...~ = k, k~/k~ and Pz, ,~
= 6,~ —'PI, ,~ are longitudinal and

transverse projection operators. c66, cqq, and c44 are the Aux lattice shear, compression, and tilt moduli, respectively.
They are given by

Q2

4~(1+ A'k'+ A Q') 32~'A' ~'+ A 32vr'A Q' q K ) '

B2[1+A2(k2+ Q )] BCo
4~[1+ A' (k'+ Q')](1+ A'k'+ A' Q') '

(8~A b)'
The summation over k is performed over a circular Brillouin zone of radius Kp ——47rB/4p.

In the Lawrence-Doniach formalism, A, and j, are inter-related via Eq. (2.3):

A2(B)
cC'o .

(B) 4,n+i(B)
87rzsj, (B) ' '

J dp

(3.2)

(3 3)

where I„„+i(B)is given by Eq. (2.12). In addition, j,(B) depends on A, (B) via Eqs. (2.12)—(3.2). Thus Eqs. (2.12)-
(3.3) allow one to obtain j„and hence the effective anisotropy parameter, p(B) = A, (B)/A b, self-consistently. This
relationship between the (thermally averaged) critical current, the London penetration depth A„and the tilt and
compression moduli in the presence of a magnetic field is specific to the LD model and is responsible for the existence
of the decoupling phase transition to be discussed below.

The integrand in Eq. (2.12) is now quadratic in the Fourier components of the distortion field and the resulting
Gaussian integral can be done exactly. The final result is

I„„+i——jp dp exp[ —S(p)], (3.4)

where

TB . 1 —cosq
i

D k„—'D„k
i i

'D k +'D„k„ i2

s4p k cssk + c44Q ciik + c44Qk, q

(3.5)

The coordinate dependent function S(p) can be written as S(p) = Sp + Si(p), where Sp is coordinate-independent.
Sp is obtained by keeping only the terms for which G = G' in the double summation over G and C' in Eq. (3.5). Sp
represents the main contribution to the total sum in Eq. (3.5), and Si will be neglected henceforth. We get

TB (27rBi (1 —cos q) [k (k+ G)]2 [z (k x G)]z
sCp ( Cp ) k2[~ k+ G

~

+2A& (1 —cosq) + A, ]& cssk + c44Q ciik + c44Qk, q G'

~' = ~o exp[So(~)1 (3.7)

where po is the bare anisotropy parameter in the absence
of magnetic field. The thermally averaged critical cur-
rent density isj,(B) =j ppo2/p (B). The transcendental

The upper limit in the summation over G is 1/uT, where
uT, = ((u„~i —u„) ) because the expansion of

+i in u~, Eq. (2.9), is valid only for wave vectors
smaller than 1/uT.

The self-consistency equation for the effective
anistropy parameter, p(B) is

equation for p, Eq. (3.7), has to be solved numerically if
all three terms appearing in the expression for c44, Eq.
(3.2), are kept. However, in some limiting cases, it is pos-
sible to proceed further analytically, namely, in the case
of moderate anisotropies (pp (( A b/s) or in the case of
very large anisotropies (pp )) A b js)

For large anisotropies, only the third term in c44 plays
a significant role. It represents the contribution to the
tilt modulus arising from the electromagnetic coupling
between the pancake vortices in adjacent layers. In ad-
dition, if we set c66 ——0, then the integration over q can
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2m z BTA2& (T) ln(Ko2P2s2/2)

ln(2s —2Ko )
(3.8)

Notice that we kept the G = 0 term only in the summa-
tion over G; additional terms do not contribute signifi-
cantly and will be accounted for in the numerical calcu-
lation to be discussed below. The self-consistency equa-
tion, Eq. (3.7), becomes

be performed exactly in Eq. (3.5). (The numerical com-
putations show that c66 does not play a significant role
in determining the value of the critical current, so this is
a reasonable approximation. ) In the large magnetic field
limit, B )) B,„—:24p/4vrppzsz, the final result is

where

KTBSAg b

243o
(3.15)

2430B ") ..-r.A (r); (3.16)

The solution to this equation exists for b ( 1/e (e is the
natural logarithm basis). At 6 = 1/e, x increases sud-
denly from e to infinity, i.e. , the critical current decreases
continuously from jp at B = 0 to jpe at B = B~(T)
and vanishes for B ) B~(T). The decoupling field is
now given by the condition 6 = 1/e, i.e. ,

(—=
I

/3
Vo 4 Wo)

where

(3.9)
The phase transition at the B~(T) line is now a first-
order phase transition. The free energy density of the
system can be calculated from the following expression:

2+zBTA~q(T) Ko s Po B
s@sp ln(2s ~Ko ) 2 Bcr

The solution of this equation is

(3.10)
BF 4o=-

6 'A (-"-""'
gyp 7c s b

Cp
exp [

—So (p)], (3.17)
2 ~a/(1 —o.)

) (3.11)

for a ( 1 (P )) 1) and p = oo for o. ) 1. Notice that p
increases continuously with o. so that we have a second-
order phase transition along the line n(T, B) = 1 in the
H Tplane. T-he magnetic field along this line is the de-
coupling field:

and Sp depends on pp implicitly. After integrating over
, one obtains the following expression for the free-

energy density:

Ci'i /1 el
F(~.)=F( )-

327rss2Az (pe p2)

Cos r'8vr TA, i, &()—,() (3.12) (3.18)

and the self-consistency equation reduces to

x = exp(bx), x = p2/p(~), (3.14)

This phase transition is very smooth: the temperature
derivatives of p (or equivalently, j,) at the phase tran-
sition are continuous. In particular, there is no specific
heat anomaly at the phase transition (as for a Kosterlitz-
Thouless phase transition for instance).

From a physical point of view, at B~(T) the root-
mean-square thermal distortion uz = ((u„+i ~
u„)z)i~2 becomes comparable to the intervortex dis-
tance [ (C p/B) i~z]. The pancake vortices in a given
fiux line are not correlated for B ) B~(T), and in that
sense the flux lines do not exist; the motion of the pan-
cake vortices in adjacent layers is uncorrelated, the phase
difference is completely random, and the critical current
along the c axis vanishes.

For moderate anisotropies, the third term in c44, Eq.
(3.2), is unimportant, while the other two terms are of
the same order of magnitude for k Kp. In order to
understand at least qualitatively the nature of the phase
transition at the decoupling field in this case, we keep
only the first term in the expression for c&4. (The nu-
merical calculations show that adding the second term
does not change the results qualitatively. } In this limit,
one can show that

~TBsA2
So(&) =— (3.13)

where p is now a function of pp through the self-
consistency condition for p, Eq. (3.14). The latent heat
(per unit volume) can be calculated from the expression
for the free energy:

@2

32e~ A ~(T)s po
' (3.19)

So, for large anisotropies, the phase transition at the
decoupling field is second order, whereas for small
anisotropies it is first order. There is a smooth tran-
sition from first to second order at some critical value
of pp. For the parameters used in Figs. 2 and 3, this
value is po 60. This value seems to be temperature
independent.

The dependence of the critical current on magnetic
field and temperature obtained from a numerical reso-
lution of the self consistency equation is shown in Figs. 2
and 3 for two different values of pp. The decoupling field
is shown in Fig. 4 for po ——30 and 55. The experimen-
tal data for BiqSr2CaCuq08 is taken from Ref. 20. The
decoupling curve taken from Ref. 20 as well as the calcu-
lated decoupling lines lie above the irreversibility line for
Bi2SrqCaCu208.

We used the harmonic approximation for the elastic
energy to study quantitatively the decoupling transition.
Actually, the anharmonic effects that are important for
melting transition may affect the decoupling transition as
well. They enhance the vortex distortions and thus may
decrease the transition temperature Tri(H). We have
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FIG. 2G. 2. Magnetic field dependence of the critical current
along the c axis in a single crystal. Th l'd le so i ines correspond
to pp

——55; the dashed lines correspond to pp ——200.
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FIG. 3.. 3. Temperature dependence of the critical current
e so i ines correspondalong t e c a,xis in a single crystal. Th l'd l'

to pp
——55; the dashed lines correspond to pp

——200.

assumed a flux lattice in our calculations, but a flux liquid
would lead to the same results because of the very weak

epen ence of j, on css. (A numerical calculation with
css = 0 showed that this was indeed the case. )

It is important to emphasize that the mechanism de-

call
seri ed a ove is only one mechanism amon th h
ca y possible dissipation mechanisms that can acct the
critical current along the c axis in perpendicular fields.
For example, the current flowing along the c axis gen-
erates a magnetic field (the so-called self-field) in addi-
tion to the applied magnetic field. In samples whpes w ose

nsverse dimensions are larger than Ag, the self-field
can generate 3osephson vortices between the ab planes.
These vortices form concentric "ring " th t'

gs a move inward,
and in doing so they dissipate energy. This current lim-
iting mechanism would presumably lead to a critical cur-
rent smaller than the critical current calculated above. It
is still true, however, that the phenomenological parame-
ers p (and thus A, ) must be determined self-consistently )

FIG. 4. TemTemperature dependence of the decoupling field
for two values of po calculated for 8 = 15 A A

, an ( b(0) = 25 A. . The triangles denote data obtained
from transport critical current measurements with a volta e

n o 3pV. The squares were obtained by fittin the
en s wi a vo tage

I-V curves to ao a phenomenological equation. See Ref. 20 f
y ingt e

details.
ee e . or

regardless of the physical mechanism limiting the criti-
cal current. In
R, ( s=A t

n samples whose dimensions are h th t
ps = ~, the formation of Josephson vortices is su-

pressed and the critical current coincides with the critical
current calculated above.

Finally, it is interesting to consider how the recent @-

axis resistivity measurements of Refs. 2 and 3 could be
accounted for by the mechanism just described. Below„t e resistivity p, (T) increases exponentially with de-
creasing temperature:

p, (T) = AT exp( —d /T), (3.20)

where v —0.7 and 6 —176 K Th'is simp e empirical
relation was proposed in Refs. 21 and 22 and seems to

t l de en en
escribe the experimental data quite ll Th
ia ependence of p, on temperature was attributed to

quasiparticle tunneling and 4 was associated with the
superconducting energy gap. According to these exper-
imental observations the layers are still d
well below T the

s i supercon ucting
we e ow T, (the gap in the quasiparticle spectrum is
nonzero) but the interlayer supercurrent vanishes. Below
a certain temperature, Eq. (3.20) ceases to be valid, and
the resistivity starts decreasing t'1 'tun i i vanis es at some
temperature To(H), which is well below the temperature
corresponding to the maximum ' thm in e resistivity curve
[where Eq. (3.20) no longer applies]. We identify the
temperature To with the decoupling temperature TD (H).
In a mean-Beld approach for the decoupling phase transi-
tion, one would expect the resistivity to drop suddenly to
zero at a temperature TD(H) below, which the Josephson

approach, above T~(H), fiuctuations of the Josephson
current are important, they contribute to the conductiv-
ity, smear out the sharp mean-field transition, and lead
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to a temperature dependence of the resistivity similar to
that observed experimentally.

B. Josephson junction parallel to the c axis

Consider a weak link formed by two adjacent super-
conducting grains such that the plane of the junction
contains the c axis and the a or b axis [Fig. 1(b)]. The
external magnetic field is still applied along the c-axis.
It nucleates vortices on each side of the junction. The
ab-plane critical current for this ab weak link is again af-
fected by the presence of vortices on each side of the plane
of the junction. If the vortices form a regular hexagonal
lattice, the phase difference is determined by the stan-
dard expression zy(H)Hy/40, which leads to the usual
Fraunhofer dependence of the critical current on H. Here
zf (H) is the efFective thickness of the junction introduced
in Ref. 7. However, if the vortices are disturbed from
their equilibrium position, e.g. , because of thermal vibra-
tions at finite temperature, an additional random-phase
difference is generated across the junction and the critical
current is depressed locally. The mechanism is similar to
that described above, but the phase difference is now due
to the "mismatch" of two pancake vortices belonging to
two different flux lines rather than being associated with
the misalignement of two pancake vortices located in ad-
jacent layers but belonging to the same flux line. This
particular situation has been considered previously by
Fistul' s and Denisov. 4 Fistul', however, considered the
effect of randomly distributed vortices without identify-
ing the source of disorder. Thermally induced disorder
and (weak) pinning-induced disorder have well-defined
properties that are not reflected in Fistul's assumptions
and calculations.

As a first approximation, we can still use Eq. (2.8) as a
solution to the Laplace equation for the phase difference,
but we have to modify this solution slightly to take into
aeeount explicitly the presence of the junction boundary.
This can be done easily by using images. The solution
for the phase differenc is then

yi2(y) = 2)
~

arctan +1xI1 —arctan
Q @1m y y2m)

(3.21)
0

where the subscript m is used to label the vortices and
the subscripts 1 and 2 refer to vortices in the left- and
right-hand side of the junction, respectively. In the sum-
mation over m in Eq. (3.21) the vortices at distances
smaller than A~ and A b from the junction only should
be taken into account. For distances larger than Ag
the phase difference due to vortices is reduced by the
Josephson interlayer currents, whereas at distances larger
than A b the electromagnetic screening becomes impor-
tant and decreases the phase difference induced by the
vortices. ~4 The rest of the calculation of the critical cur-
rent is similar to that detailed in the preceding section
for a stack of supereonducting layers. There are, how-
ever, some differences: the factor (1 —cosq) in Eq. (3.6)
should be omitted and the elastic moduli should be al-

tered to take into account the presence of the boundary.
This latter step can be accomplished approximately by
replacing B by 2B in the expressions for the moduli.
This accounts for the fact that there are now twice as
many vortices within a distance A~b from the boundary
(the vortices plus their images). Another important dif-
ference is that self-consistency is not required here, and
therefore there is no decoupling phase transition for the
junction under consideration. Otherwise, the results are
qualitatively similar to those obtained for a stack of su-
perconducting layer in perpendicular magnetic field. The
ab weak links could play an important role in limiting the
critical current in superconducting tapes, and a more de-
tailed discussion will be given elsewhere.

IV. PINNING-INDUCED DISORDER

Let us now consider the effect of pinning centers on
the critical current along the c axis. It has been known
for a long time that even weak pinning centers causes
the long-range order in the arrangement of the flux lines
to be lost. In addition, because of the random distribu-
tion of the pinning centers in the direction perpendicular
to the layers, the flux lines can bend significantly, caus-
ing further distortions in the 3D arrangement of pancake
vortices. Notice that in what follows we do not consider
"correlated disorder, " such as columnar defects, or other
macroscopic microstructural defects, such as twinning
planes. We consider the effect of randomly distributed
point defects only.

In the case of weak disorder, the flux lattice is elasti-
cally distorted and the distortions can be calculated in
the harmonic approximation. The important point to no-
tice is that the displacements in this approximation are
all longitudinal in the continuum limit [all G set equal
to zero in Eq. (3.5)]. In this limit, the gauge-invariant
phase difference vanishes. So, the effec of weak disor-
der from weak pinning center is nit (in the continuum
approximation). The critical current along the c axis is
not affected significantly. This is in contrast to the effect
of thermal disorder: the two situations are qualitatively
very different even though the order of magnitude of the
distortions, (u„), is comparable in both cases. This is
due to the absence of small wave-vector contributions in
the case of pinning-induced disorder. Those represent
the main effect in the case of thermal disorder.

In order for pinning to have a significant effeet on the
critical current along the c axis, we have to go beyond
the elastically distorted lattice, i.e. , we have to consider
the effect of plastic deformations of the flux lattice. Such
deformations can be induced by very strong pinning cen-
ters, and we now estimate crudely their effect on the
critical current.

First, let us consider small magnetic fields. In this case,
the lattice is relatively "soft" and a few strong pinning
centers are presumably enough to distort the lattice plas-
tically. Our main assumption is the following: consider
two pancake vortices in layers n and n+ 1 belonging to
the same flux line. The pancake vortex in layer n+ 1 is
shifted towards the nearest pining center if the pinning
energy e„ is larger than the energy ep needed to create
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the corresponding distortion in the flux lattice. The pin-
ning energy, e„ is given by the ususal expression for core
pinning:

C C2s
(4 ~)

ab

where Ci is a numerical constant of order unity. The
order of magnitude of the energy needed to create a dis-
location by shifting a pancake vortex a distance u & A J
from its equilibrium position is

@2u
(4 2)4~~A.bA,

This corresponds to the energy it takes to shift a sin-

gle pancake vortex a distance u for moderate anisotropy.
Therefore, a vortex will be shifted if there is a strong pin-
ning center a distance u & uo A~ from its equilibrium
position, otherwise it remains at its equilibrium location.
The gauge-invariant phase difFerence is now given by

p~, &+i(p) = ) +(p pm) ' um (4 3)

where

y x')
~(P) =

p2 p2) (4 4)

and after subtitution in Eq. (3.5), we should average over
the positions of the pinning centers:

In, n+i = go dp 1+ ~" i«»)'~(P —P-) «-) —~)P("-))
(uo

(4 5)

The probability density p(u~) = n/x, where n is the
areal density of pinning centers and corresponds to a
uniform distribution of pinning centers in the ab-planes.
Notice that in Eq. (4.5), we treat the vortices as inde-
pendent, i.e. , we consider the weak magnetic field limit:
B « C'o/4vrAq, C)on.

If the pinning center density is low (AJ « n ) ), a
pancake vortex in layer n+1 cannot always find a pinning
center nearby. In this limit, one can show that Eq. (4.5)
simplifies to

flux lattice, and hence the flux lattice as a whole remains
undistorted, or at least very weakly distorted. The initial
decrease at low magnetic fields of the critical current in
irradiated samples was observed recently by Gerhauser et
al. s The effect of disorder in "ab" weak links is similar
to that described above.

The efFect of strong disorder in the large magnetic field
limit remains to be studied. En principle, at high mag-
netic fields, the decoupling transition is possible at large
concentrations of strong pinning centers, as in the case
of thermal disorder.

In n+i = go dp exp — 7t. nuo
m V. APPLICATION TO TAPES AND FILMS

2
~i(«~

I n —n- I

')

Iuo
I P —P

(4 6)

Ji(2:) is the Bessel function of the first kind of order one.
Upon replacing the summation over rn by an integral and
evaluating the resulting expression, we obtain

~n2uosB )i.(B) =ioexp I—
SC'o ) (4.7)

srBj,(B) = jo exp
2n o

(4.8)

In this case, the critical current increases with increas-
ing n. So, the critical current decreases at first as the
concentration of pinning centers is increased, but Chen
increases back to its maximum value jo as the concen-
tration of pinning centers continues to increase. This is
not very surprising because in the limit of small B and
large n, each pancake vortex can find a pinning center
very close to its equilibrium position in the undistorted

In the opposite limit, AJ &) n ~, there are enough
pinning centers that each pancake vorCex can easily find
one in its vicinity, and we can assume that all the pancake
vortices are shifted from their equilibrium positions. A
simple calculation similar to the one performed above for
the low density of pining centers case shows that

The "vortex fluctuation" mechanism described above
should apply to tapes and films as well. Their microstruc-
ture is such that a description in terms of Josephson-
coupled subsystems should be adequate. Numerous mi-
crostructural studies have revealed that tapes and in
some cases films, of the high-T, materials are made of a
superposition and juxtaposition of c-axis oriented grains.
The orientation of the a and 6 axes of a grain is random
in the plane of the tape (or film). We can assume that
the c-axis grain boundaries (in the plane of the tape) are
fairly well coupled and form weak links across which a
significant amount of current can flow, whereas the grain
boundaries between two adjacent twisted grains are such
that no significant current can flow across them. This
assumption leads MalozemoÃ to introduce the "brick-
wall" model. In this simplified description of the tape
microstructure, the grains are modeled by "bricks" ar-
ranged at random (Fig. 5). The current fiows along the
tape axis, but can flow in a given grain only as long as it
does not encounter a grain boundary between two adja-
cent brick. At this point, it chooses the path of least re-
sistance, namely, it transfers along a c-axis grain bound-
ary to the grain below or above. If pinning at intergrain
boundaries is large enough to sustain a significant cur-
rent within a grain, the bottleneck for current flow along
a tape is the weak links associated with the c-axis grain
boundaries. In other words, it is assumed that the in-
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j,(B) 1'dp f dup(u) exp(i p 27(p —p ) u)
j.(o) fdp

(5.2)
The upper limit for the summation over m is determined
by L if L & Ag and by A~ if A~ & L (~ p —p~ ~& L),
where L is a typical grain length and A~ is the Josephson
length of the c-axis boundary Josephson junction:

Az = cC p/167r j,(B)A, (5.3)

1L
]&

where A=min(A b, D) and Ag & Ag. After performing
the summation over m, we obtain the following expres-
sion for the critical current:

j.(B)/j.(o) = (Bo/B) (5.4)

I"IG. 5. Schematic representation of the brick-wall model
microstructure.

tergrain critical current along the c-axis rather than the
ab-plane critical current that limits the current flow along
the tape axis.

The critical current associated with a weak link is af-
fected by the presence of a magnetic field. When the
magnetic field is applied parallel to the tape axis, the
critical current was calculated by Bulaevskii et at. If the
magnetic field is parallel to the c axis, however, vortices
are nucleated inside the grains and the above described
vortex fluctuation mechanism applies for intergrain crit-
ical current.

At low temperatures, we can neglect the eKect of ther-
mal distortions and consider the efI'ect of pinning only.
The strongest pinning mechanism is provided by the in-
tergrain a- and b-axis tilt boundaries (oriented perpen-
dicular to the ab planes). The electron density and, cor-
respondingly, the superconducting order parameter are
supressed at such a boundary because the tilting of the
CuOq planes destroys the covalent bonds there. Vortices
are strongly trapped by these a- and 6-axis tilt bound-
aries. These boundaries determine the position of the
vortex lattice inside the grains. At c-axis twist bound-
aries (parallel to the ab planes) the vortex lines jump
from one arrangement in the top grain to another in the
bottom grain (forming a piece of Josephson vortex inside
the boundary). The shift of pancakes along the vortex
line at a c-axis boundary u is random. In strong magnetic
fields B )) H, i ~ we have u & l, where l = QC p/B is
the intervortex distance. We assume that the statistical
distribution of u is a Gaussian with standard deviation
of the order of the intervortex distance:

where v = 7r/4b and Bp = max(C'p/L, C'p/Ag ). For
tapes and not very perfect films we can assume that L (
A j and Eq. (5.4) provides the final result with Bp
C'p/L . The perfect films seems to behave more like single
crystal. For them we can assume that A~ is close to AJ
and AJ & L. Then j,(B) should be determined self-
consistently because A~ depends on j,(B), see Eq. (5.3).
The final result for perfect films is:

j.(B)
j (o)

8 'A'Dj. (0)
""' '

cBSL (5.5)

10

10

C Ref. 2

Ref. 25

Experimental data for films and tapes is shown in Fig. 6
for a BiqSr2CaqCusOip tape at 20 K (Ref. 4) and for a
Bi2Sr2CaCu208 films at various temperatures. The
data for tape is well described by Eq. (5.4) with cr 0.3,
i.e. , b = 2 —2.5. For films, Eq. (5.5) fits the data with
approximately the same v. For low fields, B (( nCO,
the results (4.7) and (4.8) can be used but now uo is
determined by including also the electromagnetic contri-
bution in eg, which becomes important in the case of
large AJ. Hence, in the low-field limit, the field depen-
dence of the critical current is approximatly linear and a
crossover from Eq. (5.4) to a linear dependence occurs at
B Con.

bB f bBu2
p(u) = exp ~—

irido g @o ) (5.1) 10~
0.001 0.0 I 10

where 6 is of order unity. We consider fields B )) neo,
where n is the concentration of pinning centers in a layer
(if B « n@p the dispersion does not depend on B) The.
final result for the intergrain critical current is

I"IG. 6. Low temperature magnetic field dependence of
the critical current in a Bi2Sr2Ca2Cu30qo tape (Ref. 4) and
a Bi2SrqCaCu208 film (Ref. 26) for H

~~
c.
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Thermal disorder affects the critical current along the
c axis via the same mechanism at work in single crystals.
The main difference is that in tapes the weaker intergrain
Josephson coupling rather than the interlayer Josephson
coupling limits the critical current. Also, the grains have
a finite length in the ab plane. The coupling between the
vortices across a c-axis grain boundary is mostly electro-
magnetic in origin, and therefore we use the same expres-
sion as in single crystal for Sp(p) but in the expression
for c44, Eq. (3.2), we neglect the first two terms and re-
place Ag by L in the lower cutoff for the summation over
k. The order of magnitude of the critical current in this
approximation is

jz 32~ BTA b(T) ln[L/A~b(T)] C'o

jo sCos In[1/(Kps)]
'

A b

(5.6)

This is clearly a lower limit for the critical current, since
we have assumed electromagnetic coupling between all
the layers, whereas inside the bricks, the layers are in
fact Josephson coupled. Because of the finite size of the
system, there should be no decoupling phase transition.

VI. CONCLUSION

We have identified the physical mechanism, whereby in
a Josephson-coupled system in perpendicular magnetic
field, the critical current along the c axis is reduced due
to pancake vortices misalignements. We examined the ef-
fect of thermally induced distortions as well as distortions
caused by pinning centers. We showed that their effect on
the critical current is qualitatively different. More impor-

tantly, we emphasized that within the framework of the
LD model, the anisotropy parameter p is renormalized by
the thermally induced vortex fluctuations and has to be
calculated in a self-consistent manner in the presence of
a perpendicular field. This leads to the decoupling phase
transition, the nature of which was elucidated. Applica-
tion to tapes and films was considered within the frame-
work of the brick-mall model and resonable agreement
with experimental data was obtained.

It should be emphasized that the brick-wall model has
received limited experimental verification so far. How-
ever, our conclusions regarding the critical current along
the c axis for tapes in perpendicular fields are indepen-
dent of whether the brick-wall model is an accurate de-
scription of the tapes or not. Our predictions for tapes
could be checked by direct measurements of the critical
current along the c axis. If the transfer of current along
the c axis is indeed the limiting factor, the critical cur-
rents measured along the tape axis or perpendicular to
it should be the same up to a geometrical aspect ratio:
j,/j b = D/L, and their temperature and field depen-
dences should be similar. This in turn would provide
additional support for the brick-wall model. Our results,
Eqs. (5.4) and (5.6) are also applicable to single Joseph-
son junctions made of highly anisotropic superconductors
such as Bi- and Tl-based high-T, compounds.
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