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Approximate methods for obtaining the magnetostatic mode spectrum of thin rectangular samples
have been known for some time. However, our experimental results from lithographic arrays of
submicron Permalloy particles show that these methods perform relatively poorly if the (in-plane)
applied field is not large compared to 4aM, . We present an improved method for finding the
spectrum that takes into account both the elliptical character of the mode precession and sample
edge effects. We show that the case of an infinite magnetic strip can be reduced to a one-dimensional
eigenvalue problem which we solve numerically, yielding insight into the more difBcult rectangular
case. Effects of the nonuniform demagnetization field on the spatial patterns and frequencies of the
modes are also studied.

I. INTRODUCTION

The spectrum of magnetostatic modes of magnetic par-
ticles of a particular shape are an important characteris-
tic of those particles. A number of different geometries
have been studied, and in some cases the theory provides
exact analytic results, such as in the case of a spheroid, i

an infinite slab, ~ or an infinite cylinder. s These "exact"
results make assumptions about the sample, i.e. , that
any pinning of the surface spins may be neglected, the
material is isotropic, the wavelength is large enough to
justify neglecting exchange effects, and that the sample
is uniformly magnetized and exhibits a uniform internal
demagnetization field. In the case of thin rectangular
particles things become more complicated and exact so-
lutions cannot be found even under the above assump-
tions, some of which may no longer be reasonable, such
as the uniformity of the demagnetization field and the
magnetization. One may also wish to approximately de-
termine the efFect of exchange on the spectrum. The
mode spectrum of rectangular particles has been exam-
ined by several authors4 s under a variety of approxima-
tions and assumptions. We seek here to improve in a
number of ways on their results. In the process of exam-
ining this problem, we have also generated numerically
the exact solution to a case not previously studied: the
modes of an infinite thin strip with a dc field along its
length. The general solution to this problem reduces to a
one-dimensional eigenvalue problem. The results of this
analysis give insight into the "edge efFects" which also
occur in the rectangular case. We also examine the ef-
fects of a nonuniform demagnetization field and of the
sample thickness. The main motivation for conducting
this study was to attempt to explain the resonance spec-
trum obtained from lithographically produced arrays of
submicron rectangular Permalloy particles. s As we will
show, the previously existing theories are very poor pre-

dictors of the observed spectra and can be greatly irn-
proved upon.

The previous studies can be generally grouped into two
types, the variational method and the quantized slab
method. In the variational method (see Sparks ) the
modes are approximated as the eigenfunctions of a Her-
mitian operator. Using trial functions for the modes,
approximate values for the mode frequencies can be de-
termined. This approach includes exchange effects on the
mode frequencies and provides analytic (though not ex-
act) expressions for the mode frequencies. However, it
produces errors resulting from noncircular precession of
the magnetization, edge effects (due to finite sample ge-
ometry), nonuniformity of the demagnetization field and
magnetization, and deviations of the true magnetization
pattern from the chosen trial function. The quantized
slab method (see Storey et als) uses the exact solutions
for the infinite slab of Damon and Eshbach2 and "quan-
tizes" them by taking only those solutions which have
periodicity that fits the dimensions of the sample. Since
this method starts with an exact solution, it may do
very well in cases where the edge effects are unimpor-
tant (high-order modes mainly). Some disadvantages are
no corrections for edge effects, nonuniformity of demag-
netization field or magnetization pattern, or exchange
efFects.

Our experimental results are obtained from litho-
graphic arrays of submicron Permalloy particles, hav-
ing M, = 800 G. In Fig. 1 we show the experimental
mode spectrum for a particular array consisting of ap-
proximately 105 particles each 1 pm wide, 3 pm long,
and 0.0735 pm thick. Permalloy, being a ferromagnetic
metal, is subject to additional damping mechanisms that
are due to the presence of conduction electrons. 7 How-
ever, we still obtain a relatively small linewidth of about
40 G, and there does not seem to be any reason to expect
significant deviations in the frequencies or mode charac-
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FIG. 1. Experimental data of the ferromagnetic resonance
spectrum for an array of well-separated identical rectangular
Permalloy particles. The particles are 1 pmx3 pmx0. 0735
pm and the dc Geld was applied along the 3 pm direction.
The resonances correspond to the excitation of magnetostatic
modes. Portions of the Ggure labeled x2 and x8, were am-
pliGed vertically by these factors in order to improve the res-
olution of the smaller resonances.

teristics as a result of these eKects. Another factor to
consider in metals is the skin efrect. This ean have an
influence on the coupling to the applied rf field, since it
will create a nonuniform excitation field in the sample.
Our samples are too thin for this to play an important
role however. The spacing of the particles was approx-
imately 6 pm which we believe is sufIicient for them to
behave as independent particles based on magnetization
studies as a function of particle spacing. The sample was
placed in a dc magnetic field aligned with the long axes
of the particles and excited by perpendicular pumping
with microwaves at 9.47 GHz. Qualitative comparison
of Fig. 1 with previous studies of rectangular particles
makes the determination of the mode indices reasonably
certain in this case. From symmetry considerations, only
modes with odd indices can be excited, these are the
modes which are symmetric about the center of the par-
ticle along both the length and width of the particle. The
first index, n&, represents the number of half cycles along
the length and the second, n~, is the number along the
width. The mode sequence in Fig. 1, from left to right
is (1,1), (3,1), (5,1), (7,1), etc. The corresponding se-
quence of observed resonant fields is 520, 751, 911, 1034,
1128, 1202, 1273, 1330, 1382, etc. Using the variational
method of Sparks to calculate the internal field for reso-
nance [see Sparks, Eq. (43c)], and then increasing this by
the magnitude of the dc demagnetization field, which we
will take here to be about 80 G, we obtain the sequence
1119, 1172, 1237, 1300, 1359, 1413, 1464, 1509, 1550,
etc. Note that the calculated value of the field for the
(l, l) mode is considerably too high and the spacing of
the modes is is much smaller than the experimental val-
ues. As we will show the main source of error comes from
the highly elliptical precession that occurs for our oper-
ating conditions. Ellipticity was much more moderate in

previous studies, s's e primarily done with yttrium iron
garnet (YIG) films which have a considerably smaller sat-
uration magnetization M, than does Permalloy. In these
cases the Sparks formulas work quite well.

We will now proceed with our analysis of this problem,
the theory being developed in Secs. II—V, with our most
general result for the mode frequency being given by Eq.
(46). Theory and experiment are then compared in Sec.
VI, and found to be in very good agreement.

II. INFINITE PLANE

where

F(x, y) = sin(k x) sin(k„y). (3)

We find that this magnetic pattern produces a propor-
tional magnetic field,

H = B F(x, y) sin(u)t),

H, = B,F(x, y) cos(wt).
(4)
(5)

From the assumption that the mode wavelength is long
compared to sample thickness we find

B,/A, = —4ir. (6)

The x component of the magnetization also produces
a magnetic charge distribution, which (per unit area of
film) is

o. = —SV M = —A k Scos(k x) sin(k„y) sin(cut). (7)

By calculating the corresponding field we find that the
ratio of the field to the magnetization in the x direction
is given by

B./A = —2~Sk.'/ k2+ k„'.

To obtain the time dependence we start with the gyro-
magnetic equation

M = —pM x H (9)

where p —1.76 x 10 sec G is the gyromagnetic
ratio. A small signal analysis of this equation yields the
following equations of motion:

M = —cu, M„

As a first step in our analysis we consider the case of an
infinite thin plane. The thickness 8 is considered small
enough that the magnetization is approximately constant
across the thickness of the film. We take the internal
dc field H, to lie in the plane along the y axis. The z
axis is taken to be normal to the film. The modes will
be taken to be small perturbations from the equilibrium
state in which the magnetization is everywhere parallel to
the y axis and has the constant magnitude M, . We find
this problem has a standing wave solution. The small
deviations M~ and M& for a particular mode are

M = A F(x, y) sin(u)t),

M, = A, F'(x, y) cos(~t),
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Mz = u)xMx

where

=p[ M—,B /A +H],
~, = p[ M,—B,/A, + H, ].

(»)
(13)

Ax/Az = g~z/~z ~ (15)

Thus we see that in cases where the values of cu and
wz are quite different the magnetization will precess in a
highly elliptical orbit.

These results could now be used to obtain approximate
values for the case of a rectangular film by choosing only
those solutions which are zero on the sample boundaries.
One source of error in this approximation is edge effects
which result from the fact that across the film in the 2:
direction the magnetization pattern stops abruptly at the
edges unlike the infinite plane. We will study the edge
effects by obtaining solutions to the problem of an infi-
nite thin strip of finite width. "End effects" are another
source of error which result from the nonuniformity of
the dc demagnetization field which is generated by mag-
netic poles at the sample ends. We treat this effect for a
long sample by making k& position dependent. Finally,

I

Prom these equations we obtain the time dependence in-
dicated previously with the frequency given by

(14)

and the 2; to z magnetization ratio given by

we correct for finite thickness of the sample using a vari-
ational approach similar to that used by Sparks. 4

III. INFINITE STRIP

F(x, y) = G(x) cos key. (16)

It is easier to see this if we replace cos k„y with exp ik„y.
For this complex magnetization pattern all points with
the same x value are equivalent except for a phase fac-
tor. Any field or charge distribution calculated for this
pattern must by symmetry also have this same y depen-
dence. Thus taking the real part we see that the same
must be true for the cosine distribution. This leaves us
with the one-dimensional problem of determining G(x).
To obtain the field H we first obtain the magnetic charge
from —SV M and then integrate to get the field (for
z=o):

We now consider the case of an infinite strip with the
applied field along the infinite y direction and the finite
width of the strip extending in the x direction from 0 to
W. The thickness S is assumed to be small. Solutions
are found which have the same proportional form used
previously [see Eqs. (1) and (4)] but with a different func-
tion F(x, y). The ratio of the field to magnetization in
the z direction will still be —4vr as it was previously [Eq.
(6)], all we need to do is to find magnetization patterns
for which this ratio in the x direction is also independent
of position. First we show that F still has a sinusoidal
variation in the (infinite) y direction and can therefore
be written as

H (x, y) = SA cos(key)
, dG(x')

dx
(x —x') coskyy

[(x x/) 2 + y2] 3/2

The y integral yields an expression involving the modified
Bessel function Ki and the field may be expressed as

H (x, y) = SA cos(key) OG(x),

reduces to

O(G) =
W

,, d, [G(x')l. (22)

where 0 is the integral operator

O(G) = Idx 2 ky sgn (x x )~1(k„ I

x —*'
I ) d, [G(x')].

Appropriate solutions for G(x) are therefore ones which

are eigenfunetions of the operator 0:
OG„= A„G„ (20)

and the corresponding ratios of the field to the magneti-
zation are determined by the eigenvalues

B /A =SA„, (21)

and this can be used in Eq. (12) to determine the mode
frequency. Note that in the limit of k& ~ 0 the operator

The eigenvectors and eigenvalues can be found numeri-
cally. G(x) is represented by a vector, a set of m evenly
spaced points for x from 0 to W. The operator becomes
an m x m matrix. We are mainly interested in solutions
with even symmetry because odd symmetry solutions are
hidden modes that cannot be excited except by using a
nonuniform rf field. This allows us to only consider points
from 0 to W/2, which improves the accuracy of the results
for a given limit on the size of the matrix. For the results
we presented, m was equal to 100. A standard EIspACK
(Ref. 11) routine was used to calculate the eigenvalues
and eigenvectors. Convergence of the lowest eigenvalues
was checked by changing the value of m. Modes 1 and
3 (having one and three half cycles) are shown in Pig.
2. For each case we show two values of Wk„: 0 and
100. The latter is about as far as we could reliably go
with the calculation for large k„and appears to have con-
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FIG. 3. Shows the deviation of the effective mode num-
ber, n, s, from the actual (integer) mode number, n, as a
function of longitudinal wave number for the infinite strip.
Curves from top to bottom are for transverse mode numbers
n =1, 3, and5.

FIG. 2. Transverse (x) component of the magnetization,
G(x), as a function of transverse position for the infinite strip
(full width shown). Results are given for two values of width
times longitudinal wave number, Wk~ = 0 and Wk„= 100,
as indicated. Note that for the high value of Wk„ the mode
pattern has converged to a sine function. The k„= 0 case
appears from the curvature at the center to have a lower value
of k . (a) Transverse mode number n = 1. (b) Transverse
mode number n = 3.

verged fairly well to a half or three half cycles of a sine
function. The ky

——0 ease on the other hand rises more
abruptly at the edges apparently with an ~x onset. One
can in fact show that ~x is an exact solution for the case
of a semi-infinite plane. Near the center, modes with
Wky: 0 appear broader than those with R'ky: 100

&

i.e. , the ratio of the second derivative to the amplitude is
smaller as though the wave number in the x direction had
been reduced somewhat. The corresponding eigenvalues
are also smaller. We define an "effective k vector" which
is the value of k~ which would give us the same results
for the infinite plane Eq. (8) as we obtained numerically
for the infinite strip. This can then be converted to an
"effective mode number" which is 7r/Wk~. For modes 1,

I

3, and 5 we plot this effective mode number as a function
of sky in Fig. 3. These curves asymptotically approach
the expected integral values for large k„but start about
0.265 below this value at k&

——0.
By using the effective mode number from the infinite

strip when performing the calculation for the rectangular
particle we can correct for edge effects. It is apparent
from Fig. 3 that this will have the largest effect in the
frequency of the lowest mode number (in the x direction),
and also that it will strongly effect the spacing between
mode 1 and 3, an effect that should be noticeable even in
experimental data taken at high fields where elhpticity
of the precession is not significant.

IV. NONUNIFORM DEMAGNETIZATION FIELD

In order to analyze the effects of a nonuniform demag-
netizing field we consider the case of a long rectangle with
the applied field H along the long direction. If we take
the magnetization to be uniform (a good approximation
in this case) then the demagnetizing field can be obtained
from the expression of Joseph and Schlomann. i Apply-
ing their Eqs. (16) and (17) to the present case, assuming
that the origin is at the center of the sample, we find that
the demagnetization field along the y axis is

SW SW
Hg = —4M, arctan + arctan

(L —2y) QSz + Wz + (L —2y) z (L+ 2y) QS'+ W'+ (L+ 2y)z

Since we are still assuming that S is small, the S~ appear-
ing in the square roots may be dropped. Except within
a distance of order S of the sample ends, the value of
the argument of the arctan functions will be small and

hence the arctan will approximately equal its argument.
Near the ends, the demagnetizing field rapidly increases
to —2vrM, . For applied fields which are smaller than this
there must be a point at which the total Beld becomes
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and u, as we have done previously. This correction
becomes important when the wave number in the y di-
rection starts to become comparable to the inverse thick-
ness of the sample. The key assumption that makes this
analysis possible is that we maintain the proportional-
ity between the magnetization and the field in the x and
z directions as we have had previously. This is for the
applied field along the y axis as has been our previous
assumption. For the applied field along the 2: or z axis a
similar relation is also required for the field and magne-
tization in the y direction, so that

«„=(
«. =('

1 B

[r —r'[ By
1 8

[r —r'[ Bz

(39)

(40)

Using the same approximations which Sparks4 used to
obtain his Eq. (26), we obtain

A, = —4vrQk /kf, (41)

A„= 4vr Q—k„/k~, (42)
Az = -47r(l —Q), (43)

6 =Am,
hy

——A„my,

e, =A,m„

(»)
(28)

(»)

where

Q = 1 —(1 —.-"~')/k, S (44)

where the A's are all approximate constants to be de-
termined, and the other variables are all proportional
to some function F(x, y, z). In this case, linearizing the
gyromagnetic equation [Eq. (9)] and assuming exp(i~t)
time dependence, one can obtain

Azmz = —iumx,

A m =i~m„
(30)

(31)

where A and A, are the operators which include effects
of the internal dc field H, , the exchange field, and the ac
demagnetizing field:

A. = p I
H, —DV' —M.

Bx

A, =p~ H, —DV' —M,'Bz

1 B)
r —r' x

1 B&
r —r' z

where D is the exchange constant, D = 3.15x 10 G cm
for Permalloy. As can be seen by multiplying Eqs. (30)
and (31) together, the variational expression for the fre-
quency which corresponds to Sparks4 Eq. (8) is given by

ky —— k +k (45)

VI. COMPARISON OF EXPERIMENT AND
THEORY

Equation (46), our most general result, is evaluated
and compared to our experimental data in Table I. Quite
good agreement is obtained when this final form is used
with the effective transverse mode number and effective
demagnetization field, as obtained from Figs. 3 and 5
(compare Hoor and Hexp).

Note that A + A& + A, = —4~, which is the same as for
static demagnetization factors in an ellipsoid. Note also
that for kyS (( 1, Q = kf S/2, in which case the results
above reduce to those obtained previously for the infinite
plane, see Eqs. (6) and (8). Using the above expressions
we obtain an expression for the frequency for H parallel
to the y axis:

= (pH, + ~e + pM, Az)(pH, + we + pM, Az). (46)

= (AZAz)m~m, = (Ax)m~ (Az)m, ~ (34)

where we define

(A) dr m*Am dr m*m. (35)

m = cos(kzx) cos(k„y). (36)

For this trial function we find for the exchange frequency

cu, = (—pDV' ) = pD(k + k„).
We can obtain average values for the A' s:

1 B

]r —r'[ Bx

(37)

(38)

We will naturally choose the same trial function
m, (x, y, z) for the magnetization pattern in any direction
required (x and z in the present case of Ho along y).
Surface pinning efI'ects may be important in very thin
samples, but we neglect this effect here and assume rn is
independent of z. For odd modes, with the origin at the
center of the sample, we assume the trial function

1,1
31
5,1
71
9,1
111
131
15,1
171

&x-eff

0.73
0.80
0.85
0.89
0.91
0.92
0.93
0.94
0.95

-73
-100
-102

99
-95
-91
-88
-85
-83

34
286
489
615
698
754
794
825
848

Hcor

533
766
967
1095
1200
1288
1361
1426
1479

Hexpt

520
751
911
1034
1128
1202
1273
1330
1382

TABLE I. Data for rectangular Permalloy particles, with
x, y, and z dimensions of 1 pm, 3 pm, and 0.0735 pm and
with the dc field applied along the y axis. Comparison of the
experimentally observed resonance field, H, „pt, (see Fig. 1),
with the value calculated by the infinite plane approximation,
H;„i [see Eq. (14)], and with the value obtained from the
corrected variational method, H, , [see Eq. (46)], in which we
used the effective x mode number n, ~ and the result was
increased by the magnitude of the effective demagnetization
field Hg-, ~.
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TABLE II. Data for rectangular Permalloy particles, with

x, y, and z dimensions of 0.5 pm, 1.5 pm, and 0.0735 pm
and with the dc field applied along the y axis. Comparison
of the experimentally observed resonance field, H,„pt, with
the value calculated by the infinite plane approximation, H;„p
[see Eq. (14)], and with the value obtained from the corrected
variational method, H, , [see Eq. (46)], in which we used the
effective x mode number n -,g and the result was increased
by the magnitude of the effective demagnetization field Hp, z.
Inaccuracy of H, , for the first few modes is likely due to the
nonuniformity of the magnetization caused by the low value
of the internal field for these modes. Note that the calculated
internal field, H, , + Hg-, g, is negative for the first mode.

Ay &74+

11
31
5,1
71
9,1
111

0.73
0.80
0.85
0.89
0.91
0.92

-146
-200
-204
-198
-190
-181

-946
-450
-50
201
364
476

Hcor

134
639
989
1221
1392
1515

Hexpt

372
788
1074
1255
1388
1487

TABLE III. Data for rectangular Permalloy particles,
with x, y, and z dimensions of 3 pm, 1 pm, and 0.0735 pm
and with the dc field applied along the y axis. Comparison
of the experimentally observed resonance field, H,„pt, with
the value calculated by the infinite plane approximation, H;„z
[see Eq. (14)], and with the value obtained from the corrected
variational method, H, , [see Eq. (46)], in which we used the
efFective x mode number n -,g and the result was increased
by the magnitude of the effective demagnetization field Hp-, p.

11
31
5,1

0.91
0.96
0.98

Ha-ee

-457
-456
-452

H;„g

921
993
1009

Hcor

1505
1735
1888

H,xpt

1312
1612
1775

If the microwave frequency is too low for a particular
geometry of particle it is possible for the calculation to
yield a negative value for the internal dc field H, . In such
cases, a resonance may still be observed experimentally
but shifted to a somewhat higher field due to a consider-
able amount of domain structure formed in response to
the low applied field. Such is the case for the data in
Table II taken from particles which are 0.5 pm x1.5pm
x0.0735 pm. The (1,1) mode has the lowest resonance
field and is most strongly effected; agreement improves
rapidly for the higher modes.

Other orientations of the dc field may also be used.
In Table III we have applied the field along the 1 p,m
direction of the array of 1 x 3 pm particles. Although
a number of approximations which we are using are not
particularly applicable for this orientation, we ean still
do a fair job of predicting the observed frequencies.

Table IV shows experiment and theory for the dc field
applied perpendicular to the surface of this same array
of particles. In this case we can obtain effective mode
numbers for both the 2: and y directions since these are
both orthogonal to the applied field. The demagnetiza-
tion field is much larger now than it was for the cases

Ay &A&

11
3)1
5,1
71
9,1

0.905
2.79
4.74
6.74
8.74

0.735
0.804
0.854
0.885
0.905

Hcor

12518
12287
12055
11856
11689

Hexpt

12400
12225
12034
11875
11675

where the dc field was in the plane of the film. In calcu-
lating the corrected resonance field H,~, we use the value
of the field at the center of the particle which is given
by'

Hd, ——4aM, (l —2Sy L2+ W~/vrLW). (47)

For the 1x3x0.0735 pm particles we obtain Hg
—4vrM, x 0.9507 = —9557 G. The field is relatively con-
stant in the middle of the particle, but falls off rapidly
when within a distance of about S from an edge; thus
the eifective demagnetization field will be slightly lower
in magnitude than the value obtained above and may
also depend on which mode is being excited.

VII. CONCLUSION

We have discussed in detail a number of factors which
influence the frequency and mode pattern for rectangular
ferromagnetic particles. This work includes the theoret-
ical behavior of an infinite strip of finite width and neg-
ligible thickness which has not been studied previously.
We have discussed the effects of finite length and the as-
sociated nonuniform demagnetization field, which leads
to a position dependent wave number for the mode along
this direction. We have also studied the effects of finite
thick'ness using a variational approach similar to one used
previous by Sparks. 4 Our most general theoretical result
given in Eq. (46) gives very good agreement with our
experimental results as was shown in Sec. VI.
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TABLE IV. Data for rectangular Permalloy particles,
with x, y, and z dimensions of 1 pm, 3 pm, and 0.0735 pm
and with the dc field applied along the z axis. Comparison of
the experimentally observed resonance field, H, xpt, with the
value obtained from the corrected variational method, H, ,
[see Eq. (46)], in which we used the efFective 2: and y mode
numbers, n p and ny, p, and the result was increased by
the magnitude of the demagnetization field at the center of
the particle, Hg ——9557 G.
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