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T. Barnes
Physics Division and Center for Computationally Intensive Physics,
Oak Ridge National Laboratory, Oak Ridge, Tennessee 87882-6878;

and Department of Physics, University of Tennessee, Knoxville, Tennessee 97996 igOO-

M. D. Kovarik
Physics Division and Center for Computationa/ly Intensive Physics,
Oak Ridge Nationa/ Laboratory, Oak Ridge, Tennessee 87882-6878;

Department of Physics, University of Tennessee, Knoxville, Tennessee 87996 1200;-
and University of Tennessee Computing Center, Knoxville, Tennessee 87996 OMO-

(Received 24 April 1992)

We present Monte Carlo results for the band structure of the lowest-lying S« ——
2 one-hole band

in the t-J model on 4 x 4 and 6 x 6 lattices. In this paper we report measurements for all k states
in the small t/J regime 0 & t/J & 0.2, and extrapolate to 0 & t/J & 0.5. Our results support
the conjecture that the linear-t component of the bandwidth at small t/J vanishes as r/L in the
bulk limit, as was anticipated on theoretical grounds; this implies that the propagation of isolated
holes is strongly hindered by the staggered magnetization of the ground state. For this initial study
we used a very simple trial wave function for importance sampling; it should be possible to obtain
comparably accurate Monte Carlo results for band structure at appreciably larger t/ J with improved
importance sampling.

I. INTR, ODUCTION

The t-J model, which is the two-dimensional Heisen-
berg antiferromagnet on a square lattice with a hop-
ping term, has attracted considerable interest as a candi-
date model of high-temperature superconductivity. This
model, defined by the Hamiltonian

H= t ) (ct c—, +Hc)+J) (S, S, —4nn ),
) (ij)

incorporates the large antiferromagnetic interaction
present in the copper-oxygen planes and allows hole hop-
ping if vacancies are present. Since the high-T, materi-
als become superconductors with moderate hole doping
away from half-filling, the t-J model should also exhibit
this behavior if it incorporates the relevant dynamics and
interactions.

There have been suggestions in the literature that
the model may be unphysical, as hole condensation
may not stop with pairs but instead may lead to phase
separation. This apparently does occur for suKciently
small t/J, but the phase diagram of the t Jmodel for-
larger t/J is problematical. Recently this suggestion of
hole phase separation for all t/ J has been disputed. Evi-
dence for a transition from the separated phase at moder-
ate t/J, derived from high-temperature expansions, has
been presented by Putikka, Luchini, and Rice. The es-
timated phase boundary is at t/J —0.8 near half-filling,
which decreases to t/J —0.3 as the filling fraction ap-
proaches zero. Additional evidence against phase sep-
aration at moderate t/J has come from studies of the
Hubbard model by Moreo, Scalapino, and Dagotto and
Dagotto et a/. These references find no evidence for

phase separation in the two-dimensional Hubbard model
at moderately large U/t, and conclude that the t Jmodel-
probably does not phase separate for t/J + 1. As the
high-temperature superconductor parameter values are
t 0.5 eV and J = 0.125 eV, so that t/J 3, the tJ-
model with CuOs parameters may give a more realistic
description of the superconductors than was indicated by
previous suggestions of phase separation.

Although numerical studies of the t Jmodel -on large
lattices could in principle establish the phase diagram, it
has unfortunately proven difficult to study the t Jmodel-
on large lattices using numerical techniques. The large
Hilbert space has restricted Lanczos investigations to at
most 18 (Refs. 7 and 8) or 20 (Ref. 9) sites, and the ma-
jority of Lanczos studies have specialized to the relatively
small 4 x 4 lattice.

Studies of the static-hole limit on larger lattices have
been reported using spin-wave theory 9 and Monte Carlo
techniques. 2 Comparison of these results with the 4x4
case suggest that the Lanczos results may incorporate
important lattice artifacts, such as degeneracies due to
the hypercubical symmetry of the 4 x 4 lattice and large
finite-size effects.

Monte Carlo studies of the t-J model are compli-
cated by the "minus-sign problem" encountered in multi-
fermion systems in more than one space dimension. (For
a general discussion see the paper of Loh et al. s~) This
problem arises from the fact that off-diagonal matrix el-
ements of the type

(2)

can have either sign in these systems. These matrix ele-
ments are encountered for example in evolving an initial
distribution of configurations to a ground-state distribu-
tion using the operator
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e = lim ) ]n~)(n~i(I —Hh~)]n~ —i)(n —ii ini)(ni](& —H h )ino)(noi
n~ h~ =v.

or in evaluating the partition function, which is the trace
of this operator. The phases of these matrix elements
may be assigned to weight factors associated with con-
figurations generated by the algorithm, and these weights
evidently can have either sign depending on the path
8(r) the configuration follows in Hilbert space. The
weights are then used in averages in the calculation of
matrix elements, which will have considerably larger sta-
tistical errors if weights occur with both signs in compa-
rable numbers. In measuring dispersion relations using
Monte Carlo techniques one encounters a related diffi-
culty, which is that the matrix elements [Eq. (2)] between
momentum eigenstates are in general complex, and so the
"minus-sign problem" generalizes to a "complex phase
problem. " Despite these difficulties, recent Monte Carlo
studies have found it possible to extract useful results for
several systems which have minus-sign problems. These
include the energy of the one-hole ground state in the t J-
model~s (which requires negative weights) and the dis-
persion relation of the spin-1 Heisenberg chain~ (which
requires complex weights).

In this paper we show that the problem of determining
t-J model dispersion relations using a Monte Carlo tech-
nique can be solved formally using complex weights. Al-
though cancellations between weights do lead to a consid-
erable increase in the statistical noise relative to Heisen-
berg model simulations in practice, one may nonetheless
obtain interesting results for one-hole band structure us-
ing currently available computing facilities.

II. METHOD

For our simulations we employ the "guided ran-
dom walk" (GRW) algorithm, which was introduced by
Barnes, Daniell, and Storey25 as a method for Hamil-
tonian lattice gauge theory, and has since been gener-
alized to discrete degrees of freedom; applications
include U(1) lattice gauge theory, 2s multiquark systems
in the nonrelativistic quark model, the Heisenberg
antiferromagnet, and the t-J, model. The
GRW algorithm is unlike GFMC in that it does not use
a fluctuating population of "walkers, " but instead gen-
erates a single unbranched random walk and associates
a path-dependent weight factor with that walk. The
weights of many such walks are then used in averages
to determine energies, as we shall discuss. The weights
can also be used in a straightforward manner to give
unbiased ]@0] -weighted ground-state matrix elements, s

which is a difficult problem for some algorithms. (See
Barnes and Manousakis for reviews of this and other
algorithms used in studies of the Heisenberg model. )

In the GRW algorithm one generates a random walk
in Hilbert space, in which the path followed by the con-
figuration is parametrized by the Euclidean time w. One
begins the random walk at w = 0 with a chosen initial
configuration [which in our case is a hole at (0,0) in a
Neel state], and increments the Euclidean time in steps

I

of hr. After each time step the walk has the option of
making a transition from the current configuration 8(r)
to a new configuration 8'(r) with probability

P(S ~ 8') = rss~ h~, (4)

where the stepping-rate matrix rgg is

4', (8')
rss = —(8 ]Ha]S)

0
(5)

after the 8 —+ 8' transition is attempted, the Euclidean
time is incremented to ~ + h, and the process is re-
peated. In these formulas Hi is the off-diagonal part
of the Hamiltonian, H0 is the diagonal part (here the
"Ising energy" Jp~, l(S;. 8' —n, n~/4), and 40g(8) is an
approximate ground-state wave function which is used
by the algorithm for importance sampling; the definition
of rss [Eq. (5)] implies that the walks preferentially ex-
plore regions where i@0g

i
is large. One calculates a weight

factor associated with each walk, which is

w(x, ) = exp(eP) exp (—
7 l

Hp 8 ~ — rgg d~

One may therefore determine energies from the average
weight at two Euclidean times,

/Qes™= ljm ln ~ 7-] ~ 7-2 7-2 —~y
Tl )VQ ~OO

In practice there are biases due to the use of a finite
sample of walks, a finite Euclidean step size h, and finite
measurement times ri and rq, and one must be careful to
establish that these systematic errors are within required
limits.

The weight phase exp(iP) is the phase of the product
of ( Hi) matrix ele—ments encountered in all transitions
executed by the walk:

exp(iP) =
e

s s'
transitions

(8']Hr ]8)—
—(S'i' iS)

In problems such as the determination of the ground-
state energy of the Heisenberg antiferromagnet we mini-
mize statistical errors by choosing our basis (]8)) so this
phase is always +1, which requires that all nonzero oK-
diagonal Hamiltonian matrix elements be negative. In
the t-J model with a z-diagonal spin basis this is not

This weight factor is a function of the path 8(r) followed
by the walk, and in general has an overall phase exp(iP).
When averaged over random walks the weight asymp-
totically approaches an exponential in the ground-state
energy,

lim (ui(r)) = c exp( —EQr) .
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possible in general, and in any case we must introduce
complex basis phases to extract dispersion relations.

To motivate our choice of basis phases, first consider
a zeroth-order set of one-hole basis states {l8)6j defined
by applying a site-ordered string of fermion operators
ct, to the vacuum. For example, our initial Neel-and-
hole state on the 4 x 4 lattice, with the hole at site 1,
xg = (0, 0), is

(o, o)), = c2 3+ 4 5 ~ ~ ~ is+ lo)
t t (1o)

T(xh =x) pr(0, 0))6 =c, c4+c', c,' " c'„+lO)
t t t t= (—1)ci c3 c4+ 5+ ' ' 16—Io)

= (—1)l~(1 o))6 (12)

Similarly, the k = (0, 0) Neel-and-hole basis state with
hole location (n, n„) is

(Our sites are labeled as in Fig. 1 of Dagotto et aLis) The
phases of this basis are inappropriate for Monte Carlo
simulations of the Heisenberg antiferromagnet, since ev-
ery spin flip has a positive HI matrix element and hence
induces a change in sign of the weight factor. The solu-
tion of this problem is well known, and is to introduce
a new basis set (l8)i j with overall phases of (—1)
where NsF is the number of spin flips required to reach
the basis state starting from a reference Neel state. In our
one-hole problem this specifies the relative phases within
each subset of one-hole basis states (l8, xg) j that share
the same hole location xh, . Note, however, that we are
still free to specify the overall phase of each of these basis
subsets. It is this freedom that allows us to extract the
dispersion relation for the hole, since this relative phase
is determined by the total momentum of the state.

Momentum eigenstates are defined by their behavior
under translations; a translation of a state of momentum
k by a returns the same state with a k-dependent phase,

T(a) lk) = e '" lk) .

We use this property of momentum eigenstates to choose
our basis phases so that all states with momenta other
than a specified k are projected out in the sum over final
hole sites, this sum being implicit in the calculation of the
average weight (tu) in (7). Specifically, we use as our basis
states translations of states with the hole at the origin,
with a multiplicative phase factor of exp(+ik aj. For
example, to extract k = (0, 0) energies, the basis state
corresponding to a Neel-and-hole state with the hole at
xh, = (1,0) is taken to be the pure translated state TlJV)6,

exp(+ik x) T(n x+ n„y) lA(0, 0))p

= exp[+i(k n + k„n„)](—1)" lJV(n, n„))c . (14)

Previously we specified the relative phases within each
fixed-hole-location subbasis (l8, xh) j by the Heisenberg-
model (—1) ' rule. As we have now specified the rela-
tive phases of each of these subbases by (14), the relative
phases of all basis states are now determined.

The weight-factor phase [Eq. (9)] equals the phase of
the product of —Hh~~ matrix elements [Eq. (1)] between
the basis states [Eq. (14)], where the product runs over
all hole hops which the random walk has allowed. (We
have chosen our phases so spin flips do not change the
phase [Eq. (9)]; only hole hops remain as nontrivial HI—
terms in (9).) Inspection of (10) and (14) shows that
fermion operator ordering introduces an additional factor
of (—1) in the matrix element of ( HI) fo—r each hole
hop in the +y directions. This factor combined with
the phase multiplying (14) gives the total weight-factor
phase exp(iP) we use in (6) and (8) to determine the hole
dispersion relation.

As this definition of phases is somewhat complicated, it
may be useful to specify the resulting rule for the weight-
factor phase exp(iP) in (6) operationally: (i) spin Hips
have no effect on the phase; (ii) under a hole hop, the
phase of the weight changes by a factor of

eiAQ ( 1)&
—ik Axh,

( 1)DNsF

The overall (—1) is the product of the intrinsic (—1) in
(13) encountered in translating the "zeroth-order" basis
states such as (10) by +x times the operator-ordering
phase (—1) encountered for hole hops along +y; their
combined effect is a (—1) for every hole hop. The second
factor is due to the exp(ik xg) present in a momentum
eigenstate. The third factor is the Heisenberg minus sign
which ensures that spin flips never change the sign of the
weight. All these may simply be evaluated as an overall
phase factor of

sip(k) ( I)Nhop 6
—ik [xg (f)—x&(i)) ( I)ANsF (16)

at the end of each walk (at ~i or 72); note that the first
two phase factors on the right-hand side depend only
on the initial and final configurations, not on the path
followed. The average weight and resulting energy for
each momentum can then be calculated using (6), (8),
and (16) for each k. Note that the energies for all mo-
menta are determined concurrently by evaluating average
weights with difFerent end-point factors of exp[i/(k)].

T(nsx+ nay) lb'(0, 0))6 ——(—1)" lJV(ns, n„))6 . (13)

(The factor of (—1)" in (13) is induced by the ordering
convention [Eq. (10)] used to define the (lid) 6j basis. ) In
contrast, to extract general k states we use basis states
with plane-wave phases, so that all states with K g k
arq eliminated in the average over final hole locations
because Q„„exp(i(k —K) xi, j vanishes unless K = k.
The required Neel-and-hole basis states with general k
and hole location (ns, n„) are

III. RESULTS AND DISCUSSION

In our simulations we studied the spectrum of single-
hole states on 4 x 4 and 6 x 6 lattices. I anczos results
are known for the 4 x 4 lattice, which served as a test
case. For our initial configuration we used a Neel state
with a hole at the origin. First, to confirm that the al-
gorithm gives correct results we generated 4 x 4 energies
for the six independent momenta at small t/J values of
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2.50

(0,0)

2.40

e (k)/J

2.30
(O, n/2)

2.20

0.05 0.1

i/J
0.15

(ir/2, n/2), (ir, 0)
(ir, It)

(K, it/2)

0.2

FIG. 1. Lanczos and Monte Carlo results for the S~ ~
——

1/2 one-hole band on the 4 x 4 lattice.

0.0, 0.025, 0.05, 0.075, and 0.10. For importance sampling
we used a simple trial wave function of the form

(17)

and an optimum parameter value of ( = 0.56 was
found by minimizing the variance of weight-factor mod-
uli. (This is slightly larger than the value used in previous
static-hole simulations. ) After some numerical tests we
chose to set ri = 6.0, r2 = 7.0, and h = 0.025/L (the
Euclidean times and Ii are given in units of J ), and
we generated samples of 2~2 random walks for each value
of t/J. The average weights (tII(ri)) and (tI/(r2)) are in
general complex numbers, but as only the overall time
dependence is relevant to the energy we used the modu-
lus of the average weight ~(tU(r))~ in (8). The resulting
one-hole band is shown together with I anczos results in
Fig. 1 and Table I; evidently, the results are numerically

consistent. [Actually we added (vr, m) to all the momenta
before displaying the energies in the figures and tables,
to change the definition of momentum to that of Refs. 12
and 18, and will use their convention in our subsequent
discussion. The weight phases described in the text cor-
respond to the momentum conventions of Refs. 7 and
10.] Our results are also consistent with the known de-
generacy of the (vr/2, x/2) and (m, 0) multiplets, which is
due to a higher symmetry of the 4 x 4 lattice and is not
trivially realized in the Monte Carlo simulation.

Inspection of the weight-factor variance shows that the
energy errors increase by about a factor of 3 with each
step of A(t/J) = 0.05, given these parameters and the
simple trial wave function [Eq. (17)]. Since the errors
decrease as 1/QNRw, to maintain the small statistical
errors in Table I we must increase the sample of walks by
about a factor of 2s for each step of 6(t/ J) = 0.05. This
is illustrated by the t/ J = 0.15 points, which are averages
of 2 walks and in consequence have errors comparable
to the t/J = 0.10 points with NRw = 2 . For the fi-

nal measurements at t/J = 0.20 we again generated 22s

walks, and the anticipated increase in error by approx-
imately a factor of 3 relative to t/J = 0.15 is evident.
For most levels the error is still relatively small, +0.005
to +0.012, but for the worst case of k = (0, 0) we find
a large error of about +0.05. We emphasize that the
rapid growth of statistical errors with t/J is due to the
large Euclidean measurement time v.

q used in these simu-
lations. This large v~ is required to remove excited-state
contributions from the very simple trial wave function
(17) used in this initial study. Improved Heisenberg-
model wave functions with long-range correlations have
been described in the literature (see, for example, Sec.
III E of the review by Manousakis and papers by Liang,
Doucot, and Anderson, ss and Dagotto and Schrieffer ),

TABLE I. Lanczos and Monte Carlo results for the lowest-lying 8« ——1/2 one-hole band on the 4 x 4 lattice; we display
eh, (k)/J = (EI„(k) —Eo)/J at each independent momentum vs t/ J

0.025 0.050 0.075 0.100 0.150 0.200

k = (0, 0)

(7I./2, 0)

2.36331
2.3631(8)

2.35456
2.3543(6)

2.37779
2.3754(19)

2.35765
2.3566(18)

2.39200
2.3958(40)

2.35780
2.3573(18)

2.40593
2.4064(11)

2.35502
2.3517(49)

2.43291
2.4397(109)

2.34077
2.3402(54)

2.45864
2.5291(531)

2.31538
2.3030(118)

(vr, 0) 2.34670
2.3463(6)

2.34112
2.3412(15)

2.33189
2.3300(34)

2.31911
2.3195(21)

2.28341
2.2895(31)

2,23529
2.2436(100)

(z /2, m. /2) 2.34670
2.3468(6)

2.34112
2.3418(6)

2.33189
2.3309(14)

2.31911
2.3214(22)

2.28341
2.2863(36)

2.23529
2.2302(62)

(7r, vr/2) 2.33970
2.3393(4)

2.32804
2.3296(12)

2.31367
2.3111(15)

2.29670
2.2946(29)

2.25540
2.2590(32)

2.20513
2.2030(49)

2.33355
2.3331(7)

2.31829
2.3187(12)

2.30277
2.3007(21)

2.28700
2.2859 (50)

2.25472
2.2576 (23)

2.22145
2.2232(85)
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and by incorporating such an improved wave function
we anticipate that a much shorter evolution in Euclidean
time will give comparably accurate results. As these will
experience fewer hole hops, and hence smaller rotations
of the weight phase, the "minus-sign problem" will be
considerably reduced.

Although no numerical results have previously ap-
peared for the t Jm-odel bandwidth on lattices larger
than 20 sites, there are theoretical arguments that the
one-hole band structure at small t/J should depend
strongly on the lattice size. s is s7 Perturbation theory in
the hopping parameteris is s7 finds that the s mall-t/ J
dispersion relation is

e~(k, t) = eh, (t = 0)+Z 2t [cos(k )+cos(k„)]+O(t /J),

16n i (1 + nz )
V4 =— (22)

4(1 —nz)z
V5 =—

where

o! = ——-Ap + 20!y + A23 9
2 2 (24)

In our fits to numerical results we do not impose the
constraint but instead treat all five coefficients (v,}as
free parameters.

First, we consider the 4 x 4 case; the values of the
coefficients are found from Lanczos data to be

(18) vi ——2.3486, (25)

+ v3 cos k~ + cos k„

(tl'
+vs (cos (k, ) cos(ks)] + vs j

(19)

There is a relation between the coefficients (v;} in
O(t /J) perturbation theory, which is implicit in their
definition in terms of the (n, }of Dagotto eg al

v2 = 2Z~ = —20,'p ) (2o)

8(n~i + ng)
V3 =—

A
(21)

where Z~ is a bandwidth renormalization; the small-t/ J
bandwidth is W = Z~8t. Z~ = +1 for a free fermion
on the lattice, and for the hole it is a function of both
St~q and L, and involves an overlap of initial and fi-
nal spin wave functions. s7 It has been suggested that
this bandwidth renormalization is actually zero in the
bulk limit, although probably only for low-spin statess7
(St~t,/L ~ 0), because the staggered-magnetized spin
background reduces the overlap between one-hop initial
and final spin states to zero. This effect has also been at-
tributed to a dimerization of the lattice by the staggered
magnetization in the bulk limit, s which reduces the size
of the effective Brillouin zone and leads to degeneracies
between levels with momenta that difFer by (vr, vr) This.
implies Z~ = 0, so the bulk-limit bandwidth at leading
order in the hopping parameter expansion is O(tz/ J).
At large but finite L, simple arguments involving the
spin-wave gap (which vanishes (x 1/Lz) and degeneracies
expected at the supersymmetric points" ss (t/J = 1/2)
lead one to expect that Z~ for the low-spin states should
approach zero as K/Lz.

One-hole band structure at second order in the hopping
parameter has been discussed by Dagotto et at. ,

is who
obtained a general three-parameter form for the O(t /J)
one-hole dispersion relation. Their Eq. (20) is equivalent
to the form

eh, (k, t)/J = vi + vz [cos(k ) + cos(k„)]
(tl

v2 ——0.2976, (26)

v3 ——0.6950,

v4 ——1.390, (28)

v5 ———2.990 . (29)

Note in particular the linear-t bandwidth narrowing rel-
ative to the free-fermion value,

Z~(4 x 4) = vi/2 = 0.1488,

and the exact relation on the 4 x 4 lattice,

(30)

(tz )
eh, (vr, 0) —eh, (a/2, x/2) = (2 vs —v4)

~
(32)

To study one-hole band structure on the 6 x 6 lattice we
generated Monte Carlo energies for the ten independent
momentum levels using the same parameters and trial
wave function as in the 4 x 4 simulation. We measured
energies at t/ J = 0.0, 0.025, 0.050, 0.075, and 0.10, with
2zs walks at each t/ J value. The 6 x 6 Heisenberg model
ground-state energy with the same Monte Carlo param-
eters was found to be Eo ———24.4406 + 0.0010, which
is consistent with our previous Monte Carlo result2 and
with the recent Lanczos result of Schulz and Ziman,
Ep = —24.4394. In the 6 x 6 one-hole systems, however,
we found somewhat slower convergence of Monte Carlo
energies with Euclidean time, and in the static-hole case
we estimate the resulting bias due to running at wq ——6
to be AE —+0.023. We have added this systematic cor-
rection to our measured energies, and the resulting final
estimates are given ivith statistical errors only in Table
II. The uncertainty in this bias is about +0.005, which
is somewhat larger than the statistical errors of most of
the 6 x 6 one-hole energies. Thus our errors are domi-
nantly systematic rather than statistical. To provide a

2v3 =v4 )

which is a result of the degeneracy between (vr, 0) and
(a/2, z/2) levels on this lattice, since, to O(tz/J),
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TABLE II. Monte Carlo results for the lowest-lying St t,
——1/2 one-hole band on the 6 x 6 lattice; we display ez(k)/ J at

each independent momentum vs t/ J T.he quoted errors are statistical only; there is an overall systematic uncertainty of about
+0.005 (see text for discussion).

0.025 0.050 0.075 0.100

k = (0, 0)

(n /3, 0)

(27r/3, 0)

(m/3, 1r/3)

(27r/3, 7r/3)

(x, ~/3)

(2~/3, 2~/3)

(7r, 27r/3)

—23.179(2)

—23.182(2)

—23.186(1)

—23.187(1)

—23.184(2)

—23.188(1)

-23.188(1)

—23.190(1)

—23.190(1)

—23.190(2)

—23.171(4)

—23.177(3)

—23.185(2)

—23.186(3)

—23.184(3)

—23.190(3)

—23.191(3)

—23.195(3)

—23.195(3)

—23.194(3)

—23.162(5)

—23.179(3)

—23.196(3)

—23.197(3)

—23.190(3)

—23.203(4)

—23.205(3)

—23.211(4)

—23.209 (4)

—23.210(5)

—23.150(18)

—23.181(11)

—23.212(5)

—23.215(8)

—23.199(7)

—23.213(5)

—23.216(3)

—23.222(4)

—23.221(3)

—23.203(5)

vi ———23.185, (33)

-23. 1

E (IK)/J

-23.2

-23.3 (3, 1)
- (2, 1)(2,2)

-23.4

0.05 0. 1 0.15

FIG. 2. Monte Carlo results for three 6 x 6 levels and
fitted curves for all levels. (n, n„) denotes momentum
(n m. /3, n„vr/3); only (0,0), (1,1), and (2,2) data points are
displayed.

parametrization of the 6 x 6 band and to extrapolate to
larger t/J we carried out a least-squares fft of the 6 x 6
data to the O(t /J) hopping parameter expansion [Eq.
(19)]. Our results are presented in Table II and Fig. 2.
The 4 x 4 (Fig. 1) and 6 x 6 (Fig. 2) bands are plotted on
the same scale; comparison of these figures clearly shows
evidence for band narrowing on the larger lattice. To
avoid confusion in Fig. 2 we show Monte Carlo results
only for three representative levels, which in order of in-
creasing energy are (2m/3, 2m/3), (vr/3, vr/3), and (0, 0);
the latter generally has the largest statistical errors. We
also show the fitted band energies [Eq. (19)] for all levels.
The fitted coefficients (v;j are

vg ——0.122 ) (34)

v3 = 1.23 ) (35)

v4 = 1.21

v5 ———3.54, (37)

Z (6 x 6) = 0.061, (38)

and so the linear-t hole bandwidth on the 6 x 6 lattice
with St t ——1/2 is about a factor of 20 smaller than for

(We have not subtracted the imprecisely known 6 x 6
static hole energy Eoh, from vi in this case. ) It is diffi-
cult to estimate the total error in these coefIicients, since
(E(k)) values determined from a single set of walks are
highly correlated. As noted above, the f/J = 0 inter-
cept vq has a systematic uncertainty of about +0.005.
We have attempted to estimate the uncertainty in the
remaining coefFicients both by modifying the details of
the fit and by comparing with the 4 x 4 case; this sug-
gests that the msall-t/ Jbandwidth coefficients vz is un-
certain by about +0.01. The second-order coefricients
v3 v4 and vs are much less well determined because they
are weighted by the small quantity (t/ J); these have es-
timated uncertainties of = 20'%%uo.

The linear-t bandwidth coefficient V2 [Eq. (34)] has ev-
idently decreased to about 0.4 of its value on the 4 x 4
lattice [Eq. (26)). In comparison, the arguments that it
approaches zero as K/Lz lead us to expect a value about
4/9 as large as the 4 x 4 coefficient, which is consistent
with our Monte Carlo results at present accuracy. The
fitted bandwidth renormalization on the 6 x 6 lattice is
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a free fermion with the same hopping parameter. Our
numerical results clearly support the conjecture that the
linear-t component of the one-hole bandwidth vanishes
in the bulk limit.

Assuming that the fitted higher-order coefficients are
approximately correct, we see that the eKect of increased
lattice size is primarily to increase the coefficient v3. This
lifts the degeneracy of (vr, 0) and (m/2, vr/2) levels found
on the 4 x 4 lattice, and (m/2, 7r/2) becomes the lower
level. [Of course the 6 x 6 lattice has no (m /2, m/2) state;
this conclusion applies to 4n x 4n lattices. ]

We find that the hopping-parameter expansion [Eq.
(19)]with numerically determined coefficients [Eqs. (25)—
(29)] gives a qualitatively correct picture of the 4 x 4 band
to t/J ~ 0.5. It may therefore be of interest to present
our extrapolated results for the 6 x 6 band for comparison
with future Monte Carlo studies. Our result [Eq. (19)]
with fitted coefficients [Eqs. (33)—(37)] is shown in Fig. 3
for the range 0 & t/ J & 0.5. Since the small-t/ J behavior
is not evident in this figure, we shall briefly summarize
the sequence of ground-state levels. The (7r, m.) level is
the 6 x 6 ground state for 0.0 & t/J & 0.04; near t/J =
0.04 the (2'/3, 7r) and (2m /3, 2n /3) levels cross the (x, vr),
and (2m/3, vr) may be the lowest level for a short interval
near t/J = 0.04. The (27r/3, 2vr/3) is the 6 x 6 ground
state for 0.05 & t/J & 0.20, where it crosses (2'/3, m/3),
which presumably remains the ground state until large
t/ J values are reached and the transition to the Nagaoka
state begins. This (2n/3, vr/3) level is expected to be the
6 x 6 ground state at moderate t/J because it is closest in
energy to the (m/2, m/2) minimum of the O(tz/J) terms
in (19).

As a result of the simple importance sampling (17)
used here, we cannot at present resolve band structure
at appreciably larger values of t/ J, but we anticipate that
this will be possible given an improved trial wave func-
tion. This has been demonstrated by Boninsegni and
Manousakis, 2s who used a trial wave function with long-
range correlations in a similar Monte Carlo algorithm
and were able to follow the (z/2, m/2) one-hole level to
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FIG. 3. 6 x 6 t-J band structure from extrapolated Monte
Carlo data (n, n„) denotes momentum (n m /3, n„n /3).

t/J = 5 on large lattices. The advantage of using a more
accurate spin-wave function is that convergence to the
ground state to a specified accuracy occurs at a smaller
Euclidean time, in which fewer hole hops take place. In
consequence one may carry out Monte Carlo measure-
ments at appreciably larger values of t/J. In future we
plan to extend our Monte Carlo study of band structure
in the t Jmod-el to values relevant to the superconduc-
tors through the incorporation of similar improved im-
portance sampling.
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