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Effect of itinerant electron polarization and crystal fields upon the paramagnetism
of metallic samarium compounds
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It is shown how to calculate the simultaneous eff'ects of crystal fields, itinerant electron polarization,
and interionic interactions treated in the mean-field approximation upon the paramagnetic properties of
metallic samarium compounds. Expressions are derived for the paramagnetic susceptibility, the
hyperfine fields, and the gyromagnetic ratio. The application of these results to the paramagnetic sus-
ceptibility of single-crystal SmRh4B4 is discussed.

INTRODUCTION

The magnetization of a metallic rare earth compound
may, when the rare earth is in a well-defined valence
state, be divided conceptually into the magnetization as-
sociated with the 4f shell and that associated with the
itinerant electrons. In cases where there is no mixed
valence behavior or Kondo effect these two systems are
weakly coupled together, the leading term of the cou-
pling' being the isotropic exchange interaction of the
form 2I(q)S.s—where S is the spin of the rare earth and
s the spin of an itinerant electron. I (q) is the strength of
the interaction, q being the change in wave vector of the
scattered itinerant electron.

This interaction has two effects. The first one, which
occurs in first-order perturbation theory ' is to increase
the magnetic moment associated with each 4f shell. This
occurs in two stages: first there arises the electronic
analogue of the nuclear Knight shift which acts to in-
crease the magnetic polarization of the rare earth ion if it
is not already in saturation. Second, the rare earth ion
induces a cloud of polarized itinerant electrons localized
around it that adds to its moment. For normal tripositive
rare earths the resulting change of moment is rather
small, usually less than 10%, although there are excep-
tions such as the RCo2 compounds in which the changes
are much larger. There is, in addition, the magnetiza-
tion associated with the Pauli susceptibility and the Lan-
dau and core diamagnetism, lumped together as gMH
where yM is the matrix susceptibility and H the applied
field.

The second effect of the exchange interaction is the
Ruderman-Kittel-Kasuya- Yosida (RKKY) coupling '

between different ions that arises in second-order pertur-
bation theory. This gives rise to an effective interaction
of the form —A,"S,.S between the 4f spins i and j. The
strength A,J of the effective interaction depends on I(q)
and on the properties of the itinerant elections. This
effective interaction can give rise to magnetic ordering of
the 4f moments.

The third important inhuence in these materials is
crystal fields. These admix and split the degenerate ener-

gy levels of the free-ion 4f shell by typically 100 K. In
the paramagnetic state the two effects of the itinerant
electrons may be treated as a perturbation upon the states
of the 4f shell that are the eigenstates of the free-ion
Hamiltonian plus the crystal field Hamiltonian.

The tripositive samarium ion has an unusual electronic
structure. The ground state J=—,

' multiplet level has a
Lande g factor of 2/7 and a very small paramagnetic mo-
ment of 0.845pz, resulting from antiparallel coupled
L =5, S =5/2 Russell-Saunders states. The next J =7/2
multiplet level is only 1550 K above the ground state, the
other levels are correspondingly higher. Because of this,
small perturbations, such as those resulting from
itinerant electron interactions, can have very large effects.
Similarly, the admixture by the crystal field of more
strongly magnetic excited multiplet levels into the weakly
magnetic ground state can significantly influence the
magnetic properties.

Calculations of the paramagnetic properties of samari-
um compounds have been made that take account of in-
terionic interactions treated in the mean-field approxima-
tion and thermal occupation of higher multiplet levels
but not the effects crystal fields or itinerant electron po-
larization and have been applied to SmA13. The calcula-
tions have been extended to take account of crystal fields
as well, ' and it has been demonstrated that for some
materials these have important consequences too. On the
other hand, calculations that take account of itinerant
electron polarization but not of crystal fields have shown
that very large effects of polarization can occur in some
cases. '" It has been argued' that the effect of crystal
fields upon the susceptibility of polycrystalline samples is
less than their effect upon single crystals so these calcula-
tions may be more appropriate for the former. As exam-
ples, polycrystalline elemental samarium has a Curie con-
stant that is almost four times smaller than the free-ion
value' and SmCo2 a Curie constant that is more than
eight times larger (Ref. 4), SmZn even has a moment that
is reversed in direction. ' ' It was argued that these
effects were too large to be attributed to crystal fields
alone and must be due to itinerant electron polarization.

Clearly, a convincing calculation of the paramagnetic
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properties of metallic samarium compounds must take
account of all of these effects simultaneously. The only
such one that appears to have been done to date' is by
Zhou et aI. on SmRh4B4. Unfortunately the expression
that these authors used to calculate the paramagnetic sus-
ceptibility is only approximately correct. In the present
paper the exact mean-field expressions for the paramag-
netic properties are derived, a discussion is given of the
ionic linear response to applied fields, and comparison of
theory is made with the data and fit of Zhou et al. ' for
SmRh4B4.

MEAN-FIELD EQUATIONS

The nature of the calculation that needs to be done is
as follows. In the paramagnetic regime at a temperature
T the responses of the expectation values of the operators
(S ) and (L +2S ) of the samarium 4f shell to a real ap-
plied field H and to an exchange field H,„are linear:

—(L +2S ) /p~ = AMM( T)H + AMS( T)2H,„. (l)

structure of the samarium ion, the crystal field parame-
ters and the temperature. It will be shown in the next
section that ASM ( T) = A MS( T).

The exchange field is given by H,„
Jff (S ) /pii + Ha/2. In this expression Jff

( =X' A;, where the prime indicates that the j =i term is
to be omitted) is a molecular field parameter refiecting
4f-4f coupling. This quantity comes from the RKKY
interaction and contains the off-diagonal matrix elements
of the —2I(q)S-s interaction as well as the diagonal ele-
ments. ' The quantity a represents the effect of itinerant
electron polarization upon the 4f shell. It is given by
a =2I(0)p, p being the Pauli susceptibility of the
itinerant electrons expressed in units of density of states
per atom for one spin direction. It gives rise to the elec-
tronic analogue of the nuclear Knight shift. This form of
the exchange field may be derived either from the
effective Hamiltonian of Yosida or else by calculating
self-consistently each spatial Fourier component of the
itinerant electron magnetization. '

The first step in the calculation is to substitute the ex-
pression for the exchange field into Eq. (2); this gives

—(S ) /pii = ASM(T)H+ Ass(T)2H, „. (2)

The fields H and H,„are defined by the Hamiltonian &:
(S) ASM+&Ass

p~H 1 —2Jff Ass
(4)

&=&f+& +Pg(L +2S)H +PIiS2H,„,
where &f is the Hamiltonian of the free samarium ion in-

corporating the central potential, Russell-Saunders cou-
pling and spin-orbit coupling, and &„ is the crystal field
Hamiltonian. The quantities I. and S are the operators
for the total orbital and spin angular momentum com-
ponents of the 4f shell along a particular principal axis of
the crystal. H and H,„are the real magnetic field and the
exchange field along that direction. The last two terms in
% are small perturbations in the paramagnetic regime.
The susceptibilities A„,(T) depend upon the electronic

Within the context of the model used here this is propor-
tional to the transferred hyperfine field (or Knight shift)
at the nucleus of a nonmagnetic neighboring atom.
Equation (4) is then substituted into Eq. (I) to give

(L+2S)
—p~H

(5)
AMM++AMS Jff( ASS AMM AMS )

1 —2Jff Ass

The other responses of the 4f shell may be readily ob-
tained:

and

(L +S) AMM AMs+~( AMs Ass) 2Jff(Ass AMM AMs)

pgH 1 —2Jff AsS
(6)

(L ) AMM 2AMs++( AMs 2Ass) 2Jff(Ass AMM AMs)

pgH 1 —2Jff ASS

To obtain the total susceptibility yI = —pii(L+2S)~or~L/HI per 4f atom we need to add to Eq. (5) the itinerant
electron magnetization m, that is induced by the interaction —2I(q)S.s; this is m, = —piia(S ), ' and so

AMM+2+AMS+~ ASS 2Jff( ASS AMM AMS ) XM
2

+
pa 1 —2Jff Ass pa

It is assumed throughout that the spectroscopic splitting factor g and the gyromagnetic ratio g of the itinerant elec-
trons are equal to 2. The angular momentum of the itinerant electrons is therefore" a(S)/2, and the total angular
momentum (L +S ) z is obtained by adding this to Eq. (6):

(L+S)
pgH

AMM '4Ms+ +AMs ~Ass( I +/2) 2Jff ( Ass AMM AMs ) XM+
1 2Jff ASs 2pg
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The gyromagnetic ratio g', which is proportional to the
ratio of the magnetic moment of the material to its angu-
lar momentum, " is given by g'= (L+2S)TI(L+S)T,
or the ratio of Eq. (8) to Eq. (9). The hyperfine field at the
samarium nucleus is also given by combinations of (L ) T
and (S)T."

For the free-ion case when only the J=5/2 multiplet
level is thermally occupied and there are no crystal fields
AMM =a'/T+ b', AM+ =

As~ =(g —1)a'IgT+ b' and

Azs =(g —1) a'/Tg +b', where a'=g J(J+1)/3k,
b'=2 0/7b„g is the Lande factor of the J=S/2 level of
the Sm + ion and 6 is the energy diA'erence between the
J =5/2 level and the J=7/2 level. For this case Eqs.
(4—9) reduce to the results obtained previously.

Dipole-dipole interactions may be incorporated into
these expressions. If the field H is replaced by the sum of
the applied field H„plus a dipole field H ~(H„+X'M).
Then from y = M /(Hz + A, 'M) it follows that
H„/H= 1 —

A, 'y. Hence all the expressions in Eqs. (4—9)
may be extended to allow for dipole fields by dividing
them by the factor (1 —I,'y). Usually this factor is close
to unity.

and expanding the exponential in powers of F:

z =z,(1+Fp& o, ),)+0[F'], (13)

where Zo is the unperturbed partition function and
(0, )0 is the thermal average of 0, in the unperturbed
state. Substituting Eq. (13) into Eq. (10) the leading
terms obtained are

bation the eigen values E; have become
E,'=E; F—(i

l 0, li ) and the eigenstates li ) have become

li' &
=

l~ &+Fg' IJ &&Jlo, li &

(11)E —E;

where the prime on the sum indicates that the j =i terms
are to be omitted. The terms in (0„)Fthat are linear in
F arise from three sources: the change of the partition
function Z due to the implicit change in the eigenvalues,
the change of the eigenvalues explicitly shown in Eq. (10)
and the change of the eigenfunctions (11).

The partition function is therefore
—p(E, —I &il,o, l,

i. &)Z= e 12

ISOTHERMAL LINEAR RESPONSE

The thermal average of an operator 0„ is given by

(0„) = g e '&i'lo„li'&,
l

(10)

«„&"=«„&,—FP(o„),& 0, &, . (14)

In the unpolarized state both these terms will be zero.
The second contribution to the linear response comes

from substituting the change of eigenvalue into Eq. (10)
but keeping the partition function and the eigenstates in
their unperturbed condition. By expanding the exponen-
tial the next linear term is found to be

where P= 1 lkT, the li') and E,' are eigenstates and ei-
genvalues of the total Hamiltonian and Z is the partition

—PE,.function: Z=g, e '. We assume that the system has
been subjected to a small perturbation —FO, which con-
sists of a field F coupled to an operator 0„' the subscript
F in Eq. (10) refers to the field. As a result of this pertur-

I

(o„);= ge '(ilo„li)(ilo, li) .
i

The final term linear in F is obtained by keeping the par-
tition function and the eigenvalues in their unperturbed
state and substituting Eq. (11) into Eq. (10). This gives

(16)

The response to order F is given by the sum of Eqs. (14)—(16).
The form of Eq. (16) is satisfactory when the states i and j are nondegenerate, but degenerate states need special treat-

ment to remove the divergent denominator. For these states Eq. (16) is divided into halves and in one of them the dum-—PE,. —PE.
my indices i and j are interchanged. This gives rise to a factor (e ' —e ') which, when expanded and divided by—PE
the denominator of Eq. (16), gives Pe '. Then by noting that

XX'= X'X= XX(1—fi,, )
l J l J

if follows that those terms of (0„)T with E, =E may be expre. ssed as

E.=E.
&0, &F= ge ' & &ilo, lj&&jlo, l~&+&~lo, lj&&jlo, li&—

2ZO ZQ
(17)

The second term, which arises from the Kronecker delta, cancels Eq. (15) so the final result is

( 0„) = ( 0„) FP( 0„) ( 0, ) +Fy„, , —

where

(18)
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E.=E.
&/I 0, jI& &j &, ll & & i

I 0, Ij & &j I 0, I
~ &

i J

&flo, jl&&j lo, i&+&/ lo, jl&&j lo, l& &

(19)

SUSCEPTIBILITY OF SmRh484

The susceptibility of polycrystalline SmRh4B4 was first
measured by Hamaker et al. who found that its suscep-
tibility could be fitted to a Curie-Weiss law g=gM
+pzp, s /3k ( T 8). From the effective —paramagnetic
moment p,z.

p, tr=pol 1+a(g —1)/g —(1+a)6/To], (20)

The response matrix g„, consists of two pairs of terms,
one pair associated with a temperature denominator, the
Curie part, and the other associated with an energy
denominator, the Van Vleck part. y„, is explicitly sym-
metric in r, s and since each member of the pair is the
complex conjugate of its partner y„, is real. For the diag-
onal elements g„„ the four terms are real and contract to
two and g„ is greater than or equal to zero. For cases
where the operator 0„ is L and 0, is S, o. being x, y, or
z, the four terms also contract to two because the two
operators, being the same component of an axial vector,
transform in the same way under the operations of the
appropriate point group. According to the Wigner-
Eckart theorem their matrix elements between basis
states of irreducible representations of the group will be
proportional to each other. However, the elements of g„
that are off diagonal in direction, and which will be
nonzero for crystals of low symmetry whose principal
axes may not be known a priori, will need to incorporate
all four terms of Eq. (19).

It is to be noted that the Curie terms contain off-
diagonal matrix elements of the operators as well as the
diagonal elements. de Wijn et al. ' omitted the off-
diagonal elements in their calculation of the susceptibility
along the z

I 0, 0, 1] direction of cubic SmA12, but this does
not affect their results because it is readily verified from
group tables' that the matrix of an operator transform-
ing as the z component of an axial vector is diagonal be-
tween the states of the three irreducible representations
of the cubic double group. It would be necessary to take
account of the off-diagonal elements to calculate the sus-
ceptibility along the x direction, for instance, if the crys-
tal field states were quantized along the z direction, but
for cubic crystals the susceptibility is isotropic so this cal-
culation is not needed in this particular case.

The results of this section show that the
espo se coeffic e ts AMM +L+2s, L+2s Ass +s,s

A MS +L +2S,S and A sM &S,L +2S ' Consequently A Ms
is equal to ASM.

where 0 is the paramagnetic Curie temperature and
T0=322 K, the value of o.=+0.022 was deduced. ' It
was argued' that this demonstrated that itinerant elec-
tron effects were unusually small in this compound.
Equation (20) is obtained from Eq. (8) when the free-ion
values of the response coefficients are used. "'

The susceptibility of single crystal SmRh4B4 was mea-
sured by Zhou et al. ' They fitted their results with a
theory which took account of crystal field effects, interac-
tions and itinerant electron polarization. They used the
crystal field parameters previously deduced for the rare
earth-Rh484 series of compounds. These gave a doublet
ground state that was roughly I5/2, +/ —1/2&, with a
I5/2, + / —3/2 & doublet at 22 K above that and another
I5/2, + / —5/2& doublet at 190 K. Even though in this
material itinerant electron effects are unusually small' it
was found it was essential to include them to obtain a sa-
tisfactory fit to the susceptibility. The expression that
Zhou et al. used was'

(s&
(L+2S &

V+0
(21)

where y0 is the crystal field only susceptibility and
/3=+0. 064. The above equation does not agree with Eq.
(8) derived in this paper, but an examination of it shows
that in this case it may not be too bad an approximation.
First of all the matrix susceptibility is negligible. '

Second, the ordering temperature is so low that the term
yg0 that represents interionic interactions is generally
very much less than unity. Lastly, for small a we are
comparing 2a A~s/AMM with /3(S & /(L +2S &. The
leading terms of the latter two factors are both (g —1)/g
so we identify a=/3/2=+0. 032. This value of a has the
same sign and magnitude as that of +0.022 obtained
from the polycrystalline susceptibility. Assuming a to be
+0.032 and taking' p=0. 35 eV ', a value of +0.0457
eV is obtained for I(O). This value gives
I(O) p=7. 3X10 eV. This compares with a value of
I p=3.4X10 eV for the value of I(q) averaged over
the Fermi surface obtained from an analysis of supercon-
ducting transition temperatures of the other RRh4B4
compounds in the series.

The comparison is reasonable considering that the I(q)
are small quantities. Although a full analysis of the sus-
ceptibility of SmRh4B4 using Eq. (8) remains to be carried
out, the approximate analysis discussed here illustrates
the importance of accounting for itinerant electron polar-
ization effects in metallic samarium compounds even in
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cases where they are small. It demonstrates too that the
value of a obtained from a Curie-Weiss fit to the poly-.
crystalline susceptibility '" gives a useful estimate of the
true size of this quantity obtained by fitting single crystal
data.

Note added in proof. For the case of r=s, it can be
shown that the response in Eq. (18) that is linear in field is
positive definite by the method of L. D. Landau and E.
M. Lifshitz, in Statistica/ Physics, Part 1, 3rd ed. (Per-
gamon, Oxford, 1987), Sec. 32.
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