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20- to 350-A Fe thin films have been prepared on W(110) and studied by ferromagnetic resonance in

ultrahigh vacuum. The magnetic anisotropy of Fe films and its temperature dependence were deter-
mined independently from the angular and the frequency dependences of the resonance field in the tem-
perature range between 300 and 600 K. A switching of the easy axis of the magnetization from [110]to

0

[001] was confirmed at a film thickness of about 110 A. This is disucssed in terms of surface and volume
contributions to the anisotropy energy.

I. INTRODUCTION

In recent years magnetic thin films have gained in-
creasing interest for fundamental research and technolog-
ical applications. Much effort has been devoted to under-
stand the magnetic phase transition, ' " the magnetic mo-
ment, and the magnetic anisotropy. " Thin Fe films
have been studied extensively in the past. ' One of the
most interesting questions in such studies is the magnetic
anisotropy and their temperature dependence, which
determines the orientation of the magnetization. Recent-
ly there have been some reports in the literature concern-
ing the magnetic anisotropy and the orientation of the
magnetization of Fe(110) films. Prinz, Rado, and Krebs'
have used ferromagnetic resonance (FMR) to determine
the magnetic anisotropy of Fe(110) on GaAs at 300 K
and have observed the switching of the magnetization of
the Fe films from the [110]to the [001] direction with in-
creasing film thickness of 50—150 A. Gradmann,
Korecki, and Wailer' and Elmers and Gradmann' have
performed a detailed investigation of the magnetic anisot-
ropy of Fe(110) on W(110) using conversion electron
Mossbauer spectroscopy and a magnetometer and found
the same type of switching of the magnetization at 300 K
as in Fe(110)/GaAs(110). The switching occurs between
95 and 70 A depending on the preparation temperature.
This observation was confirmed by Kurzawa et ar. ' with
spin- and angle-resolved photoemission and Baumgart,
Hillebrands, and Giintherodt' with a Brillouin light-
scattering study. However, these determinations and ob-
servations were limited to room temperature. Since mag-
netic anisotropies are mostly dependent on the reduced
temperature (in most cases much more than the magneti-
zation itself) only temperature-dependent measurements
yield complete information. Those measurements have
been performed in the temperature range between 4 and
300 K but not in ultrahigh vacuum' (UHV). To deter-

mine the temperature dependence of the magnetic anisot-
ropy between 300 and 600 K and to check the observed
effect in Fe(110)/W(110) films by a different method, we
performed further experiments.

In this paper we present an experimental study of the
magnetic anisotropy of Fe/W(110) in UHV and its tem-
perature dependence using ferromagnetic resonance
(FMR). As discussed by Gradmann et al. ,

'

Fe(110)/W(110) is an ideal system for the investigation of
magnetic properties. It is thermodynamically stable.
This means that for thermal treatments (up to 600 K)
segregation and intermixing problems are negligible. Re-
cently thickness dependent anisotropies were observed in
Fe(110) films on Mo(110) (Ref. 20) questioning if previous
work is correct. ' The present work does not focus on
the preparation of highest quality epitaxy as described in
Refs. 19, 21, and 22. As the literature cited above, e.g. ,
Refs. 13, 15, 19, and 20, shows, there exist common
features for films prepared in a 10 mbar vacuum or in
UHV. FMR is a well established method for a quantita-
tive determination of magnetic anisotropies' ' but only
a few efforts were made to carry out FMR in situ.
This guarantees that the magnetic properties of the film
remain unchanged and are not affected by oxidation or
cover layers. Using the measured temperature, angular,
and frequency dependences of the resonance field H one
can deduce the magnetic anisotropy energy precisely.

II. THEORETICAL MODEL

A brief summary of the theory of the FMR is given
here. We consider the magnetic anisotropy of Fe films on
W(110) in the framework of uniaxial and cubic anisotro-
py. The coordinate system used in our calculation is
shown in Fig. 1.

To calculate the resonance frequency one follows the
approach of Suhl The free-energy density of the system
is, considering the uniaxial and cubic anisotropy energies,

E = —HM(sinBH cosy sin8+ cosBHcosi1)+2rrM cos 8+K„cos 8+K„sin itsin y

+K i [—'sin 8 sin y+ —'cos 8+sin 8 sin y cos y+ sin 8 cos 8 cos p —
—,
' sin 8 cos 6 sin y],
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FIG. 1. Coordinate system used to describe the ferromagnet-
ic resonance experiment. The microwave field is parallel to the
z axis. The external magnetic field can be rotated in the x-y
plane. The y axis is the surface normal.

In order to determine the magnetic anisotropies, one can
perform measurements of the angular dependence of the
resonance field and fit it with Eqs. (4) and (5).

With the external magnetic field applied in the film
plane (8H =90'), the resonance condition has the familiar
form

where the first term is the Zeeman energy, the second the
demagnetization energy (M: saturation magnetization).
The terms containing the constants K„and K„represent
the out-of-plane and in-plane uniaxial anisotropy ener-
gies, respectively. The last term (second line) is the cubic
anisotropy energy K&. The equilibrium condition for the
magnetization and the resonance condition for the FMR
can be found using the following equations:

2K,ff
(co/y) = [H+4~Mdt] H+

As will be shown in Sec. III, Eqs. (4), (5), and (6) are used
to determine the magnetic anisotropy 4~M, ff and K,ff of
Fe(110) films on W(110). It is noteworthy to say that in
FMR these quantities are measured in absolute and not
in arbitrary units. Therefore its values can be compared
to other parameters (i.e., saturation magnetization), see
Sec. IV.

BE BE
By B~

' (2)

2
B2E B2E

y M2sin~d B82 Bc@2

BE
BIB' (3)

BE
BC

HM sin(BH —6, )——(4vrM +2K„)sin8, cos8,

+K, (cos 8, sin8, —2 sin 8, cos8, ) =0, (4)

The resonance condition can be derived from Eqs. (1) and
(3) yielding

Now we consider the more general case of experimental
configurations as shown in Fig. 1. It is reasonable to as-
sume that the magnetization lies in the x-y plane, when
the resonance absorption occurs. As will be seen later,
this assumption will turn out to be correct. For films

110 A, the easy direction is the [001] direction and the
magnetization lies in the x-y plane. For films ~ 110 A,
the easy direction is the [110]direction. The resonance
field at 9 GHz is large enough to overcome the in-plane
anisotropy field and to turn the magnetization into the
x-y plane. On this condition the equilibrium angle cp,q

is

equal to zero and the equilibrium condition is

III. EXPERIMENT

The experiments were performed in an UHV chamber
described previously. The residual pressure of the
chamber is (2 X 10 "mbar. The W(110) substrate was
cut from a single crystalline rod of tungsten and polished
to within 0. 5

' of the [110]orientation by using standard
metallographic techniques. The substrate was cleaned in
situ by argon-ion sputtering and high-temperature an-
nealing. Surface cleanliness was verified by Auger elec-
tron spectroscopy (AES). No contaminations were found
within the detection limit of the Auger system ( (1% of
a carbon monolayer). Fe films were evaporated from a
5X Fe rod using the electron-beam evaporation method.
The iron was mounted in an A1203 ceramic. The oxygen
contamination was at about 5%%uo as determined by AES.
Epitaxy was performed at a substrate temperature of 300
K and for the 200 A film at 600 K. The film thickness
was calibrated using the Auger signal-time plot and a
quartz microbalance. Low-energy electron diffraction
(LEED) did not show a difference from the W(110) pat-
tern up to 2 monolayers in accordance with Ref. 19 pre-
dicting a pseudomorphic growth for the first two layers
at a substrate temperature of 300 K. Then the LEED
spots began to broaden resulting in a diffuse pattern for
all energies at about 10 monolayers. We therefore as-
sume that the films consisted of small crystallites mainly
oriented in the (110) face, which is the closest packed face
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FIG. 4. Angular dependence of the resonance field. Solid
curves are calculated according to Eqs. (4) and (5) and with pa-
rameters shown in Table I.

FIG. 5. FMR frequency dependence on the external magnet-
ic field applied in the [001] axis in the (110) plane at a 54 A Fe
film grown on W(110}.

agreement with the above results (Table I), we obtained
K,s= —0.78X10 erg/cm and 4~M, it=20. 3 kG at 300
K. Of most importance here, the magnetic anisotropies
determined from two independent analyses, namely from
the angular and the frequency dependences of the reso-
nance field, agree very well. This is an indication that
FMR is a useful and reliable method in determining the
magnetic anisotropy of thin films.

B. Temperature dependence
of the magnetic anisotropy

the easy direction of the magnetization. The positive and
negative anisotropies indicate that [001] and [110] are
the easy direction, respectively. The switching thickness
observed in our experiment at 300 K is larger than those
obtained by Elmers and Gradmann' and by Braumgart,
Hillebrands, and Guntherodt. ' They have found 50—70
A and 84 A, respectively. This observation can be inter-
preted as arising from the larger in-plane surface anisot-
ropy of our Fe films, which will be discussed in the fol-
lowing section. For the thinner films, where strong in-

TABLE I. Values of the effective in-plane anisotropy K,z and
the effective magnetization 4~M, & for three Fe films obtained
from a fit to Eqs. (4) and (5). This may be compared to the satu-
ration magnetization 4aM =21.54 kG (Ref. 29).

Thickness

45 A

54 A

200 A

K,&/(10 erg/cm )

—1.89( 11)

—0.77( 13)

0.15(14)

4~M, g /kG

20.8(5)

20.6(5)

20.1(5)

The temperature dependence of the resonance field H
was measured between 300 and 600 K. Typical results
for several Fe films are shown in Fig. 6. Using Eq. (6)
and these experimental data, we can calculate the in-
plane magnetic anisotropy, if 4aM, & is known. Since in
comparison with 4aM, the out-of-plane anisotropy field is
small, as shown and discussed above, we take 4~M from
the literature instead of 4vrM, tr in Eq. (6) in our calcula-
tion.

The determined temperature dependence of the in-
plane anisotropy is shown in Fig. 7. As we have already
noted from Fig. 6, the anisotropies are seen to be divided
into two distinct regions: a positive region, where the film
thickness is thicker than 130 A, and a negative region,
where the film thickness is thinner than 100 A. The
crossover between these regions occurs at about 110 A at
300 K, which is the critical thickness for the switching of
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FIG. 6. Temperature dependence of the resonance field for
six films (Ref. 35). The external magnetic field is applied paral-
lel to the [001] axis in the film plane. Note that for 45 and 54 A
two resonance lines are detected as described in the previous
section.
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T E, E„K)
(K) (erg/cm ) (10 erg/cm ) (10 erg/cm ) Ref.

300 —0.88( 15 )

400 —0.83( 15 )

500 —0.68( 10)
600 —0.48( 10)

0.53(30)
0.43(25)
0.30(20)
0.25( 15)

0.45
0.40
0.30
0.20

This work
This work
This work
This work

300 —0.45( 5 )

300 —0.68( 8 )

0.65(3)
1.21(8)

0.45
0.45

15
17

V. SUMMARY

TABLE II. Experimental data for the effective in-plane sur-
face anisotropy E, and the in-plane volume anisotropy K, at
different temperatures. For comparison, the data from Refs. 15
and 17 are also included. K& is the cubic magnetic anisotropy of
bulk Fe and is taken from Ref. 29.

ture, the film thickness and the preparation conditions.
The switching of the easy axis of the magnetization from
[110] to [001] was observed at about 110 A at 300 K,
which confirms the previous observations on Fe films on
GaAs (Ref. 13) and W(110) (Refs. 15 and 17). The thick-
ness dependence of the in-plane anisotropy at different
temperatures was used to deduce the surface and volume
anisotropies and their temperature dependence using the
well-known relation of Eq. (7). A decrease of the surface
and volume anisotropies was found as the temperature
was increased. The volume anisotropy agrees very well
with the known cubic anisotropy for bulk Fe. Further-
more, the switching of the easy axis of the magnetization
in the film plane was observed for the 200 A film by
changing the temperature. In conclusion, UHV-FMR
has been used successfully to learn about the details of
the magnetic anisotropies of thin iron films.

The ferromagnetic resonance in UHV has been em-
ployed to investigate the magnetic properties of thin Fe
films on W(110). The angular, frequency, and tempera-
ture dependences of the resonance field were studied to
determine the out-of-plane and in-plane anisotropies in
the temperature range between 300 and 600 K. The mag-
netic anisotropies were found to vary with the tempera-
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