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Collective dynamics in a model of sliding charge-density waves. I. Critical behavior
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The dynamics and critical phenomena of the depinning transition in charge-density-wave (CDW) sys-
tems are explored, primarily through simulations of an automaton model that we have developed to
characterize the essential features of the standard Fukuyama-Lee-Rice (FLR) treatment of CDW's. We
first provide an overview of the dynamics of the class of FLR models, and then derive our automaton
model ~ We report results of simulations above and below the depinning transition, focusing primarily on
the behavior of the CDW velocity above threshold and the growth of dynamic correlations on both sides
of the transition. The critical exponent g describing the scaling of the CDW velocity is estimated in
d = 1, 2, and 3, in agreement with estimates of g from simulations of related CDW models and a recent
renormalization-group calculation. The velocity-velocity correlation above and below the transition is
described in terms of "avalanches" between diff'erent configurations. A companion paper examines the
unusual finite-size e6'ects evident in the sliding state.

I. INTRODUCTION

Charge-density-wave (CDW) conductors exhibit a rich
response to applied electric fields which involves many
dynamical degrees of freedom. This complicated dynam-
ics arises from the competition between the random pin-
ning of the CDW by impurities and/or defects and the
elasticity of the CDW itself. One important consequence
of this corn. petition is the existence of a depinning transi-
tion which involves collective CDW dynamics on long
length scales. Within a certain class of models, the pro-
cess of depinning can be interpreted as a phase transition
between the pinned and sliding states of the CDW. ' A
diverging dynamical correlation length can be identified
near the transition, and power-law scaling is observed in
the manner of traditional equilibrium phase transitions.

A detailed understanding of the dynamics and critical
phenomena associated with the depinning transition has
been rather slow in developing, however. Much of the in-
sight into the critical phenomena has come through nu-
merical simulations, although an earlier mean-field
analysis' and a recent renormalization-group (RG) calcu-
lation have also contributed substantially. Numerical
studies of the critical phenomena of sliding CDW's have
been hampered, however, by unusually small critical re-
gions and the existence of slow time scales near thresh-
old. As a result, it is only recently —through the numeri-
cal work presented here, in conjunction with numerical"
and analytic work by others —that a consensus seems to
have been reached with regard to the numerical values of
the basic scaling exponents characterizing the transition.

One reason for continued interest in sliding CDW's has
been a major focus on the dynamics and criticality of oth-
er driven, nonlinear, many-degree-of-freedom systems,
such as models of sandpiles ' and earthquakes. "
Many such systems display a rich spatiotemporal
response to external driving. In particular, many spatial-
ly extended, driven systems exhibit a broad distribution
of dynamical event sizes, and unusual finite-size scaling

properties have also been noted. ' CDW's exhibit dis-
tributions of event sizes and unusual finite-size scaling
properties, although the CDW does not strictly exhibit
"self-organized criticality" as is found in other systems,
since the criticality of depinning is the result of the fine
tuning of an external parameter. It is nonetheless useful
to interpret, when possible, the behavior of CDW's in
terms of this larger class of systems.

It is our goal to elucidate certain aspects of the dynam-
ics and critical phenomena of CDW's in an applied dc
field. This will be done primarily within the context of a
model we have developed which incorporates the essen-
tial features of the Fukuyama-Lee-Rice (FLR) model of
CDW's. To conclude Sec. I, we outline the scaling
theory of the depinning transition and present the stan-
dard lattice implementation of the FLR model. In Sec.
II, we provide an overview of the dynamics of the lattice
FLR model, and then derive and construct an automaton
model which is based on this model. Our automaton
model is both practical, as it speeds considerably simula-
tions of CDW's near threshold by circumventing the slow
motions which characterize the system, and insightful, as
it emphasizes those aspects of the dynamics which appear
to be relevant to the critical phenomena, namely, the rap-
id hopping of unstable phases and the subsequent desta-
bilization of neighboring phases. In Sec. III, we present
results of simulations of this automaton model to esti-
mate various critical exponents describing the CDW both
above and below threshold. In particular, we compute
the CDW velocity exponent g and correlation length ex-
ponent v in the sliding state. The velocity exponent g (in
d = l, 2, and 3), as measured in our automaton model,
agrees within errors with that estimated by Middleton in
simulations of a variety of other continuous-phase and
discrete-phase models as well as with that calculated in
4 —e dimensions by Narayan and Fisher. In examining
the relevant correlation length —in this case, the
velocity-velocity correlation length g—we introduce a
graphical representation which conveys the nature of the
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dynamic correlation and which suggests anomalous
finite-size effects in the sliding state. We discuss these
finite-size effects in more detai1 in a companion paper
which immediately follows this paper. We also define
and measure a dynamic correlation length and its scaling
below threshold, by considering a characteristic
avalanche size connecting stable fixed points in the
pinned state.

A. Depinning as a critical phenomenon

The existence of a (fairly) sharp transition between the
pinned and sliding states in CDW conductors' invites
the interpretation of the depinning transition as a type of
critical phenomenon. ' We highlight this scaling theory
here. The depinning transition is driven by the applica-
tion of an external dc field F, with the transition occur-
ring at a threshold field FT. We define a reduced driving
field f:(F F—T )/F—T, where FT is the threshold field for
a particular sample (particular size, dimensionality, im-
purity configuration, pinning strengths, etc.). The order
parameter for the depinning transition is the average
steady-state CDW velocity v, which is expected to scale,
in the thermodynamic limit, as a power-law in f for
f~0:

(13

This implies a diverging time scale T:1 lv, such th—at
T-f ~, where T is the time required for the periodic
CDW orbit to repeat itself. Furthermore, there is expect-
ed to be a diverging length scale, which is, in this theory,
the velocity-velocity correlation length g. The scaling ex-
ponents v and v' describe the divergence of this length
scale above and below the transition, respectively:

(2)

B. Lattice FLR model

A standard lattice version of the Fukuyama-Lee-Rice'
model has been developed' and studied' by several au-
thors. The lattice FLR model describes the dynamics of
the CDW phase P;(t) at each site i on a d-dimensional
(hyper)cubic lattice with periodic boundary conditions.
The disorder of impurity pinning is implemented via a
quenched random pinning phase p; at each lattice site.
The Hamiltonian is this lattice model describes the effects
of an applied electric field, the CDW elasticity, and pin-
ning by disorder:

highly overdamped, the CDW inertia is typically neglect-
ed, and P; evolves according to relaxational dynamics:

where

=F+Jb, ;(P) Vs—in[2ir(P; —P; )],
(

II. DYNAMICS OF THE CDW

In this section we provide an overview of the dynamics
of driven, deformable CDW's, emphasizing those ele-
ments which are central to the derivation of our
simplified automaton model. We begin by considering
the dynamics of a single degree of freedom, and then
present a weak-coupling analysis of the full system, en
route to deriving the automaton.

A. Dynamics of a single degree of freedom

The decoupling of neighboring phases in the lattice
FLR model (5) yields the following equation of motion
for each phase P; on the lattice:

P, =F Vsin[2ir(P; ——P;)] .

This equation has fixed-point solutions (P; =0) only for
F ~ V. For larger fields, the phase P slides indefinitely.
The depinning transition at F = V is a saddle node bifur-
cation, which we depict schematically in Fig. 1; we plot

6;(p) =g (pi —p; )

(j)
is the finite-difference curvature (lattice Laplacian) of the
phase field P at site i, the sum being over nearest neigh-
bors (j) to site i Th. is model treats the CDW as an ar-
ray of overdamped, zero-temperature, harmonically cou-
pled, ' randomly pinned oscillators subject to a spatially
uniform driving field. The pinning strength V is also
sometimes chosen to fluctuate randomly from site to site,
but it is believed this does not alter the universality of the
critical behavior. This model is typically simulated in
the strong-pinning limit ( V ))J ) so that individual
phases P, correspond more or less to phase-coherent
Lee-Rice domains in the CDW.

H= Fg P;+ —,'J g (P; —P—i)
i (ij )

g cos[2ir(P, —P; ) ],V

l

(4)
(a) (c)

where F is proportional to the applied electric field, V is
the strength of the pinning potential, J is the elastic cou-
pling strength (with appropriate scaling to make the elas-
tic constants isotropic), and the p; are drawn uniformly
from the interval [0,1). Because the CDW's motion is

FIG. 1. Schematic dynamics in the single-coordinate model,
for (a) F =0, (b) F = V, and (c) F & V. For F ~ V, there is a fixed

point, where the local potential surface is Oat, but for F) V

there is no such fixed point, and the CDW hops from one poten-
tial well to the next. This hopping leads to the motion shown in

Fig. 2.
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the position and velocity of the single phase P in Fig. 2.
The sliding motion of the phase is periodic, repeating

itself in a time T, which depends upon the excess driving
field F —V. Just above threshold, the motion is dominat-
ed by a sticking point. This is the remnant of the fixed
point which existed below threshold, and is associated
with motion through a region of the potential surface
which is almost flat, as is depicted in Fig. 1(c). Near
threshold, almost the entire period T is consumed by the
traversal of this sticking point, but most of the phase in-
crement associated with sliding occurs during a rapid
jump which follows the escape from the sticking point.
The sliding behavior of the single-coordinate model can
be solved for completely by integrating the equation of
motion (7):

1.0
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p, (t)=p, +n, (t)+

+—tan
1

7T
tan(tr'(/F' —V't )F —V

FIG. 3. The local velocity exponent g„,—:d(log, ov )/
d (log, of ) for a single-coordinate CDW. The velocity interpo-
lates between a square-root scaling form ($~„=0.5) at small f
and linear scaling ((„,=1.0) at large f.

where n;
—=nint(p; —p, —

—,'), nint(x) being the nearest in-
teger to x. The period T of the motion is the time re-
quired for the phase ((I; to increment by 1:

dP,'

F —V sin[2tr(P, '. —P, ) ]
(9)+F2 V2

B. Dynamics of the lattice FLR model

which implies U = I/T=+F V. For sma—ll f, there-
fore, U —f ' . The interpolation between square-root
scaling at small reduced fields and linear scalings at large
f can be seen in Fig. 3, where we plot the "local velocity
exponent" g„,—=d(log, ov )/d(log, cf ).

freedom case, however, the transition itself is unique and
nonhysteretic, and the sliding state above threshold is
unique and periodic foi models satisfying "no passing, "
as described by Middleton. '

) The sliding state in the
many-degree-of-freedom system is dominated by the
spectrum of sticking points which arise from the bifurca-
tions of the many fixed points below threshold. We show
this in Fig. 4, where the spatially averaged velocity in a
small system is seen to wax and wane as various phases
hop rapidly and slow in their motion through sticking
points.

Once many randomly pinned phases are coupled to-
gether, there are many distinct coexisting fixed points
below threshold, in contrast with only one in the single
degree-of-freedom case. (Like the single-degree-of-
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FIG. 2. Phase trajectory P;(t) and phase velocity ((I, (t) for a
single phase [Eq. (7)j, with F=1.001, V=1.0, and P, =O. The
jerky motion exhibited here is an important feature of the slid-
ing CDW.

FICi. 4. The time evolution of the spatially averaged velocity
(P(t) ) in the sliding state, for a one-dimensional system of size
8', demonstrating the role of sticking points (velocity minima)
and phase hoppings (velocity maxima). Compare this with Fig.
12 of Ref. 6, an analogous plot for the Frenkel-Kontorova mod-
el, where pinning is incommensurate rather than random. The
uneven spacing between phase hops and the unequal minimum
velocities in the CDW arises from the disorder inherent in the
pinning.
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1. Weak-coupling limit

P, =F+Jb, , (P) —Vsin[2vr(P; —P;)] (10)

for all sites i on the lattice, in the limit J« V. We ex-
pand the P; about the J =0 threshold configuration,

Because of the existence of many sticking points, the
dynamics of the lattice FLR model are slow to simulate;
the motions are also difficult to characterize. As a result,
we were led to consider its dynamics in the limit of weak
coupling, J« V, both to speed simulations and simplify
the motion of the system. ' We begin by plotting in Fig.
5 each of the local phase velocities for a small one-
dimensional system (I. =8), to illustrate how instability
propagates through the system. This figure demonstrates
that (1) phase motions are triggered by the hops of neigh-
boring phases, and (2) unstable phases can spend consid-
erable time moving slowly through sticking points after
being destabilized.

We seek solutions to the equations

5; =F +J6; (P+ ,'+ n—+5)—V cos(2ir5; ) . (12)

Even though the CDW just above threshold is not stat-
ic, individual phases (in the weak-coupling limit) spend
most of the time moving very slowly, sitting near their
threshold fixed points, with all the 6; near zero. We ex-
pand the field F and each of the 5; in powers of J'

ai J1/2+ai J+ai J3/2+
i 1 2 3

F=F —bJ —bJ —bJ0 1/2 3/2
T 1 2 3

(13)

(14)

and then expand the cosine pinning potential for small
argument:

p; =p;+ —,'+n;+5;,
where n, =nint(p, —p; ——„') and 5; E [ —

—,', + —,
'

) represents
a local phase deviation. Then (10) becomes

[aiJ'~ +a2J+0(J )]=FT [biJ'~ —+b2J+0(J )]—V(1 —
—,'{2ir[aiJ' +0(J)]] +0(J ))

+J{b.;(P+n)+[6;(a, )J' +6;(az)J+0(J )]] . (15)

We solve ak—:OVi, k order by order in J' . To 0(J'~ ), C=(V F)/J . — (22)

b1=0, (16)

b2+2~ V(—a ', ) +6; (P+ n) =0,
implying

a
b2 b,;(p+n)—

2m V
(18)

so that the threshold field FT is not shifted to 0(J' ).
To 0(J),

We have introduced here an "activation curvature" C,
the largest curvature that a site can sustain while still be-
ing stable.

The fixed-point solutions presented above are not so
useful in describing the full sliding dynamics, so we con-
sider the dynamics of 5,.(t) for the sites which are unsta-
ble as defined by Eq. (21). Since the large hopping
motions of unstable phases are primarily responsible for
the redistribution of phase strain in the system, we wish
to predict the time at which an unstable phase will hop
forward, after being destabilized. We start with Eq. (12):

(The negative branch of the square root is selected for
reasons of stability. ) Equation (18) places a constraint on
b2 since all the solutions a', must be real:

5, =F+Jb, , (P+ ,'+n +5)—V cos(—2m5;) . (23)

b2 ~ max{ 6; (P+n) ] . (19)

Since b2 describes [to 0 (J) ] the shift in the field F, we see
that the zeroth-order configuration {p+n] will find a
fixed point (i.e., will have no unstable phases) for fields

F~FT —Jmax{b,;(P+n)I . (20)

For a fixed realization {p], there may be fixed points at
larger fields, but these will involve diff''erent zeroth-order
configurations, i.e., rearrangements of the integer field

{n].
We can use this criterion to identify those sites which,

for a zeroth-order configuration {p+n ], are unstable [to
0 (J)]. We deem a site unstable, or "active, " if it satisfies

Q; =p;+ ,'+n;, — (24)

and the space of allowed motions to be only integer hops,

n, ~n;+1 . (25)

The first two terms on the right hand side of this equation
make up the local effective driving field V, (t). In general,
this would have a complicated time dependence. In the
weak-coupling limit, however, phases remain very close
to the zero-coupling threshold fixed points, P, =P;+ —,

'

+n;, for almost the full period T, and deviate from those
fixed points only for a short time to hop by a full wave-
length. Therefore, we can approximate the space of al-
lowed phase configurations to be the discrete set

b;((5) & C, (21) Having made these approximations, Eq. (23) reduces to

where 5; =F+Jb;(P+ —,'+n) —Vcos(2m. 5;) . (26)
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phase passes through the velocity minimum, it must work
its way "out" of the sticking point, until it finally "hops"
at 6; = —,'. Once it hops, its neighbors may become unsta-
ble as well.

3. The discrete-phase time-lag CD@' automaton model

The projected time lag ~,
* is composed of two pieces, a

time 8"* to move "in" to the sticking point after activa-
tion and a time ~';"'* to move "out" of the sticking point
to the hopping point (velocity maximum):

gnat + outa
I (33)

The time lags 8"* and w';"'* are given by the appropriate
integrations of Eq. (29). The time "in" to the sticking
point rejects the motion from the initial perturbative de-
viation fi, , given by [see Eqs. (13) and (18)]

1/2

gp J1/2
I (34)

Having derived various results in the weak-coupling
limit and outlined how to piece together the motions of
individual hopping phases, we state here the complete set
of rules for the operation of our discrete-phase time-lag
automaton model.

(1) We construct a d-dimensional hypercubic lattice of
linear size I. with periodic boundary conditions, and
identify individual sites on that lattice with an integer in-
dex I.

(2) We specify a quenched random pinning phase P,. for
each site i on the lattice, drawing the P; uniformly from
the interval [0,1). (The set [P], for a specified lattice size
L and dimensionality d, define a "sample. ")

(3) We define a phase P; for each site i on the lattice,
with P; given by P; =P;+—'+n;, for n; integer. As the P,
are quenched, the only dynamics in the model involves
the integer component of the phase, n;.

(4) For a given phase configuration, we calculate the lo-
cal curvatures c; =b;(P) =b;(I3)+b,;(n).

(5) We set the parameters V, J, and F, and calculate
from them the activation curvature C—:( V F)/J. —

(6) To begin the dynamics, we initialize the running
clock time t to t =0. Then we determine which sites are
unstable ("active"), i.e., those sites satisfying c; & C. For
those sites with c; )C, we calculate a projected hopping
time t, , which is the sum of the current clock time t and
the projected time lag ~,*:

(32)

to the sticking point at 6; =0. The time "out" rejects the
motion from the sticking point at 5;=0 to the hopping
point at 5;=—,'. Therefore, using t(5) as specified in Eq.
(30),

tanm6p,

Qv, —v
(35)

oUik —r( 1 )—
2+7; —V

(36)

and the phase at site i is incremented by 1:

n;~n, +1 . (38)

In accordance with the definition of the lattice Laplacian,
the curvatures of site i and its neighbors (j ) are altered

c;—+c; —2d,

cj —+cj+ 1

(39)

(40)

(8) The neighboring sites (j) are then checked to
determine if they are unstable, i.e., if c )C. If a neigh-
boring site j is unstable, then its projected hopping time
is computed. The particular calculation of the hopping
time depends on whether or not site j was already active
prior to the hopping of site i.

(8a) If the neighboring site j was not active prior to the
hopping of site i, then the hopping time t. is computed
exactly as described in item (6), given by t*=i +r*. , with
r* given as the sum of Eqs. (35) and (36).

(8b) If the neighboring site j was active prior to the
hopping of site i, then its projected hopping time must be
recomputed. We calculate how far through the hopping
process site j had proceeded prior to the hopping site i,
and then compute a new projected hopping time based on
its current position and its new curvature. Let At be the
amount of time that has elapsed on the running clock
time t since site j was last activated, (+"*)' the previous
projected "in" time for site j, 7 the effective driving field

at site j, and V~ the effective driving field at site j prior to
the hopping of site i ( VJ. =Pj —1). We compute from the
elapsed time b, t the current position 5 via Eq. (31):

(7) The dynamics proceeds by identifying the site
which is scheduled to hop next, namely, that site (call it
site i) with earliest hopping time t,

*
Th. en the running

clock time t is set to the appropriate hopping time,

(37)

6 =—tanp 1 ) 1

vr ~P V
tan[sr+(V') —V [(H."*)' b, t,]]— (41)

The current position 5. plays exactly the same role as the
initial position 5, did in item (6) above. Hence we calcu-
late a new projected hopping time t =t+ ~* precisely as
in item (6), Eqs. (33), (35), and (36) (with j replacing i in

I

those equations). In this formalism, the new "in" time
r'"* can be negative, if b, t ) (2" )'. This simply refiects
the fact that site j had already passed through the veloci-
ty minimum before site i hopped.
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(9) Once all active sites are accounted for, we return to
steps (7) and (8) to increment the next scheduled hopping
site and check its neighbors for activity.

4. Simulations

In this section we outline the manner in which we per-
form simulations of our automaton model. We generate
a "sample" as described in points (1) and (2) in the previ-
ous section. Then a pinning strength V and a coupling
strength J are specified. Typically, we set J =1 and then
set V so that the threshold field is roughly unity: FT = 1.

Once V and J are set, we need to determine the thresh-
old field FT for the particular sample at hand. This is
typically done by starting from a Aat configuration
(P;=P;+—,'; n; =0), identifying the site with the largest
local curvature c;, setting the field F so as to make that
site barely unstable (F ~ V —max I c; IJ ), iterating the
CDW until once again stable, and continuing the process
of destabilizing the least stable site until the threshold
field and threshold configuration has been reached. We
can use the "no passing" rule ' to identify the threshold
configuration, since the rule implies that any avalanche
involving X hops in which all sites hop only once must be
an avalanche in the sliding state rather than in the pinned
state.

We define a threshold curvature CT, the largest local
curvature in the threshold configuration. The threshold
field, in the weak-coupling limit, depends parametrically
on V and J and is a function of the threshold curvature
CT..

FT= V —JCT . (42)

5. The time-lag CD 8' automaton
and the lattice FLR model

Our automaton model appears to be a useful distilla-
tion of the dynamics important for the critical behavior
of sliding CDW's, emphasizing the large hopping

Whereas FT depends upon the particular choice of V and
J, the threshold curvature CT only depends on dimension
d and the realization IPj. (For a given dimensionality,
there are finite-size fluctuations in CT which tend to zero
as L ~Do.) We find that in d =1, CT=0. 5 for large L,
whereas in all higher dimensions, CT =(d —1)+0.376 for
large L. ' Since J=1 and we wish FT=1, we choose
V=1.5 in d =1 and V=d+0. 376 in d «2.

To determine the velocity U at a particular field above
threshold, we follow the procedures outlined in the previ-
ous section and iterate the CDW until a periodic orbit is
reached. Because the trajectory in the automaton model
is characterized entirely by a sequence of hopping sites
and their associated hopping times, we deem an orbit
converged when that sequence repeats itself, with the
hopping times (modulo the period T) converged to the
machine's double precision. The average velocity U is just
the inverse of the period T of the orbit, which is immedi-
ately accessible. We describe in Sec. III precisely how we
measure the velocity-velocity correlation length g'.

motions of unstable phases rather than the slow motions
near sticking points. The automaton is an accurate
reproduction of the standard lattice model only in limit
of weak coupling, J((V. Having made the appropriate
approximations, however, J/V is formally no longer an
independent parameter, since the automaton is always in
the weak-coupling limit regardless of the particular
values of J and V that we choose. So from the point of
view of mimicking the specific dynamical details of the
lattice FLR model, we do so only for J/V (& 1.

As far as critical phenomena are concerned, our extort
at isolating the important elements of the CDW's motion
appears to have been worthwhile since the critical ex-
ponents measured in simulations of the automaton agree
to within errors with those measured in simulations of
the standard lattice FLR model. ' ' This implies that no
drastic transition separates our automaton model at weak
coupling and the lattice FLR model at larger coupling.
Middleton's research into other models with phase hops
suggests that the velocity exponent g is quite robust in
finite dimensions with respect to changes in the exact
form of the pinning potential. The renormalization-
group analysis of Narayan and Fisher confirms this
universality.

There are some computational advantages to the au-
tomaton. The analytic integration of the equation of
motion for an unstable phase is typically faster than a nu-
merical integration of that equation. Furthermore, the
analytic integration does not slow down near threshold.
This second feature has enabled us to probe the finite-size
regime close to threshold in large systems, which has not
been studied in much detail previously. Also, just as we
do not have to wade through sticking points above
threshold, we do not have to spend long times equilibrat-
ing slow, small motions below threshold near critical
points as a Lyapunov exponent tends to zero.

Conceptually, the simplifications inherent in the weak-
coupling limit —localization of hopping events on partic-
ular sites, full (i.e., integer) hopping of sites as they slide,
etc.—have been institutionalized in the automaton. This
makes it considerably simpler to characterize, describe,
and visualize the dynamics: individual hopping sites can
be identified; sites are either active or inactive; and a pre-
cise active time (amount of time a site remains active be-
fore hopping) can be associated with each site.

Our automaton, as embodied in steps (1)—(9) above, is
operationally far from "simple, " however. Whether or
not the time-lag functions need to be included in such de-
tail (i.e. , are that many arctangents, tangents, and square
roots really necessary?) will be addressed at the end of the
paper. We wish to comment here, however, on one
feature of our model, which contributes heavily to the
computational burden but which seems important to the
qualitative behavior of the model.

The concept of "no passing" is an important aspect of
the dynamics in the lattice FLR model. ' (This is the
property by which one phase configuration $I" lying en-

tirely "behind" another configuration P' ', i.e. ,
PI" ~ PI. 'Vi, cannot pass that configuration under the ac-
tion of the dynamics. ) We update the hopping times, as
embodied in step (Sb) of the model, to ensure "no pass-
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ing" in our automaton. This incorporation followed a
period of time during the development of the model when
step (8b) was not included. In this early version of the
mode1, an active site hopped at its initially projected hop-
ping time regardless of the hopping of neighboring sites.
We found that the early model typically did not converge
to a periodic orbit. This was especially true at larger
fields, when more sites were active and the approximation
of ignoring hopping neighbors became poorer. At about
this time, we became aware of Middleton's work estab-
lishing the relationship between "no passing" and period-
icity, and realized the need for our model to satisfy "no
passing. " Once we included step (8b) to do so, we found
that the sliding state converged to a periodic orbit. Our
serendipitous observation of failure to converge to a
periodic orbit serves to bolster the connections between
"no passing, " phase slip, and broadband noise (BBN).
The automaton without step (8b) violated "no passing"
and failed to converge to a periodic orbit, implying some
BBN in the noise spectrum. '

There are some drawbacks to our model, however. Be-
cause we have thrown out all the small motions of phases,
we cannot compute from simulations any properties
which probe the local environment of phases. Linear po-
larizabilities (to be distinguished from the nonlinear po-
larizability which measures the hopping of phases), ac
response within local minima, and scaling exponents
describing the softening of modes near critical points are
all inaccessible from our simulations. To some extent, we
believe that these "local" properties are of less interest
than the global collective dynamics associated with the
hopping of phases.

Aside from limiting our ability to probe the system,
however, our neglect of small phase displacements does
alter certain aspects of the dynamics of the CDW. The
most obvious, and probably the most significant, distor-
tion that our model introduces is a misrepresentation of
the threshold state, and, in particular, its uniqueness. In
the automaton there is a set of configurations which are
stable at the threshold field Fz-, where in the lattice FLR
model there is only one such state. The reason for the
discrepancy is that in the lattice FLR model, small dis-
placements are communicated, however minutely, across
the lattice until they destabilize the critical threshold site.
Our discrete representation of the allowed configuration
space in the automaton is such in that these minute dis-
placements do not necessarily propagate arbitrarily far
through the system. Rather, only a subset of avalanches
generated throughout the system will engulf the thresh-
old site. We have studied the relationship of a discrete
configuration in the automaton model to the associated
continuous configuration in the lattice FLR model (i.e., a
configuration with the same (PJ and [n ) but which is al-
lowed to deviate with non-zero [5 J ). It appears from
simulations that those configurations which are stable
threshold states in the automaton have analogous
configurations in the lattice FLR model with critical
points very close to the threshold field, probably within
O(J) of Fr. Therefore, our automaton appears not to
have introduced a vastly different spectrum of instabili-
ties, but only misrepresents critical points on a scale of

O(J). Our misrepresentation of the threshold state ap-
pears not to have altered the critical behavior on either
side of the transition, but we do not understand at this
time all the subtle differences between the discrete-phase
and continuous-phase models.

Although the automaton is considerably faster to simu-
late than the lattice FLR model, it is not without its com-
putational drawbacks. In the process of restructuring the
dynamics, we have turned a highly parallel problem into
a highly serial one. As a result we cannot take full ad-
vantage of advances in parallel computing technology
which present perhaps the most natural solution to these
types of lattice dynamical systems. Algorithmically, im-
plementation of the automaton requires the ability to sort
quickly the newly computed hopping times while also al-
lowing for their quick retrieval. (We store the hopping
times in a binary tree. ) A further limitation is that the
model, as currently implemented, does not conveniently
allow for the application of ac fields. This is because a
change in the applied field would require not only updat-
ing the criterion for local instability but also recomputing
the hopping times for those sites that are already active.
Unless change in the applied field could be worked into
the analytic formulation of the problem (that is, the equa-
tions determining the hopping times of active sites), the
incorporation of ac fields into the simulation would be
computationally much more taxing. While an arbitrary
time-dependent field may be too cumbersome to incorpo-
rate into the model, perhaps not so di%cult would be a
treatment of pulsed (piecewise constant) fields, such as
those used to study pulse memory effects. Nonetheless,
we have a model which can be simulated very quickly on
relatively small machines, allows us to probe very close to
threshold, conceptually simplifies certain aspects of the
dynamics, and appears to be in the same universality
class as the model from which it was derived.

We have made reference previously to related dynami-
ca1 systems, such as models of sandpiles. ' Our au-
tomaton model is obviously similar in spirit to sandpile
automata, and, in fact, was constructed with such auto-
mata in mind. The biggest difference between our au-
tomaton and all other sandpile-type automata that have
been previously studied in the time lag between activation
and hopping in our model. In all other automata that we
know of, sites which exceed a threshold for instability
hop immediately.

III. THE CRITICAL PHENOMENA OF DKPINNING

In this section we describe various aspects of the criti-
cal phenomena of the depinning transition, as revealed
primarily through simulations of our automaton model.
By way of organization, we describe the behavior of the
CDW as a function of increasing driving field F. This
will enable us to describe the buildup to the threshold
state (carried out by a series of larger and larger
avalanches), the criticality of the threshold state itself,
and finally the depinning and sliding of the CDW (involv-
ing the formation of correlated "sliding domains, " which
are analogous to the avalanches below threshold). We
will introduce scaling exponents associated with this cri-
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ticality, discuss how we measure them in simulations, and
report estimates of their numerical values.

A. Critical dynamics below threshold

The CDW inevitably settles into a fixed point for
F ~ FT, such that the steady-state velocity of the CDW is
strictly zero within this model. Growing correlations in
the motion of the CDW are evident, however, in the tran-
sient phase motions between fixed points. These phase
rearrangements —or avalanches —are naturally generat-
ed as the driving field is ramped up toward the threshold
field. More and more fixed points bifurcate with the in-
creasing field until the threshold configuration is reached
and the CDW is poised on the edge of stability.

1. Correlation length

We demonstrate the growing correlation length below
threshold in Fig. 6, where we show avalanches between
fixed points for various values of f. Avalanches are a
nonequilibrium, transient response of the system to a per-
turbation which drives it from a fixed point. Avalanches
are typically triggered locally, either by an imposed phase
rearrangement (such as that used to generate the
avalanches in Fig. 6), or by an increase in the driving field
F, which can destabilize one or more phases. To define a
correlation length g below threshold, we identify a

characteristic length from the distribution of avalanche
sizes D (s). We find (in d ) 1) that such a distribution ex-
hibits roughly a power-law falloff up to some cutoff sizes„,above which the distribution drops rather sharply to
zero. We define the correlation length g(f) below thresh-
old as the linear size associated with the cutoff in the
avalanche distribution. We can generate such a distribu-
tion in a variety of ways, but in this study, we have done
the following: (1) We first prepare the CDW by (a) fixing
the reduced field f to a specific value for f (O, (b) setting
the CDW configuration to be initially fiat (n, =Oui), and
(c) iterating the CDW until a fixed point is reached; (2)
we then generate an avalanche by (a) randomly selecting
a site on the lattice, (b) incrementing the phase at that
site by 1, and (c) iterating the CDW until once again
stable. A distribution of such avalanches is constructed
by repeating the avalanche generation [steps (2a) —(2c)j,
starting each avalanche from the stable state that remains
in the aftermath of the previous avalanche. The
avalanche size s (total number of hops) and its duration t
(total time required for the avalanche do die out) are
recorded.

Because of the history dependence of the dynamics for
F & FT, there are different ways one might define a corre-
lation length below threshold which probably will give
different estimates of the scaling exponent v'. As de-
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FICx. 6. Avalanches for various f (0 in a system of size 1282:
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FIG. 7. Avalanche size distribution D(s) for various reduced
fields f, in d =1 (a), and associated scaling collapse to extract
the correlation length exponent v' (b). We set a, = 1 for the pur-
poses of this collapse, since it is not well defined in d =1. (See
Sec. III B).
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1/d (43)

scribed above, we generate a distribution of avalanche by
driving the system noisily, such that we sample a large
extent of the available configuration space. Another ap-
proach would be to identify characteristic avalanche sizes
triggered by a slow ramping of the applied field I'. This
method samples a more specific part of the configuration
space, namely that accessible on the approach to thresh-
old from a particular initial configuration. The
configurations found on approach to threshold are typi-
cally less stable than those sampled by a noisy driving
at fixed f, and probability more susceptible to finite-size
fluctuations. Simulations by Middleton on a related au-
tomaton model with avalanches generated by a slow
ramping of the driving field apparently yield a correlation
length exponent below threshold consistent with an ap-
propriately defined finite-size correlation length ex-
ponent, which is larger than the intrinsic exponent v' we
intend to calculate.

We plot in Figs. 7—9 distributions of avalanche sizes
D(s) and associated scaling plots to extract the correla-
tion exponent v', in d = 1, 2, and 3, respectively. Implicit
in the scaling plots is the postulated relationship between
the avalanche cutoff size s„and the correlation length g.
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FIG. 9. Avalanche size distribution D (s) for various reduced
fields f, in d =3 (a), and associated scaling collapses to extract
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have a fractal dimension D&d. In lieu of actually
measuring an avalanche dimension, we approximate it as
D=d, based, in part, on evidence that avalanches in
sandpile models have dimensions close to or equal to the
underlying spatial dimension. ' (Whether or not the
disorder inherent in the CDW will affect these results is
unknown). D(s) in d =1 is clearly different from that in
higher dimensions, in that a power-law falloff for small
size s is not apparent. This is related to the "minimal sta-
bility" of the CDW in d =1. (See Sec. III B for further
discussion. ) In d = 1, we associate s„with the peak in the
distribution D (s), and in higher dimensions we identifys„from the point where the distribution drops rapidly
from the power-law falloff evident for small s.

From the scaling collapses of the distribution functions
D (s), we estimate the correlation length exponent below
threshold to be

(b)
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IIIIII I I I IIIIII I ~ I I

1010 10 10
/f

—dV

1.1+0.1, d =1,
v'= 0.6+0. 1, d =2,

0.45+0. 1, d =3 .
(44)

FIG. 8. Avalanche size distribution D (s) for various reduced
fields f, in d =2 (a), and associated scaling collapse to extract
the correlation length exponent v' (b). The exponent a, used in
the collapse in described in Sec. III B.

We will return later to discuss these results in conjunc-
tion with the correlation length exponent v measured
above threshold. The estimated errors account for both
the uncertainties in the scaling collapses as well as some
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deviation in the fractal dimension D from the underlying
spatial dimension.

2. Correlation time

The scaling theory for the depinning transition intro-
duces the exponent g to describe the divergence of the
time scale T above threshold, but says nothing about the
divergence of a macroscopic time scale below threshold.
Even though the order parameter v is identically zero
below the transition, there is a diverging time scale as re-
vealed by the distribution of avalanche duration times
D (t). Because these distributions exhibit a field-
dependent cutoff t„atlong times in the same manner as
the avalanche size distribution is cutoff at s„,we can
define a correlation time exponent g' which is analogous
to the correlation length exponent v'. In Figs. 10—12, we
plot D(t) in d =1, 2, and 3, along with scaling collapses
to extract g'. From the data in these figures, we estimate
that
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FIG. 11. Avalanche time distribution D(t) for various re-
duced fields f, in d =2 (a), and associated scaling collapse to ex-
tract the correlation time exponent g' (b). The exponent a, used
in the collapse is described in Sec. III B.

We will comment on these values later, after presenting
results above threshold.

3. CD@'polarization

Accompanying the growing avalanches near threshold
is a growing polarization of the CDW. Whereas the
correlation length g describes the typical linear size of the
CDW response to perturbations, the polarization P de-
scribes the total amount of phase transported forward.
We define the CDW polarization P with respect to a
reference state [PI:

A 10

10
P= „g(p; —p;),

L d
(46)
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FICi. 10. Avalanche time distribution D(t) for various re-
duced fields f, in d = 1 (a), and associated scaling collapse to ex-
tract the correlation time exponent g' (a). We set a, =1 for the
purposes of this collapse, since it is not well defined in d =1.
(See Sec. III B.)

where, for definiteness, we set jg] = {PJ+—,'. The polar-
ization P is, in our model, simply equal to the total num-
ber of hops with respect to the flat configuration.

We are interested in particular in the behavior of the
polarization with the driving field f. In the thermo-
dynamic limit, it is expected that the polarization
diverges as

(47)

such that a nonlinear polarizability y (defined for in-
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FIG. 13. Polarization of the CDW in d =1, for a system of
size 8192'.

B. Threshold state in the automaton model

10 1

10
(b) 10 10 10 10

t/f

a0

0 2

FIG. 12. Avalanche time distribution D(t) for various re-
duced fields f, in d = 3 (a), and associated scaling collapse to ex-
tract the correlation time exponent g' (b). The exponent a, used
in the collapse is described in Sec. III B.

creasing field F) is found to scale as

(4&)

This nonlinear polarizability is dominated by the large
O(l) hops forward rather than the small motions of
phases in their local minima. One can also define a linear
polarizability ' arising from the small phase motions
which precede and follow hops. We will not examine the
linear polarizability here.

We present data for P ( ~f ~
) which were obtained by

starting in the flat configuration I/I, increasing the driv-
ing field F just enough so as to destabilize a single site,
iterating the resulting avalanche to completion, and re-
peating this process until the threshold configuration is
reached. We show, in Figs. 13—15, polarization data in
d = 1,2 and 3, respectively. From the data in these
figures, we estimate that
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As the field F is increased to the threshold field FT, the
CDW builds up to the threshold state, teetering on the
brink of instability. In this section, we describe certain
aspects of this threshold state.

As was described in Sec. II, a major difference between
the automaton model and the lattice FLR model is the
lack of uniqueness of the threshold configuration. While
there is one and only one state in the lattice FLR model
which is stable at F=FT, there is a set of such states in
the automaton. , since small strains are not transmitted ar-
bitrarily far across the system. For this reason, much of
what we say regarding the threshold configuration will be
particular to the automaton.

Like some sandpile models which it resembles, the au-
tomaton model bui1ds up to a qualitatively different
configuration at threshold in d =1 than it does in all
higher dimensions. This difference is one of minimal"

2.8+0. 1,
y= -1.7+0. 1,

1.6+0.2,

d=1,
d=2,
d=3 .

(49)
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The result in d =2 agrees with that reported by
Middleton" for the lattice FLR model. It is inconsistent
with his result for d = 1, although we were able to simu-
late a larger system than he was.

FIG. 14. Polarization of the CDW in d =2, for a system of
size 256 .
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FIG. 15. Polarization of the CDW in d =3, for a system for
size 45 .

10

10

vs "marginal" stability. Due to the nature of the cou-
pling between nearest neighbors in the model, all
avalanches in d = 1 at threshold are as large as the system
size. The system builds up to the point where all but one
site has a curvature which is within 1 of the threshold
curvature CT. Hence the hopping of any site causes a
cascade which triggers the entire system into hopping,
and a distribution of avalanche sizes has a spike at the
system size L. This is a state of "minimal stability. " In
higher dimensions, the minimally stable state operative in
d = 1 is, in fact, unstable because of the extra connectivi-
ty inherent in higher dimensions. (The so-called "limited
local" sandpiles implement extra connectivity in d =1
through more extended interactions to generate nontrivi-
al avalanche statistics. ) As a result, the distribution of
avalanche sizes is nontrivial, exhibiting a rough power-
law falloff. This is a state of "marginal stability. "

We introduced the distribution of avalanche sizes D (s)
to define a correlation length below threshold. At thresh-
old, the rate of falloff of D (s) is of interest. We plot, in
Fig. 16, D(s) for large systems in d =2 and 3. (The dis-
tribution is trivial in d = 1 because of the minimal stabili-
ty of the CDW. ) We define an avalanche size exponent
a, via the relation
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FIG. 16. Distribution of avalanche sizes D(s) at threshold, in
d =2 and 3, demonstrating a rough power-law falloff in spatial
correlations. Extracted from the falloff is the exponent a, . We
find a& =0.99 in d =2 and 1.35 in d =3.

D(s)-s ', (f =0), (50) 10

for D (s) measured at threshold. From the data presented
here, we estimate

1.0+0.05, d =2,
1.4+0. 1, d =3 . (51)

We also consider the distribution of avalanche times
D (t) and define an exponent for its falloff:
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D(&)-& ' (f =0) . (52)

Again, from fitting simulation data, which we present in
Fig. 17, we find

FIG. 17. Distribution of avalanche time D (t) at. threshold, in
d =2 and 3, demonstrating a power-law falloff in temporal
correlations. Extracted from the falloff is the exponent a2. We
find a2=0. 80 in d =2 and 1.1 in d =3.
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0.8+0. 1,
1.1+0.2,

8 =2
G =3 (53)

800

600— d=2

Tang and Bak have measured these exponents in the
Bak-Tang-Wiesenfeld (BTW) sandpile model; tran-
scribed to our notation, they find that a&=1.0, 1.33 and
F2=0.4,0.9 in d =2, 3, respectively. In other words, a,
is the same for the BTW sandpile and our time-lag au-
tomaton, but a2 is not. It appears that the spatial charac-
teristics of the threshold configuration in our automaton
CDW are equal to those of the BTW sandpile at the self-
organized critical point, but the existence of the time-lag
alters the temporal characteristics. This is intriguing
since the scaling of the dominant time scale above thresh-
old, namely, the CDW period T, appears to be unaffected
by the existence of the time lag.

In addition to probing the threshold state by driving it
from equilibrium to study avalanches, we can probe its
static character in the absence of any driving other than
the applied field Fz-. We are particularly interested in the
distribution of curvatures D (c) at threshold. In the
language of our automaton model, an increase in the field
F serves to "excite" more phases into a state of "activi-
ty, " and the distribution of curvatures serves as an im-
portant link between the stimulus of an applied field and
the response of hopping.

For a system with periodic boundary conditions, it im-
mediately follows from the definition of the lattice Lapla-
cian that the total net curvature in the lattice for all times
is zero: g;c; =0. We can imagine building up the CDW
from an initially Aat state to that at threshold. In the Oat
configuration (n; =0@i), b,;(P)=6, (/3)Vi Since .13; are
drawn uniformly from the interval [0,1), the distribution
of b, ; (P) can be calculated: it is bounded on [ —2d, +2d],
peaked at 0, and continuous in piecewise polynomial seg-
ments of order 8+1. For a specified field, all those
phases with local curvatures c; which exceed the activa-
tion curvature C will become active and unstable, and
eventually (for F (Fz ), the CDW will stop in a stable
configuration, with c,. ~ CVj. At threshold, D (c) will be
bounded above by the threshold curvature Cz-.

Empirically, we find that in all dimensions studied, the
distribution D(c) appears to be a piecewise constant
function. We demonstrate this in Fig. 18, where we show
D(c) for large systems in d =2 and 3. This differs con-
siderably from the analogous distribution measured at
threshold in the original lattice FLR model, where there
appears to be a divergence in the density of curvatures at
threshold. This divergent distribution rejects the extra
strain accumulated near threshold which renders the
threshold state unique in the lattice FLR model.

C. The critical dynamics of the sliding state

The bifurcation of the last fixed point at threshold sig-
nals the onset of the sliding state. Within this class of
models, for F)Fz-, the CDW converges to a steady-state
periodic orbit" of period T, such that the average velocity
U is given by v—:1/T. The behavior of v with the reduced
field f is quite complicated, as is shown in Fig. 19, a log-
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FIG. 18. Distribution of curvatures D(c) in d =2 and 3, for
the time-lag automaton model. Each distribution is bounded
above by the threshold curvature C&. Note that D (c) is basical-

ly Hat for c ~ C&.

log plot of the velocity as a function of the reduced driv-
ing field for (a) a single two-dimensional sample of size
256, and (b) several two-dimensional samples of size
256 . We distinguish four velocity regimes in finite-size
systems, which we have demarcated in Fig. 19(a). Region
I is the single-particle finite-size regime, where all phases
hop as part of a single sliding domain, dominated by the
critical site at threshold. Region II is the few-particle
sparse finite-size regime, where there is more than one
sliding domain participating in the motion. Region III is
the critical regime, where the system obeys power-law
scaling characteristic of an infinite-sized CDW and in-
volves the simultaneous motion of many velocity-
correlated domains. And region IV is the high-field
crossover regime, a nonscaling regime which asymptoti-
cally approaches linear scaling at infinite f. Regions I
and II together comprise the finite-size regime in this sys-
tem, which we describe in more detail in the following
paper. We note here, however, that the critical regime
(region III) is quite small, even in a system as large as
256 . This is due in part to the fact that the finite-size re-
gime is so prominent in this system, such that finite-size
effects become apparent when the velocity-velocity corre-
lation length g is still rather small.

In the critical regime, the velocity U scales as a power
with reduced field f, as does the correlation length g.
The scaling exponents g and v can be related by the dy-
namic exponent z, which describes the time t required for
a region of linear size l to hop: t —l'. This then yields the
relation
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extent of each sliding domain g decreases as g —f, and
the time T for each of the domains to simultaneously hop
through a full wavelength diminishes as T-f ~. Since
the domain size diminishes as f increases, the total num-
ber of domains increases with f, as new sites become in-
dependently unstable (without having to be destabilized
by an avalanche nearby). In the finite-size regime, the in-
troduction of new sliding domains leads to abrupt jumps
in the velocity since there are relatively few domains
present. In the critical regime, however, the number of
domains is sufficiently large that (in the thermodynamic
limit) the dependence of U on f is smooth.
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FIG. 19. CDW velocity v as a function of reduced driving
field f, in (a) a single two-dimensional sample of size 256' and
(b) several two-dimensional samples of size 256 . Region III is
the critical scaling regime where U —f~.

(a)

=ZV

In the standard formalism of dynamic critical phenome-
na, v and z are the fundamental exponents, with g being a
derived exponent. Within the context of CDW's, howev-
er, g has assumed a primary importance because of its
direct relevance to experimental I- V measurements.

The dynamic correlation in the sliding state can be
probed in a manner which is reminiscent of the study of
avalanches below threshold. Each phase hops at a
specific time in the periodic cycle; the spatial variation of
these times gives insight into the structure and correla-
tion of local "sliding domains" (akin to the well-defined
avalanches below threshold). We can demonstrate this
dynamic correlation graphically by shading each site on
the lattice by a grayscale appropriate for its hopping
time, for a particular sample at a fixed value of f. In Fig.
20, we do so at two different values of f: Fig. 20(a) shows
a two-dimensional sample of size 128 at a reduced field
of f=0.01, and Fig. 20(b) shows the same system at a
field f=0.005, when the system is near the onset of the
finite-size regime. We identify the velocity-velocity
correlation length g above threshold as the typical linear
extent of these sliding domains, although we can estimate
it more precisely by examining a correlation function of
the hopping times, as is done below.

As f is increased through the critical regime, the linear

FIG. 20. Grayscale shading plot of the hopping times in a
system of size 128 at two different values of the reduced field f.
Each site is shaded according to its hopping time in the periodic
orbit achieved at a fixed f: early to late times proceed from
black to white, with the orbit arbitrarily initialized at the hop-
ping of the threshold site. The average size of local hopping
avalanches, or sliding domains, is the velocity-velocity correla-
tion length g. In (a) f=0.01 and in (b) f=0.005; note that g is
slightly larger at the lower field in (b).



11 186 CHRISTOPHER R. MYERS AND JAMES P. SETHNA 47

d(log, ov )

d(log, g) (55)

Only in those intervals where this local exponent is con-
stant does the velocity exhibit true power-law scaling. In
the high-field crossover region, gi„gradually drifts up-
ward.

Before presenting results for g, we decompose the
period T in a manner which provides insight into the
scaling behavior of v. We write T as the product of the
inverse of the time-averaged density of active sites
& n„& ' and the spatially-averaged active time r:

(56)

D. Estimates of g

The advent of a scaling theory for the depinning transi-
tion has made the determination of the numerical value
of the velocity exponent g (in various dimensions d) a pri-
mary task. The single-coordinate model yields a velocity
exponent go= —,', but there is no diverging correlation
length in the model since it has only one spatial degree of
freedom. The emphasis of much work on FLR-type
models is that nontrivial critical behavior arises from the
collective dynamics of many interacting degrees of free-
dom. The mean-field result of gM„~=—,'(for a sufficiently
smooth, e.g., sinusoidal, pinning potential ) and the ex-
pectation that FLR-type models in finite dimensions
would show gW —,

' has suggested the possibility of experi-
mentally confirming the many-degree-freedom character
of sliding CDW's by measuring an exponent different
than —,'.

Accurate numerical determination of g in finite dimen-
sions is quite dificult, however, because of the prominent
finite-size regime at low fields and the slow nonscaling
crossover at high fields. Middleton has pointed out that
because the crossover at high fields is so gradual, one can
be misled by a simple straight-line fit on a log-log plot of
the velocity. More useful in determining the extent of
the critical regime and estimating the exponent g is a
determination of the local slope on a log-log plot of the
velocity, which we define as

d (log ior )

d(log, +)
In practice, we do not find a regime where Pi„is con-
stant, i.e., where r-f 4', other than for pi„=0.

As mentioned before, the high-field deviations from the
critical regime are associated with an upward drift in the
local velocity exponent g|,. The source of this upward
drift appears to come entirely from the behavior of ~, the
mean of the distribution of active times D (r). To demon-
strate this, we plot in Fig. 21 the velocity v, the density of
active sites & n „&,and the average active time 7 for a sys-
tem of size 256 [that shown in Fig. 19(a)] and the associ-
ated local exponents gi„,5i„,and g~„.

We can understand the variation of ~ and f if we con-
sider the distribution of active times D (r), where r; is the
amount of time that site i remains active, from when it is
first activated in the periodic cycle to when it finally
hops. We plot, in Fig. 22, D (r) for various fields f. D (r)
has a long-time tail that decays as ~ —,which we ar-
gue arises from the square-root scaling of ~ with excess
local curvature Ac;=c; —C and the Hat distribution of
curvatures at threshold (described in Sec. III B). We can
write the distribution of active times D (w) as a function
of the distribution of excess curvatures D ( b,c ), via

D(~)- fd(hc)D(bc)5[r —(bc) 'i ], (63)

where the 5 function 5[r—(bc) '~
] specifies the inverse

square-root scaling of ~; with Ac, . Since we find empiri-
cally a Hat distribution of curvatures near threshold, it
follows that

not only in the critical regime, but also through much of
the high-field crossover. We can define a local active site
density exponent

d(log, o& n„&)

d(log, j')
and we find that it is roughly constant over a larger range
in reduced field than is the velocity exponent gi„.We
can also define a local exponent Pi„for the average active
time 7:

where

and

(57)

(58)

D(~) —fd(bc)5[r —(bc) '~
]

—f d(bc)5(bc —r ')(bc) i

C )3/2
Ac=~

(64)

Alternatively, we can write

(59)

This decomposition is useful for several reasons. We find
that & n„&scales as a power law with reduced field over a
considerably larger range than does the velocity. In par-
ticular,

(60)

The tail of this distribution is cut off, however, by the
period T, since no site can remain active for a time longer
than the full period T. As T increases with decreasing f,
the cutoff in D (~) moves out further into the tail, and the
mean w saturates with further decreases in f since the
contribution to the mean from the tail becomes vanish-
ingly small. Therefore, as f is lowered from the high-field
crossover regime, r saturates to a constant value and gi„
becomes constant, signaling the onset of power-law scal-
ing in the critical regime. The rather rapid falloff of this
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FIG. 21. The velocity U, average density of active sites (n„),
and the inverse average active time r ' as a function of f for a
single sample of size 256 (a), and associated local exponents(„„5„„and1t&„,(b). g„,is constant only over a small interval
in f, once its&„ fiattens out to zero. The active site density ex-
ponent 5&„is seen to be roughly constant well into the high-field
crossover regime when the velocity has ceased to scale as a
power law. The drift in g„,at large fields arises from the drift
in f„,.

FIG. 22. Distribution of active times D(~), for various driv-
ing fields f in d =2. The distributions are ensemble averages
over many small systems at the specified driving fields. [We
define that D(~) is self-averaging even though the CDW veloci-
ty is not. ] The cutoff in D(r) is approximately T, which moves
out to longer times at lower fields. D(~)-~ for large ~ at

=0+.

0.45+0.05, d = 1,
0.65+0.05, d =2,
0.80+0. 1, d =3 .

(66)

the velocity exponents g. In Fig. 23, we show v(f) for
our largest samples in d =1 (L =8192) and in Fig. 24 we
show the associated local exponents, gi„and 5i„.Figures
25 and 26 show velocity data and associated local ex-
ponents in two dimensions for samples of size 256, while
the three-dimensional data is plotted in Figs. 27 and 28,
for samples of size 45 . In d =3, we begin to suffer from
the inability to go to large enough linear system sizes L to
resolve the critical regime. From these plots, we estimate
that

distribution also provides insight into the fact that g is
equal in automata with and without ' time lags. If the
distribution were to fall off sufficiently slowly, then it
might conceivably have an effect on the scaling of the
period T with f.

In any case, because ~ saturates at a nearly constant
value, g„,tends toward a constant value of

(65)
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The velocity appears to grow in the same manner as the
inverse density of active sites, in the critical regime.
Even in very large systems, the critical regime is rather
small; therefore, we can use the constancy of 5&„to aid in
determining g. In practice, we estimate g by attempting
to measure a constant range in g„„andconfirming that
g|„=5&„.In systems where we are unable to find a criti-
cal velocity regime, however, such as in higher dimen-
sions where our linear sizes L are necessarily smaller, we
can still measure 5», to get at least a rough estimate of g.

We now present results from simulations to estimate

10 2
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FIG. 23. CDW velocity v (f) in d =1 for five samples of size
X=8192'.



11 188 CHRISTOPHER R. MYERS AND JAMES P. SETHNA 47

0.8

0.7—

s ~ s

I
s s

i

s ~

+

0

1.0 s s

i

s s s s

i

s s s s

i

s s

0
X

0.6—

0.5—
Isl

(L +

0.4:—.

X

a
ii

+ a
+

0

0

+ II
X

0
x Isl

5
4

X

00

O.B—

0.6 —'
aP

X
X

X
a
+ a

+ + 0
X

4 X
0 gp a

+
X

+ 0

0.3 s s s I s s 0.4 s s s I s s s s I s s

0.6 s ~

i

s s s s

I

s s s

(,, )
—2, 0 —1.5 —1.0 —0.5 0.0

log Io(f)

1.0 s s s s s

I
s s s

(.) —2.0 —1.5 —1.0 —0.5 0.0
log gp f

00

0.4 ~'
+ +

0
0

0.2—

+
4

II l)

~ X

X

X 0

0
0

0 0
+ 0 *

4

+

~ a
X O0

s.a x

0.6—

a
+

+ 04
X X

X
+ +» a

X 0

0 X

x g aaa
a

0

0.0
(i, )

—2.0 —1,5 —1.0 —0.5
log lo(f)

0.0

FIG. 24. Local exponents in d =1, for the velocity data
shown in Fig. 23: gl„in (a), and t)„,in (b).

L%J I I I I IIII I I I I IIII I I I IIIII I

The error estimates reAect the typical Auctuations of the
local exponent gi, about the estimated g.

These results for g agree to within error for those mea-
sured by Middleton in simulations of the lattice FLR
model, a "racheted-kick" model, and a simplified au-
tomaton model (i.e. , similar to our automaton, but
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FIG. 26. Local exponents in d =2, for the velocity data
shown in Fig. 25: g„,in (a), and 5„,in (b).

without the time lag). ' Also, Narayan and Fisher's 4 —e
expansion yields, to O(e), estimates of g equal to —,', —', ,
and —,

' in d =1, 2, and 3, respectively, which are in agree-
ment with our results. Given the miniscule extent of the
critical regime observed in simulations, the prospect of
confirming these results experimentally appears difticult,
as we describe in further detail in our companion paper
on finite-size effects.
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FIG. 25. CDW velocity v(f) in d =2 for four samples of size
N =256 .

FIG. 27. CDW velocity v (f) in d =3 for two samples of size
N =45'.
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The velocities P;(t) of individual phases are highly
nonuniform in time, and in our automaton model they
are formally treated as 6-functions in time:

0.7— where t; is the hopping time of site i. Using (68), C(r, t)
becomes

Q 6 i i s i I I I I I I I I I I I I I I

(69)
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where r =)r; —r, ~.

This represents a correlation of the hopping times t, .
The motions of two sites are correlated if they hop at
nearly the same time in the cycle. The motion of the
CDW is periodic, so we need to consider the correlation
of the hopping times modulo the period T. We do this by
casting the hoping times t, into so-called hopping angles
0;, where

0 6 & i « I s & I t & & s I i i i s

We then treat the angles 0; as if they were spins in a spin
system, and evaluate the correlation function

(b)
—2.0 —1.5 —1.0 —0.5 0.0

log gp

C(r, t)= (8;.8~ ) . (7 I)

FIG. 28. Local exponents in d =3, for the velocity data
shown in Fig. 27: g„,in (a), and 5~„in (b).

E. Estimates of v
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The exponent v describes the critical scaling of the
velocity-velocity correlation length g. In mean-field
theory' vM„T=—,', a result which is uncorrected to O(e)
in Narayan and Fisher's 4 —e expansion, and which may
be uncorrected to all orders in e. Previous simulations
have reported v=0. 2+0. 1, 0.38+0.05, and 0.36+0. 10 in
d =1, 2, and 3, respectively, but evidence suggests that
critical scaling was not achieved in those calculations.
Compared with studies of the exponent g, rather little
eA'ort has been directed toward measuring v, in part be-
cause of the considerable computational burden associat-
ed with the evaluation of velocity-velocity correlation
functions.

A velocity correlation length of g does not imply that
all phases within a volume g" have identical velocities
P;(t) for all t. Nor does it suggest that regions separated
by distances larger than g move with different average ve-
locities U, since in the absence of phase slip all regions
move with the same average velocity. Rather, g describes
the size of regions which slide as part of a local
avalanche. On length scales substantially larger than g,
many local avalanches slide simultaneously and collide
with one another. This should be clear from the graphi-
cal representation of the dynamics introduced earlier in
this section.

We define a velocity-velocity correlation function
C(r, t):
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FIG. 29. Velocity-velocity correlation function C(r) in d =1
in a single sample of size 128', for a range of reduced fields. (a)
shows the raw correlation functions, while (b) shows scaled data
to extract the correlation length exponent v.
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The angle brackets denote an average over all possible
origins i. We evaluate this correlation function individu-
ally for each sample (at different values of f); we do not
perform an average over the disorder.

We have computed the correlation function C(r, t) in
d =1, 2, and 3, for fields in the critical scaling regime.
These results are plotted in Figs. 29—31 for d =1, 2, and
3, respectively; also shown are collapses of the correlation
functions to extract the correlation length exponent v.
From these scalings, we estimate
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These results are consistent with the RG calculation of
Narayan and Fisher, and lend support for their conjec-
ture that v= —,

' to all orders in e. It has been noted that
this correlation length exponent appears to violate the
bound v~ 2/d which applies to (finite-size scaling) corre-
lation length exponents in disordered systems. We ad-
dress this issue in the companion paper.

The correlation functions plotted exhibit oscillations,
which are most pronounced in d = 1 and become less pro-
nounced as d increases. These oscillations reflect the
domain structure revealed in plots of the hopping times.
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FIG. 31. Velocity-velocity correlation function C(r) in d =3
in a single sample of size 32, for a range of reduced fields. (a)
shows the raw correlation functions, and (b) shows scaled data.
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propagation of an instability, i.e., a correlated sliding
domain. The peaks in C(r) at larger distances, however,
reflect independent, uncorrelated instabilities initiated in
neighboring domains.
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FIG. 30. Velocity-velocity correlation function C(r) in d =2
in a single sample of size 128, for a range of reduced fields. (a)
shows the raw correlation functions, while (b) shows scaled
data.

A. Automaton model and universality

Our discrete-phase time-lag automaton model was in-
tended to treat as faithfully as possible the actual dynam-
ics of the original lattice FLR model without having to
numerically integrate through the slow motions which
characterize the CDW near its sticking points. This was
done with the belief that the important and relevant as-
pect of the CDW dynamics was the hopping of unstable
phases and the subsequent destabilization of neighboring
phases in an avalanche process. At the time the automa-
ton was first constructed, little was understood with re-
gard to the universality of the critical behavior of various
models. In the last two years, in addition to our work on
the time-lag automaton, Middleton has established firm
numerical estimates of critical exponents in the lattice
FLR mode1 and a variety of models intended to charac-
terize that model. The recent RCz calculation of Narayan
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and Fisher was motivated in part by the unexpected
universality which has emerged from numerical simula-
tions on these different models, and the results of that cal-
culation agree quite well with the established numerical
results.

Despite the agreement of the exponent g measured in
several models, the full universality of these models has
yet not been explored. In particular, the correlation
length exponent v has only been measured in our automa-
ton model (if we neglect previous simulations of the lat-
tice FLR model which appear not to have reached the
critical regime). Finite-size scaling correlation length ex-
ponents have been measured in a variety of models, but
it is clear that the intrinsic correlation length g' scales in a
manner different than the finite-size effects, as described
in the next paper. Studies of the BTW sandpile model
yield values for g in d =2 and 3 essentially equal to those
established in CDW models, but the reported values for v
are considerably larger than those presented here. Given
the somewhat unusual nature of the universality in these
systems, it is clear that further work is required to estab-
lish the full extent of universality in this class of models.

In retrospect, from the point of view of computing the
exponent g, we did not have to mimic the dynamics of
the original lattice FLR model in such baroque detail.
Simplified automata with and without ' time lags yield
equivalent values for g. The existence of the time lag,
and hence a second set of time scales in the problem,
does, however, introduce nontrivial behavior to other as-
pects of the CDW dynamics, such as the finite-size re-
gime. And the inclusion of procedures required for the
"no passing" rule to be satisfied are necessary for periodic
orbits to converge properly.

B. Symmetry about the transition

Critical systems typically exhibit some sort of symme-
try about the critical point, most often in the equality of
the exponents v and v' describing the divergence of the
correlation length above and below the transition. From
the scaling collapses presented earlier in the section, it is
clear that the correlation length exponents v and v' are
equal to within errors, in d =2 and 3. In d =1, v'»v.
We feel this is most likely due to the fact that we probe
correlations below threshold via avalanches, which are
extremely sensitive to the minimal stability which dom-
inates the CDW close to threshold in d =1. We can ex-
tract correlation lengths directly from the distributions
presented earlier, and find that not only do these lengths
scale in the same manner above and below threshold (for
d )2), but they appear to have the same magnitude as
well. We demonstrate this in Fig. 32, for a single sample
ln d =2.

We defined a correlation time exponent g' below
threshold in part to test whether it exhibits a symmetry
with the velocity exponent g above threshold. Again, the
statistics in d = 1 are overwhelmed by the minimal stabil-
ity of the CDW, but even for d ~ 2, the exponents appear
not to be equal. (A case for equality could be made in
d =2, but clearly not in d =3.) Even though the correla-
tion time we defined from avalanche distributions seems

20—

I I I I I I I I

Of&0
Of &0

I I I I I I I I

0.005 0.01 0.02 0.05 0.1 0.2

FICx. 32. A comparison of correlation lengths above and
below threshold, in a two-dimensional sample of size 128 . The
lengths not only scale with roughly the same exponent, but have
the same magnitude as well.

to be a natural characteristic time below threshold, it
behaves differently than the characteristic time scale T
above threshold. Perhaps some other time scale below
threshold exists which does scale with an exponent g'= g.

Our definitions of the velocity-velocity correlation
length g and our methods for measuring it differ consid-
erably above and below threshold, because of the asym-
metry of the order parameter about the transition. The
steady-state velocity is zero below threshold, so we are
forced to define g in a nonequilibrium fashion, i.e., by
measuring the transient response of the system as it
moves from one fixed point to another. Above threshold,
however, the CDW slides with nonzero velocity and we
are able to define an equilibrium (steady-state) correlation
length based on the hopping times.

We are clearly forced to define a nonequilibrium g
below threshold, but we are not so forced above thresh-
old. In fact, we could define a nonequilibrium velocity
correlation length describing the characteristic size of
rearrangements between sliding configurations induced
by a small change in driving field, or by the application of
external noise to the system. We have not attempted to
measure such a correlation length above threshold, but
such a measurement should yield further insight into any
symmetry about the critical point.

One way of symmetrically probing the system above
and below threshold involves the time evolution of the
density of active sites, n„,(t). In particular, we can set
the reduced driving field f to a particular value and let
the system relax from a "supercritical" state to a steady
state suitable for that field f. We begin with the fiat
configuration P; =P;+—', with n; =0, and monitor n„(t)
as the CDW evolves. For K&0 the CDW settles to a
fixed point with n„(t)=—0, and for f )0 the CDW finds a
periodic orbit with n„(t)periodic and nonzero for all t.

We plot n„(t)for a variety of driving fields f in Fig.
33. As is seen, for f ~0, n„(t)eventually drops to zero
as the CDW becomes pinned. The time required for the
pinned state to be reached, however, grows as f is in-
creased toward zero. For f )0, n„(t ) saturates at a
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I I IIIIII' I I I IIIII I I I IIIII I I I IIIII I TABLE I. Numerical values of the critical exponents report-

ed here, from simulations of the discrete-phase time-lag automa-
ton CDW's.
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1.2+0.2

NA
2.8+0. 1

d=2

0.65+0.05
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FIG. 33. The density of active sites as a function of time,
n„(t),for various reduced fields f. For f ~0, n„(t)eventually
reaches 0 at a fixed point. For f &0, n„(t)fiuctuates about an
average value as the CDW trajectory converges to a periodic or-
bit. The deviations from the f=0 curve appear to exhibit sym-
metry about f =0.

roughly constant nonzero value (with the time-averaged
(n„)scaling like f in the critical regime). The symme-
try exhibited about threshold is revealed in the deviations
of n„(t)from the f =0 decay. Given that the behavior
of (n„)reflects the scaling of the velocity v (i.e., in the
critical regime, /=5), one could presumably symmetri-
cally define a time scale above and below threshold from
the type of information plotted in Fig. 33.

C. Summary

We have presented a study of certain aspects of the dy-
namics and critical phenomena of CDW's in an applied
dc field. We have been particularly interested in under-
standing the dynamical processes which underlie the crit-
ical behavior observed in simulations. This interest has
led us to define an automaton model which emphasizes
the most important features of the dynamics and makes
the CDW's motion simpler to characterize. The ex-
istence of at least some degree of universality among vari-
ous models provides insight into some old questions while

posing new ones.
We have measured the velocity exponent g, and find it

to agree with estimates obtained in simulations and anal-
yses of a variety of other models. Furthermore, we have
provided some further insight into the nature of the scal-
ing regime by measuring the quantities (n„)and r and
the distribution of active times D (r). We have also mea-
sured the exponent v describing the scaling of the corre-
lation length g, and have found it to be consistent with
the 4 —e result of v= 1/2+O(e ). The prominent and
unusual finite-size effects seen above threshold are dis-
cussed in the following paper. As part of this summary,
we have compiled in Table I our estimates of all the criti-
cal exponents presented in this paper.
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