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Measurements of noise in B’ aluminas (Na, Pb, Ag, and Ca) showing diffusion noise spectra, with
high-frequency asymptote o 3’2, have been reported by Brophy and co-workers since 1985, both for
ceramics and single crystals. Comparison with the standard formulas by Burgess, Lax and Mengert, and
Van Vliet and Fassett, showed that the observed noise was 9 to 12 orders of magnitude too high. In the
present paper this discrepancy is addressed and removed. A detailed analysis is presented based on the
two-dimensional planar diffusive motion of ions and defects in the Beevers-Ross (BR) and anti-Beevers-
Ross sites of the conduction plane. Coulomb interaction in the plane is shown to have little effect due to
screening; however, the antiferroelectric coupling, which gives rise to superlattice ordering as observed
by Collin et al., causes correlated jumps within a coherence area, involving ambipolar motion of vacan-
cy anti-BR sites, cation BR sites, and cation anti-BR sites. In addition, electrostatic induction via the
spinel blocks couples the fluctuations in adjacent conduction planes. For Na-" and Pb-B" single crys-
tals quantitative agreement is obtained and the essential features of x-ray- and neutron-scattering data
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are confirmed.

I. INTRODUCTION: STRUCTURE AND CONDUCTIVITY
OF THE 8'"-ALUMINAS AND MOTIVATION
OF PRESENT WORK

In the last decade and a half, physicists, chemists, and
material science specialists have devoted much attention
to solid electrolytes such as the - and ('’-aluminas, ei-
ther in single-crystal or ceramic form, because of their
properties and applications ranging from batteries and
electrochemical devices to ion-selective membranes.
Some researchers use the name “superionic conductors”
to indicate that these materials exhibit an unusually large
ionic conductivity, which is associated with built-in
stoichiometric defects. For a tutorial survey paper we
refer to Bates, Wang, and Dudney.l

Noise measurements on these materials, including Na-,
Pb-, Ag-, and Ca-B"-aluminas were reported from
1985-1990 by Brophy and co-workers.>”7 Two common
features stand out in all the reported data. First, in the
measured range from 3X 1073 Hz to 10* Hz the noise
varies as @ >/?, which is indicative for diffusion of rather
slowly moving entities, such as ions or ion-defect
conglomerates. Second, using known values of the
diffusion constant and defect numbers, the noise appears
to be a factor 10°-10'2 too high when compared with the
elementary result for the high-frequency diffusion spec-
trum asymptote in an isotropic v-dimensional domain
(v=1,2,3), see Sec. II.

This is somewhat surprising since tracer diffusion (pro-

tons in Niobium) give noise which agrees quantitatively

with the standard theory.® It should be noted here that
Brophy and co-workers used the simple one-dimensional
(1D) result first derived by Burgess, but as later shown by
Lax and Mengert,’ the high-frequency asymptote is the
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same in all dimensions apart from a small geometry fac-
tor. Furthermore, the initial measurements, see in partic-
ular Ref. 2 for Na-f'’-alumina, indicated that the normal-
ized noise S,; /I3 did not exhibit the activation energy of
D'”? [where D =D, exp(—¢e,/kT), €, being the defect-
motion activation energy, believed to be!® ~0.31 eV for
Na-f'’-alumina] but a much higher value. In retrospect
this is attributed to contact problems and hygroscopic or
other electrochemical effects. Later measurements, in
which the effective density of diffusing entities was com-
puted from the measured data and the theoretical result
for diffusion noise in a finite embedded medium (see Sec.
II A), led to values of n.4 which were only weakly tem-
perature dependent when plotted versus 1000/7, using
the known activation energies, but with typical values of
n.g~102 cm™? for Na-B”-alumina single crystals and
~10" ¢m™3 for Pb-B” crystals. These later results are
reproduceable in time and from sample to sample and
concern us here. Explicit data are given and summarized
in Sec. III A. The conclusion can be made here, howev-
er, as in previously reported work, that the diffusing enti-
ties can be neither the totality of cations (n, ~ 10?2 cm ~?)
nor the defect population (n;~10*' cm™3). Therefore,
taking the measurements at face value, the only options
are that either a small fraction of the defects participates
in the noise, or large correlations between diffusing enti-
ties occur. Having examined these options, we will argue
in this paper that the latter possibility applies and fits in
naturally with the well-known layered structure of these
materials as well as with the x-ray cyrstallographic data
for the single crystals.

The structure of 8- and B'’-aluminas is well described
in the article by Bates, Wang, and Dudney; see Ref. 1. In
Fig. 1, we reproduce the structure of 5-alumina as found
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FIG. 1. Unit cell of B-alumina. After J. B. Bates, J. C. Wang,
and N. J. Dudney (Ref. 1, Fig. 5). With permission.

in their paper. The gross structure of 3''-alumina is the
same, but the details of the conduction area are different,
see Fig. 2. The sodium positive ions Na™t are slightly
above and below the geometrical plane between the spinel
blocks. The latter are arranged along the ¢ axis and
separated by approximately 11.2 A, one-third the height
of the unit cell. The width of a unit cell is ay Xa,, with
a0=5.621ox, see Fig. 2. The sodium ions have vacancies
at specified places about one in four in a zig-zag path con-
necting nearest Na* neighbors, each sodium ion having
three neighbors slightly below or above the plane con-
sidered. This leads to 7% vacancies in the two closely
spaced (distance 0.4 A) sodium layers. Further, each
sodium ion is coordinated by four oxygen ions, three in
one layer and one in the opposite layer. The entire struc-
ture thus obtained is stoichiometric. E.g., for sodium
['’-alumina the formula is Na; ; Mg ¢; Aljg 33 O;7; One
easily sees that the positive charge is 1.67+2X0.67
+3X10.33 =134, thus balancing the negative O~ charge.
Thus, the vacancies are globally neutral, i.e., uncharged.
Locally, however, a vacancy is a hole in the two-
dimensional Na' sea, and carries therefore a negative
charge. This is closely balanced by the Na%t environ-
ment, in particular by the three nearest neighbors, each
representing 1 positive charge. In the elementary picture
of Ref. 1, which will be amended later (see below and Sec.

" B’-alumina as
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FIG. 2. Conduction plane of #"’-alumina. After J. B. Bates,
J. C. Wang, and N. J. Dudney [Ref. 1, Fig. 6(b)]. With permis-
sion.

IT B 2) conduction takes place by hopping of a sodium
ion into an adjacent vacancy, the latter being displaced in
the opposite direction, in accordance with the negative
charge we assigned to it. The two sodium layers, togeth-
er with their coordinated oxygen ions, form a two-
dimensional substructure in the unit cell, referred to as
the conduction plane. No conduction takes place along
the c axis since there are no vacancies in the spinel block,
except for the thermodynamic number of Schottky de-
fects, which is extremely small at room temperature, ac-
cording to the mass-action law. The spinel blocks are
therefore near-lossless dielectrics. The two-dimensional
conductivity is crucial for understanding the noise. The
conductivity tensor of a three-dimensional crystal has ba-
sically two components, o in the plane and o, along the
¢ axis, with 0,—0. In a ceramic the crystallites, of size
~5X107* cm, are randomly oriented. In that case an
overall quasi-isotropic conductivity of 0.025Q07! cm™!,
comparable to the electronic conductivity of lightly
doped semiconductors, is typical for these materials.

The considerations of this paper will mainly concern
single crystals without crystallite boundaries. The con-
duction process is then described by standard 2D random
walk considerations. Thus the diffusion constant is given
by D=1lvale /T Where 1ayV3 is the spacing be-
tween sodium ion sites, v is the escape frequency (involv-
ing phonon absorption), say 2.0X 10'* sec ™!, and e, the
potential barrier to be overcome, close to 0.3 eV for Na-
we saw above. This results in a
diffusitivity of approximately 1.5X107° cm?/sec, as ob-
served in this material. The mobility follows from
Einstein’s relation; thus at room temperature with
kT=0.025eV, u=~6X10"° cm?/V sec.

The above simple model neglects correlations of
motion due to antiferroelectric coupling which gives rise
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to superlattice ordering of the vacancies in the plane, as
observed in x-ray-diffraction studies around 1980. These
studies indicate the occurrence of a well-ordered struc-
ture, with a superlattice constant ao\/3 see Collin
et al.''"13 The coherence length £ in the conductlon
lanes at room temperature is about 70 A for Na-B"-
A for K-B-, and 200 A for Pb- ['’-alumina. At hlgher
temperatures the coherence length decreases, reaching a
constant value of approximately 20 A in Na-B"-alumina
as shown by patterns in the 500-1000 K range. In the
cited studies it is indicated that the termination of coher-
ence occurs due to an interchange of Beevers-Ross (BR)
and anti-Beevers-Ross sites (these sites are the possible
cation positions in opposite layers of the conduction
plane, being separated only by a very small shift, see Fig.
2). A substructure of dimension &2 will be called a coher-
ence area (the term ‘“domain” being less desirable, since
there are no domain-wall barriers and overall continuity
of structure is maintained, see Ref. 13, last part of Sec.
IV). Within a coherence area the cations preferably oc-
cupy the BR sites while the vacancies are located at anti-
BR sites in the opposite layer, as in the illustration of Fig.
2. Therefore, as to some extent discussed and implied by
the models in the literature (see, e.g., Ref. 1, p. 50 under
“superlattice ordering”), cation-vacancy jumps must be
made in a correlated fashion within a coherence area in
order to maintain the ordered structure; this is also born
out by the observed high activation energy: 0.31 eV for
Na-f", as compared to 0.02 eV expected for independent
ion-vacancy hops. The cause of the quasi-long-range 2D
order will be further discussed in Sec. II B 2. It will be
shown there that the ordering has no effect on the
“mean” or first-order moment of the fluctuating defect
population, {N;)=N_,,. Thus, when computing the
mean conductance one can treat the defects as if they
moved independently; however, as noted above, the
diffusion constant and the mobility, which are still related
by the Einstein relation, involve a high energy-barrier ac-
tivation energy due to the actual correlated motion, re-
sulting in the low values of D and p at room temperature
given before. On the contrary, the second moment and
variance of the defect population { AN2) will be greatly
affected by the correlated motion; a simple model will be
considered later.

We now compare the two-dimensional description and
alluded values for D and p with the experimental results.
Consider the Na-f’-alumina single-crystal Na(l), de-
scribed further in Sec. III A, which is in the form of a
0.5X0.5X0.05 cm?3 square platelet having the flat sides
perpendicular to the ¢ axis. One pair of diagonally op-
posed corner electrodes is used for carrying the current,
while the other pair serve as probes for noise measure-
ments, see Fig. 3. In diffusion noise measurements, the
transverse contacts probe the conductance fluctuations in
the subvolume area abcd. Nyquist noise measurements,
however, involve the conductance of the rectangle
spanned by BbaD and BcdD. The conductance of a two-
dimensional planar sheet is given by

G1 :(eﬂndo)(l/L) ’
where [ is the width and L the length of the conducting

(1.1)
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FIG. 3. Geometry of crystal platelets. Electrodes 4 and C
carry the current. Electrodes B and D probe the conductance-
fluctuation noise of area abcd and measure the Nyquist noise.

path. For two cations per unit cell with a vacancy rate of
17%, the vacancy (defect) density per unit area is found
to be {(ny)=ny=1.24X10" cm ™2 Clearly, see Fig. 3,
the field lines from A to C and from B to D are curved,
but suitable approximations are a width /=0.1 cm and a
length L =0.5V'2=0.7 cm. With the above values of
and ny, Eq. (1.1) gives G, =1.70X107'%(Q)~! for the
conductance of one plane. The number of conduction
planes will be denoted by K. For a thickness of 0.05 cm,
there are 0.05+11X10"8=4.,5X10° conduction planes
in parallel, so that the resulting resistance is, writing
R,=1/G,=0.6X10°Q,

R=R,/K=R,/4.5X10°=1.33X10*Q . (1.2)

Nyquist noise measurements on crystal Na(l) yield
2.2X10*Q at a temperature of 294 K and 1.5X 10*Q at
300 K. Clearly, the employed values are very reasonable
in view of these results.

A further discussion of experimental results is given in
Sec. III, after the presentation of various theories in Sec.
IT following below.

II. THEORETICAL MODELS

In Sec. II A we review the elementary theory of
diffusion noise, while in Sec. II B we discuss correlations
in the plane. In Sec. II C we consider the coupling of the
planes, i.e., the possible correlations along the c axis.

A. The diffusion noise of a planar sheet,
neglecting all correlations

The solution of the two-dimensional diffusion noise
problem, based on an eigenfunction expansion of the
Fourier-Laplace transform of the Green’s function for
the operator 3/3t +DV?*=3/3t+ A can be found in the
article by Van Vliet and Fassett,'* henceforth denoted by
VV-F. The solution occurs in the form of a double sum
and gives little insight into the problem, unless numerical
computations are performed, see Mehta.!> For a circle
(or cylinder) a closed-form solution was given by Van
Vliet and Chenette.!® The final result involves the Bessel
functions of complex argument (ber, bei, ker, kei) in ac-
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cordance with an earlier solution by Burgess.!” For-

tunately, however, we are only interested in the high-
frequency asymptote, which can be obtained rather sim-
ply. :

It is generally assumed that this high-frequency asymp-
tote of the noise spectrum for diffusion in an v-
dimensional geometry (v=1,2,3,...) goes as ® 372, as
inferred from the article by Lax and Mengert.® This,
however, is not entirely true (nor stated without restric-
tions in Ref. 9). Conditional to the w~3/2 behavior is that
we consider the diffusion of particles in a subdomain ¥V
embedded in an infinite expanse V' — . If the expanse V
is finite, or even coincides with ¥, then the boundary
conditions on the edge of V' cause the final asymptote to
be changed into » 2%, though prior to this a @~ 3/? region
may exist. Numerous examples are shown, in particular
for V coinciding with ¥ (“nonembedded problem”), in
VV-F, the Van Vliet-Chenette paper, and in Harshad
Mehta’s thesis,!> 1981 (this study also refutes many
features of the Voss-Clarke solution for heat diffusion, an
analogous problem).'® Since Brophy observed a o 3/2
spectrum in all cases, we clearly deal with an embedded
diffusion problem. This is also born out by the geometry
of Fig. 3. The transverse electrodes probe the noise from
the subdomain V; = area (abcd), embedded in the crystal
surface V' = area (ABCD). We denote by N = f v,nqd A

the total number of defects involved in diffusion and we
seek the spectrum of AN associated with transport
through the “fictitious boundaries” (term of Lax) with
the shell ¥ —V,. The high-frequency (hf) asymptote in
any geometry is most easily obtained from the general-
ized Richardson’s formula,!® see also VV-F, Eq. 272(a).
The result given there is correct for self-adjoint transport
operators A. A more general result, using a biorthogonal
eigenfunction expansion of the Green’s function was de-
rived in a survey paper by Van Vliet and Mehta® (denot-
ed as VV-M). The complete result is in Eq. (2.33) of that

paper:

_ 4(AN?) v v S (D)YR(T)
Sav(@)= Vi RerS fVSd rd’r zk" A tio

2.1

where ¢,(r) are the eigenfunctions (EF) of A, ¢, of A,
while A;, Af are the complex eigenvalues (EV) of these
operators, respectively. For the diffusion problem
e’kty Vsl/ 2 are the EF of the self-adjoint operator DV? in
any dimensionality v, the EV being —Dk?2. Further, the
sum in (2.1) is replaced by 3, —[V,/(27)"] fd"k. We
then obtain, see VV-M, Eq. (2.55),

d*kDk?
D%k*+w?

_ 4(AN?)
V,(2m)”

(2.2)

SAN(w) |devreik.r!2 .

Because of the radial symmetry of (2.2) in k space, the hf
asymptote is most easily found by considering ¥ to be a
circle of diameter [/, rather than a square. The error so
obtained is of order 4/m. For the ||? factor in (2.2) we
have,
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2 ikr— 172 2 ikr cos
std re '—fo r drfo dpe Yd o
172

=2
ﬂfo r drJy(kr)
=2m(l/2k)J(kl/2) , 2.3

where J, and J, are Bessel functions of the first kind.
Further,?!

2

J—
Ty (kl/2)[2~ =2 2[ —3 ]=——- .
|J1(kl/2)] oS K2 = 24)

We are left with the integral®?

dk D 372
o _w
o D**+w? D? |20 @.3)

The final result is, setting (AN?)=N, for Poissonian
noise, i
16N, 3/2

DI

D
2w

Say(wlarge)= (2.6)

Now let I, be the current flow due to one conduction
plane and let S; () be the corresponding spectrum. The
normalized noise goes as 1/N|, as it should be,

Sp@)  Sayle@) 16 2

I N3 DIN,

D
20

(2.7)

Let the total current to probe the conductivity fluctua-
tions be I=3X I, ,=KI,, where K is the number of
conducting layers in parallel. For the noise we have

Si(w)= ES,“,“-FZ'SI , (3’ means i7j),
i ij

141

(2.8)

where SI“IU-O:SANI.,AN]' The first sum is KS;; and if

there is no correlation between conduction planes, the
second sum is zero. Then we find, restoring for generality
and later reference the variance in the numerator,

Si(@) _ 1 55{@)  y6(aN?) 2

D
I3 K 13 DKIN}

2w

(2.9)

On the other hand, if the fluctuations in adjacent layers
are fully correlated, then the second sum in (2.8) equals
K(K—1)8;, so that S,(a)):KZS,l(w). In that case the

total noise is
Silw) Sll(a))

1§ I

372

_ 16¢(AN?) (2.10)

DIN}

D
2w

i.e., the observed normalized noise is the same as the nor-
malized current or number fluctuations [Eq. (2.7)] for a
single conduction plane.

B. Electrostatic effects in the conduction plane

1. Effects of the Coulomb field; the density-density
correlation function

The effect of the Coulomb field arising from the
charged defects mentioned in several already quoted pa-
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pers is, in our opinion, greatly misunderstood. In partic-
ular, the Coulomb field does not produce long-range
correlations, nor does it give rise to a large modulation
factor for the noise. In this subsection we briefly indicate
that the Coulomb field is very strongly screened in both
the Debye-Hiickel and plasmon-frequency model, while
the density-density correlations contribute at most a
modulation factor of 2 to the magnitude of the noise.
The Debye-Hiickel theory for screening of the Coulomb
potential in a globally neutral plasma has been with us®
since 1923. They found from a simple argument that the
screening of one charge by a “sea” of other charges
screens the Coulomb potential, so as to give it a finite
range. The sign of the background charges is immaterial
since the screening length contains g2, with ¢=x1Ze.
Thus a positive charge can be screened by a sea of nega-
tive charge, as well as by other positive charges. From
the screened Coulomb field and associated free energy the
density-density correlation function follows. A more fun-
damental computation, based on the partition function
for the Coulomb gas, due to Bogoliubov (1946) is found in
Landau and Lifshitz.?* Finally, a non-equilibrium ap-
proach, based on the master equation and the A
theorem?’ was given by Van Vliet?® in 1971. This method
is of interest here since it is equivalent to the idea of a
correlated random walk due to ‘“potential feedback,” as
suggested by Forgacs and Kiss.?” Thus, it takes into ac-
count that a jump by one charged particle changes the
potential barrier through Poisson’s equation; this in turn
affects the next carrier, etc... . The three-dimensional
(3D) case is found in Ref. 26. The density-density corre-
lation function {An (r)An(r')) consists of a 8-function
part 8(r—r’) (“dimensional singularity”), and a part in-
volving the familiar Helmholtz function e *I*~rl/
|[r—r’|. The extension to the 2D case is straightforward.
We briefly indicate the procedure and the results.

Let 28 be the thickness of the conduction “plane.”
The density (per unit volume) of a species will be denoted
by 7' and the charge by g’ The plasma containing

=1. . .s species is assumed to be neutral. The continuity
equation for each species reads

an'

——+ d1 J'=0

.11
Y (2.11)

while the current satisfies the stochastic equation,

=g¢'A'u"-E—q'D"gradh’+¢%'(r,1) , (2.12)

7(r,t) being the Langevin source responsible for diffusion
(as well as for Nyquist noise if E=0). We write
al=al+ A", F=J,+A¥, E= E,+AE=AE, which
yields, neglecting terms O( AZ) and setting VA, ~0 for a
globally homogeneous system,

dA 7'/3t +AGu V(AE)—D VV(AR)=—V-4(r,1) .
(2.13)

In accordance with the preceding model we assume that
the tensors D and y mainly have a component D and p,
in the plane, the perpendicular components D and u, be-

ing near zero. Further, for radial planar symmetry
Poisson’s equation reads
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S g/Ari/ee, .

ji=1

div,(AE),+div,(AE),= (2.14)
Integrating along the z axis perpendicular to the conduc-
tion plane over the layer 28, and denoting by n’, densities
in the plane (per unit area) we find

S q’/An/ee€,

j=1

28div,(AE),+AE,|% 5= 2.15)

Since the right-hand side (rhs) is a double layer of oppo-
site charges (dipole layer), the field along the z direction
(c axis) jumps. We come back to this in Sec. II C.

We now substitute (2.15) into (2.13) and obtain the sto-
chastic transport equations in matrix form,

[(8/8t) L+ A][An]=—[V-q], (2.16)
where I is the unit matrix; A has the components
AJ=—8YD{V2+q'q/n{D] /28kTee, , .17

where we used the Einstein relation. The density-density
correlation function (An‘(r)An’(r')) =T%(r,r') satisfies
the Lambda theorem (Ref. 25, see also Wang and Uhlen-
beck?®):
S[A¥TH(r,r')+ AT H(x, 1) = %S"f(r,r') ,  (2.18)
k
where A, operates on the coordinate r and A, on r’; SV is
the white spectrum of the Langevin source function,

SU(r,r')=4D{V,-V,[n)(r)8?(r—r)18Y , (2.19)

where §¥ is a & function in the plane. We neglect local
inhomogeneity, Vny(r)=0 and make the ansatz

Ti(r,r')=nb8P(r—r" )87+ ninig'q’o(r,r') . (2.20)

The set of equations (2.18) is then identically satisfied by
the Helmholtz equation

22 w2 22 k
Vio—k’'0o=Viwo—k’'0=(k*/3, ngl
k

g5 (r—r') ,

(2.21)
where

=3 nk(g*)?/28kTee,
k

(2.21a)

is the squared reciprocal Debye length. In cylindrical
coordinates with R =(r—r1’),

d2w 1 dco 2
Lfo | o (2) )
Jr: TR 4R o(R)=C8(r—r') , (2.22)
subject to the boundary conditions (R —0)

=(C/2m)In(kR /2)— — o and w(R large) ~0. Clearly,
then, w(R)=4CY,(R) where Y, is the Neumann func-
tion. For a graph, see Ref. 21, p. 359. The damping is
now oscillatory in kR with the second zero crossing
occurring near kR =4. In the next section we will see
that ““a jump” basically includes one vacancy (charge —e)
and two neighboring cations (each representing a charge
+e/2). We thus find from (2.20)-(2.22), noticing that
equal densities of the three species are involved,
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(An,(r)An,(r'))=n, 8P (r—r') +($)n,ek’Yo(kR) .
(2.23)

For strong screening, kR —, we have k*Yy(kR)
—»—(})82(r—r’). Then for the density-density correla-
tion function, I'(r,r')—(n,,/3 8@ (r—r’). The factor 1
represents the deviation from Poissonian statistics associ-
ated with a cubic generation-recombination law for the
constituting defect species, as can be seen from the mas-
ter equation for the jump process, or more directly from
Burgess’s g-r theorem.?

For moderate screening the full results (2.23) must be
used. We still mention that the article VV-M gives the
spectrum when the density-density correlation function is
not a & function, op.cit. Eq. (2.19). Instead of
Richardson’s formula (2.2) we have more generally for
correlated diffusion

Sanlo)= k[ e [, dr
ik-«(r—r1"")
X [ da T, o) S—— . (2.24)
st Dk2+zw

For two dimensions, the substitution of (2.23) leads again
to an exercise in Bessel function integrals. For 1D and
3D cases we have evaluated (2.24) explicitly and shown
that its magnitude exceeds that of Eq. (2.2) by at most a
factor of 2. Thus, large modulation factors cannot result
from Coulomb interaction of free mobile charges. More
disappointing is that for the case at hand the screening is
strong. We saw above n,y~10'* cm™2 With §=0. 4A
and e€,~107'°, we find at 300 K, k~'=~0.5A. Such a
small screening length implies that the continuum aspects
of Debye-Hiickel theory are not really valid. In such a
case it is more realistic to employ a plasmon model, in
which case one considers the quantized collective vibra-
tions, associated with the polarization field g7 /€€, of a
displaced charge. The equation of motion,
Mk +q2ﬁx /€€,=0, where x =6r and M the ion mass,
gives the plasmon frequency a)p=(f1‘q2/M €€)? Tt is
easily shown that this leads to an inverse screening length
k~(@,/vy), v; being the velocity acquired in the dis-
placement (jump). One then finds that this leads to a
similar expression for k%, with kT replaced by the activa-
tion energy £;. The change in screening length (2. 0A) is
insignificant.

2. Electric dipole-dipole interaction

We have seen above that the dipole field created by the
displacement of the plasma charges does not cause a
long-range order; on the contrary, the Coulomb field in
the plane is strongly screened. Therefore, the correlation
effects as noted in the supercell arrangement of the de-
fects can only be caused by permanent dipole-dipole in-
teraction in the slab which constitutes the conduction
plane. A many-body quantum description of such effects
is not available for these crystals at present. X-ray stud-
ies have confirmed that an antiferroelectric order (polar-
ization Tl) exists due to slight displacements of the cat-
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ions and defects in the two layers of the conduction plane
parallel to the c axis.!* A classical compution of the pla-
nar ordering energy ( «<[?) and of the energy associated
with a line of BR-anti-BR shifts in the plane ( <) gives
by a Helmholtz free-energy minimization procedure the
coherence length I, =& [(Ref. 13, Fig. 8 and Eq. (3. 6]
For Na-" this yields at room temperature §= 70A.
Moreover, the model explains that the BR sites and anti-
BR sites are not equivalent in energy, see Fig. 4. There-
fore, the anti-BR sites are preferably empty and a single
hop, cation (BR site) & vacancy (anti-BR site), is highly
improbable. Rather, the cations stay mainly at the BR
sites. Contrary to the statement that in the new picture
“there is no vacancy-motion process” (Ref. 13, Sec. III
C), we still believe that vacancy motion is the catalyst.
With reference to Figs. 2 and 4, noting that a vacancy
will stay on an anti-BR site, its motion involves a twofold
hop: anti-BR — BR — anti-BR. The first move involves
exchange with a cation occupying a BR site and the sub-
sequent move exchange with a cation occupying an anti-
BR site. Within the coherence area, the other vacancies
and their environment make identical jumps, so that the
supercell structure is maintained. This more complex
process involves three species in the defect motion.
Though sophisticated theories on correlated random
walk are known,’® a simple argument suffices here. Let
N, be the number of defects in a coherence area and let P
be the number of vacancy anti-BR sites, each site having
an occupancy n,, being zero or one with probability
pla). Clearly N;=3F_,n,. If the sites changed in-
dependently, the generating function would have the fa-

miliar form (z")= I1.{z"*)={(z"*)?. For the present
case we have however,

CD(Z)E(ZN';): > Wi, - nP)zE"Pz‘""‘ , (2.25)
nyccnp
where now due to correlation,
Winy - np)=p(a)s, , "8, , (2.26)
This yields,
BR aBR BR aBR BR a@BR BR aBR BR aBR

“InlnlnlalalalaAIAL
Jaovastant l_#
SN e

FIG. 4. Potential profile of BR and anti-BR sites in the two
layers constituting the conduction plane. After G. Collin, J. P.
Boilot, and R. Comes (Ref. 14, Fig. 11). With permission. (a)
Conventional model in which the BR sites and anti-BR sites are
equivalent. (b) Realistic situation in which in-plane correlations
lower the energy of one site with respect to the other. (c) Same
for higher temperature.

(b)
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®(z)= 3 pla)z "e=(z") . (2.27)
The factorial moments follow from differentiation,
'(2)|,=1=(Nj)=P(n,) , (2.28a)
D"(2)|,=1=(N}N;—1))=PXn2)—P(n,) . (2.28b)

The first moment is not affected, i.e., the defects move as
if they were independent. For the second moment and
variance we find, however,

(ANP)=(NJ}N;—1))— (N, Y{N;)—1)
=P [(nl)—(ny)?%]

=(P%/3){n,)=(P/3)N}, . (2.29)

For the variance in an area V, with occupancy N,, we
add the various coherence areas incoherently. Thus also,

(AN2)=(P/3)N,, P=¢%*/3a}, (2.30)

where the value of P is based on the area of the superlat-
tice unit cell. For B-alumina the same result obtains since
the “intersticialcy mechanism” also involves three
species.

We should now once more consider the effect of the
correlations on the spectrum. The density-density corre-
lation function can in principle be found from the
Helmbholtz free energy. The main contribution is expect-
ed to be of the form

(Any(r)Any(r')) =Pn o8 ?(r—r')
+EPnyof 1Yo (Ir—1'| /E) . (2.31)

While these are significant correlations, when an integra-
tion over an area V; of radius R >>¢ is performed, as re-
quired by (2.24), the latter term still contributes approxi-
mately —Z of the first term. Thus the old result for the
high-frequency asymptote of Sec. II A still applies, by
and large, providing the variance (2.30) is employed.

C. Correlation between the conduction planes

The last point to explain is that the various conduction
planes cannot be treated as a set of uncorrelated conduc-
tors in parallel. In effect, it is perfectly legitimate and
sufficient to consider the diffusion and noise of just one
plane, in order to obtain the terminal results. If, never-
theless, we focus our attention on the entire array of con-
duction planes perpendicular to the ¢ axis, we must real-
ize that the strongly insulating behavior of the spinel
blocks causes correlations of the fluctuations along the ¢
axis, strong enough to fully couple adjacent planes, which
are a mere 11.2A apart. This is basically a manifestation
of electrostatic induction.’! We have seen that the de-
fects in the conduction plane comprise a dipole layer, see
Eq. (2.15). Thus the field lines emanate from the positive
charges in one plane and terminate on the negative
charges in the adjacent plane. Therefore the charges in
different planes line up. Actually we suggest that the full
mosaic of the coherence areas in the various planes is re-
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peated, with reversal in sign of the electric field along the
¢ axis occurring at boundary lines of BR-anti-BR shifts
in the planes. This would also explain that the x-ray pat-
terns of a thin 3D crystal show a collective 2D ordering.
If, on the contrary, as stated in some papers, the spinel
blocks decouple the set of conduction planes, the 2D
coherence pattern would be washed out.

The final problem is to obtain an estimate for the ex-
tinction length z, for this coupling. In Sec. II B 1, we
neglected D, and u,. For the sake of argument, let us as-
sume the values D, =107 cm? and p, =4X107° cm?/V
sec; this corresponds to a jump potential of £;,~0.6 eV.
Whereas cation-vacancy pairs, if spontaneously formed,
depend on half the formation energy, the number of
Schottky defects, i.e., vacancies occurring by themselves
in the bulk, goes as exp(— W, /kT). Generally we have,
see Mott and Gurney,*?

—W,/kT

n,s /N =y Be , (2.32)

where B=e*®~100 and y~64. The energy W, to
dislodge a cation in a spinel is of order 1 eV. With
N~10*/cm?® this yields n,5~2.5X10® cm™3. For the
correlation length we now obtain

z, = (e €€p/e%n,5)"?~1.2X10"°m ,
c d <%0 vS

which is to be compared with the thickness of the crystal,
d=5X10"% m. Whatever the precise values, it is very
likely that there is very long-range correlation of the fluc-
tuations ( An,(z)An,(z')) along the c axis.

In conclusion, to describe the noise we can employ the
basic results of Sec. 2 which for full correlation between
the planes leads to Eq. (2.10). A modification for
Coulomb interaction and plasma effects in the plane is
unnecessary because of the strong screening. On the oth-
er hand, correlated motion due to antiferroelectric
dipole-dipole interaction within a coherence area consti-
tutes a modulation factor P, leading to a variance given
by Eq. (2.30). This yields for the magnitude of the noise

372 2
p==_

2
3ag

D

Si(@) _ 16P | D
20

I3 3DIN,,

(2.33)

’

Compared to the result of Eq. (2.9), with Poissonian vari-
ance, reflecting the ideas in the earlier papers,>”’ this in-
dicates an overall correlation factor of PK /3, which is of
order 107, see above Eq. (1.2) for a typical value of K and
see the next section (Sec. IIT A) for P.

III. EXPERIMENTAL RESULTS

A. Typical experimental data

The experimental data for the B’-aluminas are found
in Refs. 2—7 (we note incidentally that Ref. 5 also gives
data for Na-B-alumina single crystals). Details of the ex-
perimental techniques used to measure conductivity fluc-
tuations in the [’’-aluminas have been described previ-
ously. Briefly, the corners of square single-crystal plate-
lets or ceramic samples, approximately 0.5 to 1.0cm on a
side and 0.03 to 0.10 cm thick, are sealed into the sides of
plastic test tubes containing solutions having the ionic



11 156

species of the mobile ion in the sample. As noted in con-
nection with Fig. 3, one pair of diagonally opposed
corner electrodes is used for current contacts and the oth-
er pair to measure transverse noise voltages with a PAR
113 preamplifier and a digital FFT analyzer. Suitable
electrode solutions (e.g., 0.5-M Nal in propylene car-
bonate for Na-3''-alumina) yield low-noise contacts after
aging for several hours.>¢

Typical noise spectra for a Na-3''-alumina ceramic are
shown in Fig. 5. The current noise spectra have the -3
slope characteristic of diffusion noise and the noise mag-
nitude is proportional to the square of the current. In the
absence of current, Nyquist noise corresponding to the
sample resistance is visible above amplifier noise at fre-
quencies greater than about 100 Hz. Similar features are
seen in results for single-crystal Pb-B"-alumina, Fig. 6,
and for single-crystal Ag-B’’ alumina, Fig. 7. Transverse
and longitudinal noise levels are close to equal in the case
of the Pb-f”-alumina crystal, Fig. 6, indicative of
minimal contact current noise. In the longitudinal ar-
rangement, it is not clear, however, what part of the crys-
tal makes up the “embedded area” so only the transverse
noise level data are employed.

Room-temperature parameters of several single-crystal
samples are summarized in Table I. Values for the con-
ductivity are calculated from the sample dimensions and
resistance as determined from the Nyquist noise. The
agreement with literature values is good, given the rather
unfavorable geometry of these square samples for con-
ductivity studies and the known sensitivity of the conduc-
tivity to crystal growth conditions. Corresponding values
for diffusion constants calculated from the conductivities
and the Einstein relation are also in good agreement with
the literature. For example, the measured room-
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FIG. 5. Diffusion noise spectra of a Na-3'"-alumina ceramic
at room temperature.
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FIG. 6. Transverse and longitudinal diffusion noise spectra of
a Pb-B"-alumina single crystal.

temperature diffusion constant for crystal Na(l) is
1.5X107% cm?/sec. The activation energies for the
diffusion constants are found from the variation of Ny-
quist noise with temperature over the limited range
(260-340 K) around room temperature permitted by the
liquid electrodes.

It is experimentally convenient to measure the trans-
verse noise voltage and longitudinal dc current and derive
values of S;(w)/I* by dividing by the square of the resis-
tance between the terminals, as determined from Nyquist
noise, in accordance with Thévénin’s theorem. [Since the
resistance relates to the full sample length, the derived
values of S;(w)/I* may be viewed in the nature of a
linear noise density.] Clearly, S, /I so determined, re-
lates to relative conductivity and defect number fluctua-
tions of the embedded area, S,, /03=S,y /N3, the latter
ratio being the noise computed in the previous sections.

The temperature variation of the measured diffusion
noise, shown in Fig. 8 and normalized in accordance with
Eq. (2.33), using literature values of ¢, still exhibits a
weak temperature dependence which fits the form
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FIG. 7. Diffusion noise spectra of a Ag-B8"-alumina single
crystal.
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TABLE I. Room-temperature parameters of 3"’ -alumina single crystals.

Mobile
ion o(Q cm)”! gy (eV) Ae, (eV) S;(2m10)/I?* (sec)
Measured Literature  Measured Literature = Measured Measured Calculated
Na(l) 0.01 0.014 0.49 0.31 0.035 1.9X107"% 1.6Xx1071
Na(2) 0.01 0.014 0.29 0.31 0.049 1.6X107"%  1.6X107 %
Pb 0.008 0.005 0.32 0.25 0.033 27X107"%  20Xx107M
Ag 0.006 0.004 0.22 0.19 0.090 51x10713  33x107V
P(T)=P(o )eZAEC kT , (3.1) and the total number of defects in the 0.1X0.1 cm? im-

where Ag, is the coherence energy pertaining to {(T). In
this interpretation, based on the model in Secs. II B 2 and
II C, the coherence length decreases with temperature,
reaching the limiting value P(oo) at high temperature.
This is in agreement with x-ray data (see Ref. 11, Fig. 5)
and with theory (Ref. 13, Sec. III B 2) since the antifer-
roelectric order weakens when the temperature increases.
The data of Ref. 11 plotted on a semilog scale yield a
slope of Ae,=~0.11n(1.4)=0.034 eV in good agreement
with the values in Table I, except, perhaps, in the case of
Ag-f3''-alumina.

B. Noise magnitude

The predicted magnitude of the diffusion noise for the
Na-crystal at a frequency of 10 Hz follows directly from
Eq. (4.2), using the 70A correlation length found from x-
ray analysis,
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3ag  3(5.62)
108 F T T 7 T T T T T T T .
00 b Ageeramic o g Necoamic 5
o E + E
Sg, F 0.09 e\;/ ]
8 .
- I A tal 1
: " g crys
g 1010 3 Pb ceramic E
- : -/ ]
@ [ /I/P::‘y:tal 1
i 0.07 eV 4
U 10-11 - J
) i -
= - ]
[J e
& | . .
I © ]
" ° Na crystal 1
10712 |- 0.07 eV . .
C o ]
i Na crystal 2 ]
10-13 s 1 L 1 . 1 N 1 R L X
2.8 3.0 3.2 34 3.6 3.8 4.0

1000/ T (K1)

FIG. 8. Normalized diffusion noise at a frequency of 10 Hz
as a function of reciprocal temperature for Na-, Pb-, and Ag-
B’'-alumina single crystals and ceramics.

bedded region,

Njo=0.1X0.1X1.24X10"*=1.24X10"* . (3.3)

The result, given in the last column of Table I, is in re-
markably good agreement with the experimental value.
For Pb~-B"-alumina the vacancy rate is somewhat
higher, presumably ~22% and the x-ray coherence
length in this case is 200 A, which gives P=422; again
the prediction of Eq. (2.33) corresponds quite well to the
measured data.

This agreement is not found for Ag-B”-alumina, using
the literature coherence length of 10 A. There is, howev-
er, some uncertainty in this value and the x-ray data ap-
pear to indicate some three-dimensional ordering. Also,
the value of Ae, found from the noise measurements is
significantly greater than those for Na- and Pb-B8"-
alumina. On the basis of the model and the noise mea-
surements, a coherence length of 1000 A is predicted,
which seems rather unlikely. These observations suggest
that Ag-B’’-alumina may not fit the present noise model.

Ceramic samples are consistently noisier than single
crystals, as shown in Fig. 8. Although the ceramics ap-
pear to be quasi-isotropic, the conduction remains two di-
mensional, tracing zig-zag paths through the sample
since the crystallite grains do not match. Typically, there
are 2 X 10° crystallites/cm of linear length and because of
the mismatches it is quite possible for the number of de-
fects that participate in the current between electrodes to
be considerably less than for a single crystal. Thus, if
only 10% of the defects are effective in conduction, the
noise would be higher by a factor of 10, about what is
seen in Fig. 8. Of course, other causes such as grain-
grain contacts and hygroscopic effects can also enhance
the noise level, which may account for the wide variabili-
ty found in Na-B”-alumina ceramic specimens. There-
fore, attempts to describe quantitatively diffusion noise in
ceramics seem fruitless at present.

The f3/? spectral shape characteristic of diffusion
noise holds only above a characteristic turnover frequen-
cy given by 27 f,=2D /I? where [ is the embedded area
smallest dimension. For Na(l) and a 0.1-cm embedded
sample length, the result is f,=4.8X107° Hz, well
below the experimental frequency range in Figs. 5-7. It
is also possible to derive an experimental value for 2D /12
by observing the time decay of the noise from a nonspa-
cially homogeneous distribution of the mobile ions as the
distribution returns to a uniform condition. The result,®
for a 0.8-cm long Na-B''-alumina sample is 9 X 1077 Hz,
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which for a 0.1 cm sample becomes

f0=(0.8/0.1?X9%X1077=5.7X10"° Hz.

IV. CONCLUSIONS

This theory of two-dimensional diffusion noise is based
closely on the observed crystallographic data and the re-
sults of diffuse x-ray and neutron scattering. The super-
lattice organization indicates that three “species” play a
role in the ambipolar correlated motion: anti-BR site va-
cancies, BR cations, and anti-BR cations. The noise pre-
dicted by the theory resulting from this correlated
motion in one plane gives the correct magnitude, as ob-
served by experiment. The coherence lengths and coher-
ence energy for antiferroelectric ordering within a plane
obtained from the data are in good agreement with the
literature. Furthermore, plasma-Coulomb interactions
within the plane are completely screened and do not re-
sult in enhanced noise magnitude.

The noise from adjacent planes perpendicular to the ¢
axis is completely correlated because of electrostatic in-
duction coupling via the spinel blocks. This is concor-
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dant with the observation that the two-dimensional struc-
ture patterns of platelets are not washed out by random-
ness along the c axis.

The reasons for the lack of agreement between theory
and experiment in the case of Ag-''-alumina require fur-
ther exploration. Also, it would be desirable to examine
the applicability of the model to other mobile ion species,
such as K- and Ca-f'’-alumina.
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