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We present exact analytical solutions of the discrete nonlinear Schrodinger equation for ¹itesystems
by generalizing methods employed previously for the quantum nonlinear dimer and trimer. The transi-
tion from localized to delocalized states is markedly different from that in the dimer. A transition, for
which there is no dimer analog, occurs in which an initial excitation that is partially localized over a
group of sites is found to be partially localized over these same sites or over a different group of sites de-

pending on the strength of the nonlinearity and the asymmetry of the lattice.

I. INTRODUCTION

The discrete nonlinear Schrodinger equation that will
be considered in this paper is

dcm
i V g'—c„+iy~c

~
c

dt

wherein c is the amplitude for the system to be in state
~
m ), V is the intersite matrix element describing the

linear evolution among the states
~
m ), y is the nonlinear-

ity which measures the lowering of the site energy due to
polaronic effects when the quasiparticle occupies site m,
and the prime on the sum indicates that the n =m term is
excluded. The manner in which (1.1) differs from the
usual form of the discrete nonlinear Schrodinger equa-
tion' ' is that the site-to-site motion term in (1.1) con-
nects all sites in the system in contrast to sites within a
small subset such as a nearest-neighbor group. A possi-
ble realization of such an ¹itesystem is hydrogen in
metals. ' Some of the hydrogen ions in metal-hydrides
get trapped at the interstices near an impurity, such as
oxygen, due to the strains resulting from the distortion of
the lattice by the impurity. The resulting proton dynam-
ics among the interstices surrounding the impurity
should display quantum effects, since the proton is light,
and polaron effects, due to strong interstitial-phonon in-
teractions.

In this paper, we present some exact solutions that we
obtained' ' in the analysis of this system, and comment
on the nature of the self-trapping which is particular to
it. In a forthcoming paper we describe the application of
this analysis to specific experiments.

In Sec. II we convert (1.1) into the corresponding equa-
tion obeyed by the density-matrix elements p „, intro-
duce a key quantity p (t) which is natural and convenient
for the description of the quasiparticle motion in the
present system, and obtain from the density-matrix equa-
tion, a closed equation for p (t). The equation is valid for
localized initial conditions and a class of more general

II. DERIVATION OF p EQUATION

It is straightforward to convert the discrete nonlinear
Schrodinger equation (1.1) into the corresponding
Liouville-Von Neumann equation for p =c„'c

dp „(t)
dt

i V g—(pt p )+iy(p p )p

(2.1)

We will be considering an X-site system with initial
conditions for which the excitation is either localized on
a single site, partially localized over a group of identical
sites (m„ in number), or partially localized over these
sites and over a different group of identical sites
(m~ =X—m„ in number). Specifically, these real initial
conditions are expressed as

[c
c (t =0)= '

t

for rn labeling a site of type
'
B ', (2.2)

wherein, the zero subscript indicates the t =0 value. The
initial amplitudes for the excitation to be at any of the
type-B sites can be either in phase (s =+1) or out of
phase (s = —1) with respect to the amplitude on the
type-3 sites. Symmetry ensures that the amplitudes for

but symmetric initial conditions. In Sec. III we solve the
p equation exactly in terms of elliptic functions and ob-
tain thereby a generalization of the dimer' ' and tri-
mer' solutions. Particular cases and some extensions are
treated in Sec. IV. From the time-dependent solutions we
also obtain the stationary states given by Eilbeck, Lorn-
dahl, and Scott. ' In Sec. V we present some numerical
results for the average values around which the probabili-
ties oscillate. A class of complex initial conditions is con-
sidered in the Appendix.
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m AP A A mBPBB (2.3)

Whether there is a single site of type A or a group of
them, when the excitation is equally distributed over the
A sites, the site occupation probabilities for these sites
are simply 1/m~, and the probability difference is 1.
Similarly, it is —1 for an excitation that is equally distri-
buted over the B sites. The probability difference is
(m„—mB)/N for a delocalized excitation, and is zero
when half of the probability is distributed over the A
sites (the remaining half being distributed over the B
sites).

The system of coupled equations in (2.1) can now be re-
cast into three coupled equations for p and two other
variables, q and r, whose definitions are

'")/ m AmB(PAB PBA )

r =&mAmB(PAB+PBA )

(2.4)

(2.5)

This choice ofp, q, and r is analogous to those used in the
dimer' and trimer' and satisfies

p +q +T =1

each of the type-A sites will have the same time evolu-
tion. The amplitudes for each of the type-B sites will also
have the same time evolution, but different from that of
the type-3 sites. In the case of a tetramer, for example,
these initial conditions include localized initial conditions
Ic, o= 1, C2 o=c3 Q C4 Q Oj, as well as the partially lo-
calized initial conditions (c, Q=czo=C3Q T' C4Q=Oj,
and Ic, o= —,", , cz o=c3 o=c4 o= —

—,', j. A solution for a
restricted class of complex initial conditions which in-
cludes those in (2.2) is presented in the Appendix.

For the analysis of the dimer' ' and trimer' it was
convenient to introduce the probability differences
p =Pi& P22 and p ply 2P22 respectively. Here, we in-
troduce a natural generalization of these probability
differences:

d2

dQ

P = —2yo —6y d —6y 9 2 2ye3 (2.12)

The y's in (2.12) are given by

&o
= -,

' &(2ko+1) I ~ kopo —n(2ko+1»o —
royal

—n' j

y, =-,' I(1—g ) —2ko(kopo ro't—/1 —gz)

+g(2k Q+ 1 )[2kopo+ ri(2ko+ 1 ) ]j,
y2= —

—,'3)ko(2ko+ 1),
y3=ko,2

and the three dimensionless quantities u, g, and ko,

(2.13)

(2.14)

(2.15)

(2.16)

u =XVt,
m& —m&

ko=
N'V(1 —q') ' (2.17)

have been introduced. The relative strengths of the non-
linear and linear terms in the discrete nonlinear
Schrodinger equation is represented by ko, and q is a
measure of asymmetry in the number of sites in the two
groups of sites and has the range ~g ~

~ (N 2) /N & 1.—
The closed evolution equation for p shown in Eq. (2.12)

has in its right-hand side all non-negative powers of p up
to the third power. In this feature, it is similar to the
evolution equation for a nondegenerate two-site system. '

III. SOI.UTION OF p EQUATION

As with the c's the zero subscripts denote the t =0
values. Since qo=0, we see from (2.6) that the initial
value of dp/dt is zero. This is the case, because we are
considering real initial conditions.

Substituting the solution of (2.8) into (2.7), and substi-
tuting the resulting expression into the time derivative of
(2.6), we obtain

The coupled equations in p, q, and r are simply

dr
dt

(m A mB )(X+2m A mB V) N+p

2m' mg

=2V+m A mBq,dt

dq
dt

= —2V+m m pA 8

( m „mB)(y+ 2m „mB V) —Nyp-+
2m' mg

(2.6)

(2.7)

(2.8)

4f (y—o+3yuo+3y~ +yoP3)dP .
Pp

(3.1)

Performing the integration and remembering that the ini-
tial value of dp /du is zero yields

dp = U(PQ) —U(P), (3.2)
dQ

Using the standard procedure involved in the so-called
energy method employed in classical mechanics, we mul-
tiply (2.12) by dp/du to obtain

{dp/du)o

The initial conditions expressed in (2.2) can be expressed
in terms of elements of the density matrix, or in terms of
the initial values ofp, q, and r.

wherein, the potential U is given by

U(p)=4yop+6y@ +4y2p +y3p (3.3)

P AA, Q cA, Q 2 ( +Po)/ A

pBBQcBQ=(1—m„c, o)/mB= —,'(1 —po)/mB

PABo PBA, Q cA, ocBQ B & (1 po)/4mAmB2

go=2m„c„p —1, qp=0& Tp=s & 1 pp
2 2

(2.9)

(2.10)

(2.11)

CT- +
4 P Po

U"(Po )

6
(3.4)

in which the primes indicate differentiation with respect

Expanding (dp/du) about po and using the change of
variable
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to p, (3.2) becomes
12

dc'
dQ

=4O. —g2O —
g3 . (3.5)

The coefficients g2 and g3 are related to the y's and the
potential by

ez =
—,
' [(g3+&—6/27)'~ +(g3 —&—b, /27)' ],

H =3e ——'g

1+en(2u&H, kz) 1 3 ez
p(u) =ez+H k

1 —c n(2u&H, k z) 2 4 H

(3.14)

gz =3ri 4—VzYo Y—3U(Po»

g =Yl+Y Vl 2Y—2V1YO+(V3V1 Vz)U(PO}

(3.6)

(3.7)

(3.15)

When the discriminant is zero, the Weierstrassian elliptic
function takes on simple trigonometric forms. '

and, thus, are functions ofpo kp g, and s.
The solution of (3.5) is the Weierstrassian elliptic func-

tion p(u;gz, g3). Substituting this into (3.4) gives the
solution for the probability difference.

IV. PARTICULAR CASES AND EXTENSIONS

Substituting (2.13)—(2.16) into (3.6)—(3.7), the discrim-
inant in (3.10) can be factored as

6U'(po)
p(u}=po

24p(u;gz, g3 }+U"(po )
(3.8)

6= —,'k [U'(p )] O[k ], (4.1)

U'(po) =2+1—
z) [po+1 —

z) +ro[2kopo —z)(2ko+1)]],
This is similar to a solution obtained for a quite different
physical system, namely the nondegenerate, nonlinear di-
mer. ' The site occupation probabilities follow directly
from p

(1+p)/(2m„)
(1 —p)/(2m~ )

(4.2)

wherein the last term of 6, of order ko, has simple factors
only in very special cases (e.g., when po = 1). We see that
for the linear N mer (ko=-0) and for situations where the
initial slope of the potential is zero, the discriminant is
zero. These are two of the special cases treated in detail
below.

A
for n labeling a site of type (3.9) A. Zero nonlinearity

g2 27g3

4z —gzz —g3 =0=4(z —e, )(z —ez )(z —e3 ) .

(3.10)

(3.11)

For those values of g2 and g3 that result in a positive
discriminant, the three real roots in (3.11) are

e, =Qgz/3 cosP,

ez = —
Qgz /12(cosg —&3 sing),

e 3
= —

Qgz /12(cosg+ +3 sing )
(3.12)

P =—arccos+ 27g 3 /g z

and the Weierstrassian elliptic function takes the form

e&
—e3

p(u)=e3+
sn (use, —e3, k, )

e2 e3
k, —

e&
—e3

(3.13}

If the discriminant is negative, there is one real root (usu-
ally taken to be ez), a complex conjugate pair of roots (e,
and e3), and

The probability difference in (3.8) is the primary result
of this section. It can also be expressed in terms of Jaco-
bian elliptic functions by employing the standard rela-
tionships' between them. One begins with finding the
discriminant 6 and the three roots e, from the invariants

g2 and g3.

When there is no nonlinear term in the discrete non-
linear Schrodinger equation, we see from (2.15)—(2.17)
and (4.1) that ko, yz, V3, and b, are all zero. In this case,
(3.3), (3.6), (3.7), and (3.12) reduce to

U'(po) =2+1—
z) [po+1 —

rI +ro(2kopo —
z) }],

U"(po) =2,
the probability difference is

p(u) =po —2+1—
z) (po+1 —r) rIro)sin ( —,'u ), —

(4.3)

(4.4)

and the time-averaged probability difference for zero non-
linearity is simply

& p &
=q(qp, +s+1 p,' V'I —Zz) . — (4.5)

B. Stationary states

For U'(p =po)=0, we see from (4.1) that b, =0, and
from (3.8) that p =po for all time. That is, the system

When the initial excitation is only distributed over the
A sites, the initial value of p is 1, and the average proba-
bility difference is g . When there are fewer A sites than
B sites, g is less than zero, the average probability
difference for zero nonlinearity is greater than g, and the
excitation is partially localized on the A sites. Converse-
ly, when m~ is greater than mz, g is greater than zero
(but always less than 1), the average probability difference
for zero nonlinearity is less than g, and the excitation is
partially localized on the B sites.
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finds itself in a stationary state. Requiring U'(p =po) =0
gives two solutions: po=g, s=+1, independent of ko;
and

g+1—p,' —sp, V'1 —q'
ko=ko „=

2(po n)—"I/ 1 po—
(4.6)

Figure 1 shows ko „as a function of po for two particular
values of i)(+ —,

' and —
—,') for both in-phase and out-of-

phase stationary states. The explicit form of ko „in (4.6)
is equivalent to the expression given in Sec. 3.2 and the
parametric forms given in Secs. 3.3 and 3.4i of Ref. 17
with their N =1, e= —Vy =g, and n equal to 2, 3, and 4,
respectively. Since the reduced system (the general sys-
tem subject to specific initial conditions) involves explicit
initial conditions, a stationary state of the reduced system
need not necessarily be a stationary state of the total sys-
tern. This is so because the initial conditions assumed
need not be compatible with the stationary states of the
total system. We find, however, that the stationary states
of the reduced system are stationary states of the total
system.

The site occupation probabilities p for stationary
states of the total system specified by (2.1) are time in-
dependent. For the stationary states, (2.1) gives us the re-
quirement

For a stationary state of the reduced system dp/dt =0,
and we see from (2.4) and (2.6) that p„a —p&„=0. The
stationary states of the reduced system, thus, satisfy (4.7)
and are stationary states of the general system.

C. Localized initial conditions

When the initial amplitude is equally distributed over
the 3 sites, po= 1, and the last term of b, in (4.1) can be
factored as

1+2' 1+2') 1+2')
12 '

12
' 6

(4.10)

U'(po)=2(1 —g ), U"(po)=2(5+4').

With g in the range —
—,
' g & 1, g3 is negative, the proba-

bility difference is

—(1—i) )[(1—i))ko+1][16')(1—g )ko —8g(1 —i))

X (1+4')ko —(16il —8g —1 1il+ 1)ko —1] . (4.9)

For ko= —1/(1 —i)) the first term in brackets in (4.9) is
zero, as is b, . For this special case, (3.3), (3.6)—(3.7), and
(3.12) simplify to

gp =
—,', (1+2i) ), g3 =

—,,6 (1+27) )

g (p, —p, )=0,
(1+2'))+2i)(1+g)sinh ( —,'u v'1+2'))

(4.7) p ( u ) =
(1+2'))+2(1+i))sinh ( —,'u v'1+2'))

(4.11)

g(p, —p, )= '
ma(pa~ p~a )—
m~(p~a —pa~ )

for all m and time. For the reduced system we have con-
sidered, the left-hand side of (4.7) is

and the time-averaged probability difference is

(p &=i) (4.12)

With g in the range —1 &g + —
—,', g3 is positive, the

probability difference is

for m labeling a site of type
'

&
' . (4.8)

—(1+2')+2g(1+g)sin ( —,
' u V —1 —2'�)

p(u)= (4.13)—( 1 +2g }+2( 1+g }sin ( —,
' u i/ —1 —2g )
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and the time-averaged probability difference is

(p ) =i)+(1+q)&—1 —2q . (4.14)

0.5
For initial conditions which are completely localized on a
single site (m„= l, m~=N —1), g in (4.12) and (4.14)
takes the particular value —(N 2)/N. —

-0.0 D. Reduction to a pseudodimer

-0.5

-1.0 -f. . . , i I I ~ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I i i i s I s & & s I & s & s I i i & & I

-2 -1 0 1 2 3 4 5

ko,ss

FIG. 1. Variation of the stationary-state nonlinearity param-
eter with the initial probability difference for a degenerate non-
linear N-mer as given in (4.6) for particular cases. Curves a and
c are for a trimer (g= 3,mz =2, mz =1) with out-of-phase and
in-phase initial conditions, respectively. Similarly, curves b and
d are for a tetramer (q = —4, m &

= 1,mz =3).

y, =
—,'(1 —2kopo+2sko+1 —po ), y3=ko,

(4.15)

and we see that the terms that remain in the p equation
are either quadratic in ko or linear in sko. Thus, we need

When there are an even number of sites in the N-mer
and they are equally divided between the two sites types,
g is zero. For this case, we see from (2.13) and (2.15) that
the coefficients of the even powers of p in (2.12) are zero.
The resulting p equation is similar to that of the dimer
in that only odd powers of p are present. In this pseudo-
dimer case, the coeKcients reduce to
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only consider ko & 0, and s =+1.
For large nonlinearity, kp ) ( I+s+1—

pp )/pp, the
real roots in (3.11) simplify to

Ie;] =
I
—

—,'[yi —&—y U(p. )],
—

—,'[y, +Q —y3U(pp)], y, ] . (4.16) (b) (c)

Upon substituting (4.15), (4.16), and (3.13) into (3.8) we
obtain '.?

1 —k&sn (Qe& —e3u, k& )

p =pa
1+k&sn (Qe, —e3u, k, )

wherein,

(4.17)

2kppp —2kppp(kopp —1 —2kps+1 —pp )'~

1+2kps+1 —
pp

(4.18)
Qe, —e, =

—,'[kopp+(kppp —1 —2kps+1 —
pp )' ] .

Employing the descending Landen or Cxauss transforma-
tion, the probability difference for a pseudodimer with
large nonlinearity, (4.17), simplifies to

p podn (kopou, 1/k„d ),
2 2kopo

k„d=
1+2k,s+1—p,'

(4.19)

For small nonlinearity, 0 & ko & ( I+s+I —po )/po,
there is one real root and a complex conjugate pair of
roots to (3.11). In this situation, the expressions in (3.14)
simplify to

e~=y„H= —,'( —,'+kps+1 —
pp ), (4.20)

p =ppcn(ukppp/k&d&k&d) (4.21)

The N dependence of the pseudodimer results in (4.19)
and (4.21) arises from the N dependence of kp, which also
appears in k„d. For X =2, these pseudodimer expres-
sions are identical to those for the dimer.

E. Extensions to other three-and four-site systems

Since the amplitudes for the 3 sites are equal for all
time, the intersite matrix element connecting these sites is
of no importance and can be set equal to zero. The same
is true for those connecting the B sites to one another.
The solution in Sec. III applied to the trimer ring
(g=+—,'), thus, is also the solution for a trimer chain
(three-site system without periodic boundary conditions)
subject to initial conditions in which the two end sites
have equal amplitudes. Similarly, the tetramer for
g=+ —,

' reduces to a two-dimensional star shape, and for
g=0 to a four-site ring with alternating A and B sites.

and the k2 in (3.15) reduces to k d. Substituting (4.15),
(4.20), and (3.15) into (3.8) we obtain the probability
difference for a pseudodimer with small nonlinearity as

FIG. 2. Breaking of bonds between equivalent sites produc-
ing (a) a trimer chain from a trimer ring (g=+

3 ), (b) a tetramer
star from a tetramer tetrahedron-with g= —+—,', and (c) a tetra-
mer ring with alternating site types from a tetramer tetrahedron
with g =0 (pseudodimer).

The breaking of these "bonds" in the trimer and tetramer
is shown in Fig. 2.

V. MEAN VALUES

1

Ply 2

3

1

3
1

2

In Figs. 3—8, we present the particular cases of the X-
mer listed above. These include the previously found di-

In Secs. IV A —IV C are analytical expressions for the
time-averaged probability difference for some special
cases. Here, numerical results are presented for the same
quantity, as a function of the nonlinearity parameter ko
for various initial conditions, and lattice asymmetries g.
From the discussion following (2.3), a delocalized excita-
tion is indicated by p =q, an excitation completely on the
3 sites has p =1, and an excitation completely on the B
sites is indicated by p = —1. When the probability
difference is in the range g &p & 1, the excitation is par-
tially localized on the A sites, whereas it is partially lo-
calized on the B sites for p in the range —1&p &g. If
half of the probability is distributed over the A sites, the
probability difference is zero.

The analysis presented thus far is applicable to systems
for which all sites have the same site-to-site interaction.
If this is to be interpreted as spatially nearest neighbors
in at most three spatial dimensions, we can consider a
one-dimensional dimer, a two-dimensional trimer ring,
and a three-dimensional tetramer tetrahedron. In these
situations, the lattice asymmetry parameter q takes on
the following values:
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mer and trimer ' (only t) = —
—,
'

) results, which are
displayed for comparison with our new results. The g=0
curve in these figures is applicable to the dimer and the
tetr amer when it takes the form of a pseudodimer
(mz =mz). Once the dimensionless ratio g/V is scaled
by N and t), as indicated in (2.17), to become k0 all pseu-
dodimers have identical behaviors. Thus, it is sufticient
to make comparisons to the dimer. Conclusions drawn
from such comparisons apply to all pseudodimers.

The average probability difference for an initial condi-
tion which is localized on a single site (m„= 1) for the
dimer (m~ = l, r)=0), trimer (m~ =2, t)= —

—,
' ), and tetra-

mer (m~ =3,g= —
—,') is displayed in Fig. 3. In all three

cases we see that there are ranges of values of the non-
linearity parameter for which the average probability
difference is greater than q and, therefore, the excitation
is self-trapped on the initially occupied site. We also no-
tice that only the dimer displays a range of nonlinearity
parameter for which delocalized states ( (p ) =g ) exist.
For the trimer and tetramer, only a single value of ko re-
sults in delocalized states. The local-to-delocal transition
found previously for the dimer is reduced to a single
point for the trimer and tetramer. The unique value of
the nonlinearity parameter for which delocalized states
arise was found in Sec. IV C to be —1/(1 —rI), as was the
average probability difference. As the nonlinearity pa-
rameter is increased or decreased from this value, the ex-
citation is partially localized about the initial site. Even
for zero nonlinearity, an initially localized excitation on a
trimer or tetramer is partially localized about the initial
site with (p ) = r1 ) 7).

Figure 4 displays the average probability difference for
an initial condition in which the probability is equally
distributed over all but one site (m~=1) for the dimer
(m„= l, g=O), trimer (m„=2,g= —', ), and tetramer
( m „=3,g =

—,
' ). The dimer results are, of course, identi-

cal to those shown in Fig. 3. For the trimer and the te-
tramer, we observe a range of values of the nonlinearity

~ I ~ I
I

I I ~ ~ $ I I I I
I

~ f I I j I ~ & I I ~ I ~ I I I
I

I ~ ~ /

0.8—

0.6—

0.4—

0.2— g= 1/2

r
r

/
/

/
/

/

/

/

I
/

&=1/3

0.0—
I ~ I I I I 1 I I

-2
j & i j ~ I I I I I I I I I I I

k0

I ~ s & I

FIG. 4. Similar to Fig. 3, but with the initial amplitude
equally distributed over all but a single site (p0 = 1,m& = 1 ) for
the dimer [m„= l, g=O], trimer [mA =2,g=

3 ], and tetramer:
[m„=3,q=-,'].

/ I 1 I
I

I ~ ~ I j I I I /
I

I I ~ I j I I I I
I

I I I I j I I I I
I

I 1 I I j I I ~ I
I

~ l I

parameter for which the probability difference is less than
g. That is, starting with an excitation that is partially lo-
calized over a group of sites, the resulting state is partial-
ly localized on the initially unoccupied site; the excitation
has migrated before being self-trapped. When the magni-
tude of ko is large enough, the average probability
difference is greater than g, and the excitation remains
partially localized on the initially occupied sites; the exci-
tation is self-trapped without having migrated.

As a specific case of this transition, consider the tetra-
mer with the initial site occupation probabilities

r
—(1 1 1Pjl, 0/P22, 0/P33, 0/P44, 0] r T~ 3 ~ 3/ ]

There are two values of ko, about 0.2 and —1.5, for
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FIG. 3. Dependence of the average probability difference on
the nonlinearity parameter for degenerate nonlinear N-mers
with the initial amplitude localized on a single site
(po=1, m„=1) for the dimer [m~ =l, rI=O], trimer
[m~ =2,g= —

—,
' ], and tetramer: [m~ =3,rl= ——'].

FIG. 5. Dependence of the average probability difference on
the nonlinearity parameter for degenerate nonlinear N-mers
with the initial amplitude partially localized (p0 =

9 ) on a single
A site (g ~0) and with the initial amplitude on the 8 sites in
phase (s =+1)with that on the A sites. The initial amplitudes
[c o] are: [

—3/2, —'] for the dimer, [
—3/2, —'V'2, —'&2] for the

trimer, and [ 3
3/2, 9 3/3, 93/3, 9 3/3] for the tetramer.
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FIG. 6. Similar to Fig. 5, but with the initial amplitude
on the 8 sites out of phase (s = —1) with that on the
A sites. The initial amplitudes [c o j are: [ 3 3

e: ~2 2 —', or
the dimer,

~ 3 6 6
' —'&2 &2 &2I for the trimer, and

[ —V'2, V'3 1 3 &3j for the tetramer.
3 7 9 7 9

FIG. 8. Similar to Fig. 7, but with the initial amplitude on
the 8 site out of phase (s = —1) with that on the 3 sites. The
initia amp itu es c 0 3 3'

' '
1 1' d [ &

are: @&2, ] for the dimer,
2 2 2Q —1 for[

—', V2, —', v'2
) for the trimer, and [ —', &6, —'&6, —&6, 3 I for7 3

the tetramer.

is —' and thewhich the average probability difference is —, and the

average site probabilities are

I ~ ~ I I ~ ~ ~ ~ I I ~ ~ ~

0.8—

0.6—

A
Q
v 0.4—

0.2—

Since (p44) is greater than —,', the excitation is partially
localized on site 4, the initially unoccupied site. More
corn lete localization of the excitation onto the initia ycomp e e

is ——'. For this situa-u noccupied site is evident when 0 is —
—,. or

For a narrowtion (p ) =0 and [(p„„)I =
[ 6, 6, 6, 2 J. For a narrow

range of z nearf k ( k = —0.4) (p) is less than zero and

(p«) is greater than —,'.
The transition from migratory to nonmigratory self-

trapping occurs at the two va ualues of k for whicha

(p ) = rI One .of these values, kQ = —1/(1 —rl ), was
found in ec.S . IVC. A numerical value for the other can
be found by finding the real root of the term in (4.9) t at
is cubic in ko.

Figures 5 —8 display the average probability differences
' '

1 d't'ons in which the B sites, in addition to
the A sites, have nonzero probabilities. For these initia
conditions we mus spect specify whether or not the initia am-
plitudes for the excitation to be on the B sites are in
phase (s =+1) or out of phase (s = —1) with respect to
those on the A sites. In comparing Figs. 5 and 6 with

features are shifted to larger ko for in-phase initial condi-
tions an o srnad t aller k for out-of-phase initial con itions.
The width of some features is also changed. The gross
behavior of the probability difference, however, is the
same in that the regions of migratory and nonmigratory
self-trapped as we11 as untrapped, states still remain.

h the ointAll of the curves in Figs. 3—8 pass through the p
'

(kQ= ——, pQ= —
—,', ( ) =0). For this value of kQ, we see from

2.13, (2.15), and (3.3) that both yQ and y2 are zero and
that the potential U(p) is a symmetric quartic function o

2 2U(p)= 'p +[(1—il —) ——,'pQ —s+1 rl ts' 1 p— —
4

(5.1)

0.0—
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20

FIG. 7. Similar to Fig. 5, but with the initial amplitude par-
tially localized (po = ——) on all but a single 8 site (q ~0) and

with the initial amplitude on the 8 site in phase (s =+1) with
that on the A sites. The initial amplitudes [c OI are: [ 3

v'2
3

' —V2 —v'2 —'
J for the trimer, andfor the dimer,

~ 3 3 3
—&6 —'

I for the tetramer. the inset shows the de-[9 619 619 &3

tails near ko = —0.5.

When r) is in the range ~rl ~
(&3/4 and the initial con-

ditions are out of phase, U(pQ) is always greater than
+zero, the probability difference oscillates between po

and —o, and the average probability difference is zero.and —po, an
F th' range of q and in-phase initial con i

'
nditions, the

one of theprobability difference can be confined to one o
troughs in the potential. Ifpo is in the range

~PQ~ )2[3/1 —r) —(1—r) )]'
~ ~

U( Q) is greater than zero, and the average probabihty
difference is again zero. For po outsi e g,i e this ran e, how-
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ever, U(po) is less than zero, the probability difference
oscillates in either the positive or negative trough of the
potential, and has a nonzero average probability
difference.

A similar situation arises for ~g~ ) —,. For this case, in-

phase initial conditions give rise to a probability
difference that always oscillates in a trough of the poten-
tial, whereas, out-of-phase initial conditions does so only
for

Ipo I »[&1—g' —(1—g')]'" .

For both cases, the critical values of g are found by re-
quiring U(p =po= 1) to be zero, where as the critical
values ofpo are determined by requiring U(pO) to be zero
for a given g.

the average probabilities in special cases, and their depen-
dence on system parameters has been investigated numer-
ically. A new migratory-to-nonmigratory self-trapping
transition has been investigated. Through a simple exten-
sion of the technique of solution presented here, we have
obtained solutions for the trimer chain, the tetramer ring,
and the tetramer star for a class of initial conditions.

APPENDIX

This appendix addresses the modifications to the
analysis in Secs. II and III that are required to include
the following complex initial conditions:

c (t =0)= '

Cg

VI. DIFFERENCES BETWEEN THE N-MKR
AND THE DIMER for m labeling a site of type

'

&
', (A 1)

For the localized and partially localized, real, initial
conditions considered thus far, we can draw the following
distinctions between the N-mer and the dimer which are
independent of the degree of the initial partial localiza-
tion.

(i) An excitation on a dimer' or pseudodimer (g=0)
is delocalized (untrapped) for a range of values for y/V,
and becomes self-trapped when the magnitude of y/V is
large enough. The self-trapping is always of the nonrni-
gratory type.

(ii) When the lattice asymmetry favors those sites
which have a smaller initial probability (m A & mb, q &0),
an excitation on an N-mer is in a nonmigratory self-
trapped state for all but a special value of y/V. At this
special value, the excitation is completely delocalized.
The excitation is in a nonmigratory self-trapped state
even for zero nonlinearity.

(iii) When the lattice asymmetry favors those sites
which have a larger initial probability (m„) mb, g) 0),
an excitation on an N-mer may be partially localized on
the same sites on which it was partially localized initially
(nonmigratory self-trapped), or on the sites which had the
smaller initial probabilities (migratory self-trapped). A
migratory-to-nonmigratory self-trapping transition takes
place for two values of g/V. At these particular values
the excitation is delocalized over all of the sites (un-
trapped). For values of y/V which are bounded by these
special values, the excitation is in a migratory self-
trapped state. For values of g/V outside of these bounds,
the excitation is in a nonmigratory self-trapped state.
The excitation is in a migratory self-trapped state even
for zero nonlinearity.

VII. CONCLUSIONS

We have found an analytical solution for the time-
dependent probability amplitudes of the degenerate, non-
linear N-mer for a class of initial conditions, and have
displayed specific results for the trimer and the tetramer.
From this solution, we recover the stationary states of the
trimer and the tetrarner previously found by Eilbeck,
Lomdahl, and Scott. ' Expressions have been found for

1 dp

2V+mA mB
(A2)

r0 v™AmB(cB,ocA, 0+cA, ocB,0)= "v 1 —po —
eO

2 2

(A3)

The initial conditions, thus, can either be expressed in
terms of c„O and cB0 or pO and (dp/dt)0. The p equa-
tion, and the definitions of the y's, u, g, and ko in
(2.13)—(2.17) do not change. The first real departure
from the analysis comes at (3.2). Here, (dp/dt)0 is not
zero, so

2 2

dp
dQ

+ U(pO) —U(p)= f (p) .dp
dQ

(A4)

The potential in (A4) is still given by (3.3), and the
(dp/dt)0 term has the attributes of an "initial kinetic-
energy" term. Rearranging (A4),

du =dp/v f (p), (A5)

and defining p, to be a real root of f (p) =0, the definite
integral of (A5) can be written as

u =f dp/v'f (p)

= f dp/&f (p)+ f dp/i/f (p) . (A6)
Po Pl

Expanding f (p) about pi and using the change of vari-
able

U'(p, )
o. = ——- +

p&

(A6) becomes

U"(pi )

6
(A7)

The real initial conditions in (2.2) are a subset of these.
The definitions of p, q, r, and their time derivatives in

(2.3)—(2.8) are unchanged. The particular forms for qO
and ro in (2.11) are now given by

eO= &mA B( BO AO AO BO)



11 142 JOHN D. ANDERSEN AND V. M. KENKRE

u —up= f dA, /+4k, ' —g2A, —g3, (AS) ated at p, instead ofpp. Inverting (A9) and using (A7) we
find

wherein

up= —I dA, /+4k, —g2A, —g3, op=. cr—(p =pp) . (A9)
~0

g2 3Y1 Y27 0 Y3U(pi }

g3 Y 1+3 3YO 2Y2 Yl Yp+(Y3Y1 Y2)U(pi } (A 1 1)

The integral form for the Weierstrassian elliptic function
is evident in (A8), and up is an elliptic integral in terms of
Pp (dP /dt)p kp and rl. The invariants, g2 and g3, differ
from those in (3.6) and (3.7) in that the potential is evalu-

6U'(pi )
p(Q)=pi

24p(u —up, g2, g3)+ U"(p, )
(A12)

This probability difference is the generalization of the X-
mer solution in (3.8} for the complex initial conditions in
(A 1). When real initial conditions are considered,
(dp/du)0=0, and from (A4), p„ the root of f (p}=0, is
equal to pp. Substituting p, =pp into (A9) gives op= ao,
and up=0. The expression in (A12), thus, reduces to
(3.8) for real initial conditions.
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