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We consider the problem of very dilute concentrations of interacting tunneling dipoles or
quadrupoles (TD's or TQ's) randomly distributed in a host matrix. We assume that the TD's
and TQ s can have n equivalent directions of orientation determined by the minima in the local po-
tential. Each TD and TQ is only allowed to tunnel to its nearest-neighbor potential wells. Starting
from a microscopic Hamiltonian, we use the special properties of "circulant" matrices to obtain the
exact energy eigenvalues for the following interacting pairs: (a) TD's or TQ's with three, four, and
six orientations in a plane (tunneling clock model); (b) TD's or TQ's in three dimensions with four,
six, and eight orientations. For each of the cases considered, we obtain low-energy excitations from
strongly interacting tunneling units. For very low concentrations and a random distribution of TD's
or TQ's in the medium, we use a virial expansion of the free energy to obtain the density of states
and the heat capacity. For an r interaction our results are in good agreement with the experi-
mentally measured heat capacities for 340 ppm of CN dissolved in KBr and dilute concentrations
of Li+ in KCl. We find that the experimentally observed broadening of the Schottky specific heat
arises from strongly interacting tunneling units.

I. INTRODUCTION

Below T + 1 K amorphous materials and glasses
exhibit distinct low-temperature anomalies known to
arise from the glassy state. The anomalies are the fol-
lowing: the specific heat C(T) is quasilinear in tempera-
ture T and has a time dependent component, the thermal
conductivity r.(T) is proportional to T~, the absorption
of sound saturates with intensity, the low-temperature
sound velocity has a term proportional to lnT, the di-
electric susceptibility shows long relaxation times in ad-
dition to a ln T term in its real part. The anomalies are
very similar for most amorphous materials and are often
referred to as "universal properties of glasses. "

To explain these anomalies a phenomenological model
was proposed5 based on the assumption that glasses
contain (isolated) two-level tunneling states (TLS) with
a random distribution of potential barriers separating the
wells and a random distribution of asymmetry energies
between the wells. An ad hoc assumed constant density
of states explained a number of experimentally observed
properties of glasses, including time dependent efFects,
supporting the idea of the TI S. Thus the TI S model
has by now become widely accepted as the standard phe-
nomenological model for glasses. However, in spite of its
success, the TLS model gave no information on (i) what
is the nature of the tunneling unit, and (ii) why is the
low-energy density of states a constant'? A microscopic

picture for the quasi-universal properties of glasses is still
missing.

Glasslike properties were also observed when electric
or elastic dipoles were dissolved in alkali halide crystals. 7

For example, when Li+ is dissolved in KC1, the Li+ goes
off center and forms an eight-orientational (8-0) tun-
neling dipole (TD).s The tunneling motion is performed
between the eight potential wells provided by the crys-
talline environment of the surrounding medium. On the
other hand, OH dissolved in KC1 forms a 6-0 TD; CN
dissolved in KCl or KBr forms an 8-0 tunneling elastic
dipole, denoted here as a tunneling quadrupole (TQ).s
For intermediate impurity concentrations (typically of
the order of 20—7070) many of the so-called mixed crys-
tals exhibit the same universal low-temperature proper-
ties which are also characteristic for canonical glasses. 7

In this paper we are dealing with systems of very
dilute concentrations of interacting TD's or TQ's ran-
domly placed in a crystalline host matrix. Instead of
treating the impurities as independent defects (the case
usually treated in the literaturei2), we expand the free
energy arising from our model Hamiltonian in a virial
expansion in the impurity concentration c, keeping only
terms up to c2. In analogy with the cluster expan-
sions in the theory of gases, the virial coefficients in-
volve interactions among clusters of a finite number of
particles. is Thereby we obtain corrections to the non-
interacting case (the so-called Devonshire modeli2) re-
sulting from pair interactions. In our approach we can
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obtain the low-temperature thermal properties of the sys-
tem without making use of mean-field theories which are
known to be problematic in quenched systems with com-
peting and random interactions. However, our expan-
sion method is restricted to the very dilute concentra-
tion regime in which cooperative eKects, like freezing or
frustration, play no important role. Still, we obtain low-
energy excitations with a constant density of states. The
case of intermediate to high concentrations which has
attracted much attention recently is not treated in this
paper 7i 14 19

Since the concentration of TLS in canonical glasses is
believed to be dilute, we feel that a calculation of the
density of low-energy states for a system of dilute inter-
acting tunneling units from fundamental considerations
is of interest. To understand the low-energy excitations
from very low concentrations of TD's and TQ's, one of
the authors has obtained the low-T properties for 2"-Q
TD's (d = 1, 2, ...) and 4-0 TQ's (Ref. 21) using a virial
expansion of the free energy up to c, i.e., pairs. Both sys-
tems gave glasslike excitations with a constant density of
states at very low T. However, to obtain the low-energy
excitations of a pair of interacting n-orientational tunnel-
ing units in general, one has to solve for the eigenvalues
of a pair Hamiltonian which is an (n x n2) matrix.

In recent work we have used perturbation theory to
obtain the low-energy excitations for dilute interacting
TD's and TQ's. We found that the low-energy excita-
tions arise from strong interactions. However, this ap-
proach was only valid for T (( 6 (A is the tunneling
matrix element which is of the order of 1 K). The pur-
pose of this paper is to develop a systematic approach
to solve for the low-energy excitations of an interacting
pair of TD's or TQ's exactly and to extend our previous
results~~ to higher temperatures. In particular we shall
consider here the following symmetries: (a) pairs of n
state clock-model TD's and TQ's with three, four, and
six orientations in a plane, (b) pairs of four, six, and eight
orientational TD's and TQ's in three dimensions. In each
case we assume that only nearest-neighbor-well tunneling
is important. The derived pair-energy spectrum is then
used to evaluate the second virial coefficient E~2~ of a sys-
tem of interacting TD's or TQ's exactly. A comparison of
the previous perturbation approach with this work is in
order: (i) Within the validity of our model Hamiltonian,
our results here are now applicable for all T. (ii) The
exact treatment shows that the specific heat is strongly
modified near the temperature where the maximum in
the Schottky specific heat occurs leading to a significant
broadening of the Schottky specific heat. This could not
have been seen from our perturbation calculation. (iii)
The higher excitations derived in this paper, which are
needed to evaluate the thermal conductivity and thermal
expansion (not done in this paper), could not be obtained
perturbationally.

The paper is organized as follows. In Sec. II we define
our model Hamiltonian for a quenched system of interact-
ing TD's or TQ's. In the following sections, we restrict
ourselves to a pair of interacting tunneling units. We
show that for the considered symmetries the pair Hamil-
tonian can be written as a block-circulant matrix. The

important properties of circulant matrices are briefly dis-
cussed in Sec. IV. We then use their special properties
to block diagonalize the pair Hamiltonian and solve for
the eigenvalues of the resulting n (n x n) matrices (in-
stead of one n~ x n~) for the above symmetries. In Sec.
VI we use these eigenvalues to calculate the specific heat
for a very dilute system of randomly distributed tun-
neling units interacting via an r potential considering
the first two terms in a virial expansion in the impurity
concentration. Our results are compared with exper-
imental data for 70 ppm and 150 ppm of Li+ dissolved
in KC1 (8-0 TD) and 340 ppm of CN in KBr (8-0 TQ)
(Refs. 8 and 10). We find good agreement between these
data and our calculation.

II. THE HAMILTONIAN

We consider N tunneling impurities placed at random
positions r, in a crystalline solid. Each impurity is as-
sumed to have either an electric or elastic (but not both)
dipole moment. The elastic moment will be denoted as a
quadrupole moment. In the dilute case the possible ori-
entations of the dipoles and quadrupoles are determined
by the local potential minima in the crystalline environ-
ment around the impurity. ' It was shown that electric
or elastic dipoles dissolved in cubic crystals ean tunnel
between 6, 8, or 12 equivalent directions of orientation. ~4

We assume that these directions are not changed by
the dipole-dipole or quadrupole-quadrupole interaction
or the dilution of the host atoms. Thus each impurity
is assumed to be placed in the same crystalline envi-
ronment. This approximation breaks down for higher
concentrations where the dilution of the host atoms by
the impurities is believed to introduce additonal static
random elastic fields. is Furthermore, the TD's or TQ's
are not treated as free rotors, but are confined to tun-
nel only between the different potential wells. Arrhenius
type of relaxation over the potential barriers separating
the wells, and excitations to higher levels within a well,
will also be neglected in our model ~ We therefore restrict
ourselves to low temperatures and dilute concentrations.

Let p& & (a = 1, . . . , n) be a unit vector at position
r, , which can point in either one of n directions indepen-
dently of site i. Let p, be a vector operator at site i and

~P~ ~) be an eigenstate of p, , such that

(2.1)

where n, P = 1, . . . , n and b'~p is the Kronecker symbol.
We start with a model Hamiltonian of the form H =
'R~ + 'H+, where '6 describes the interaction between
the impurities and '8+ the tunneling between different
directions of orientation. The interaction (longitudinal)
Hamiltonian 'R~ is assumed to be of the simplified form

N
&'= —).J'~(v, v, )" (2.2)

i&j

where k = 1 for TD's and k = 2 for TQ's. 2 s Each site
i has a tunneling Hamiltonian '8, associated with it to
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describe quantum mechanical tunneling. We make the
simplifying assumption that the depth of the potential
wells surrounding the impurity is the same for all wells.
We further assume that only tunneling to the nearest-
neighbor wells (NN wells) is important. s 7 An example
of an 8-0 tunneling unit (CN in KBr) is shown in Fig.
1 with the possible directions of orientation (potential
minima) pointing in the [lll] directions. Let 2 be an
(n x n) tunneling matrix with matrix elements t~p given
by

(p) —6, if, P NN 11,0, otherwise,

(2.4)

To clarify our notation, we consider the following ex-
ample. Consider the case of 2"-orientational tunneling
units in d dimensions (d = 1, 2, . . .). For this special case
it has been shown s that 2 = —6 P, i cr,* is a possible
matrix representation for the tunneling matrix T, Eq.
(2.3), where o,* is a d-fold direct product of the z com-
ponent of the Pauli spin matrix with two-dimensional
identity matrices 2, i.e., sr~ = 2, (3o.~ t3 Z', and
o. appears in the ith position. This is easily be seen by
inspection. Thus, in this special case we have

N dN
gT ) gT g) s (2 5)

where o,* in Eq. (2.5) is now understood as a dN

for n, p = 1, . . . , n and an overlap energy A ) 0.2s Note
that the tunneling matrix T, which depends only on the
local crystalline environment, is defined independently of
site i, i.e. , each impurity finds itself in the same crystal
field. Thereby we have neglected random field effects
which we believe are unimportant in the case c ~ 0. The
tunneling Hamiltonian 'R, can now be written as an N
fold direct product, '8+ = 2I3 RISER I32, with the
tunneling matrix 2 appearing in the ith position, and 2
represents the n-dimensional identity matrix. Thus '8+
is an nN-dimensional matrix. For N tunneling units our
total Hamiltonian is given by

fold direct product of two-dimensional identity matrices
with o ~, and i = 1, ..., d N denotes the position of o*
in the direct product. Further simplifications in the to-
tal Hamiltonian, Eq. (2.4), arise from the fact that for a
2"-0 tunneling unit, the d-dimensional unit vectors p,.
(ct = 1, ... , 2") are given by (+1,+1, . . . , +I)i/~d (t de-
notes the transposed vector). Since each coordinate of

p, can be +1, we can replace each vector coordinate

in p, by an operator 0.,'. /~d (i = 1, . . . , dN), where
cr,' = 2 C3 cr' 2 is a dN-fold direct product,
and o' denotes the z component of the Pauli spin ma-
trix. For k = 1 the total Hamiltonian, Eq. (2.4), for our

example, denoted as 'R( &((J,~}) can now be written

dN dN
'R( &((J,, )) = —) (J,, /d)o, 'a,' —d ) cr,* . (2.6)

Hence for k = 1 and arbitrary d, the Hamiltonian, Eq.
(2.6), satisfies the equation

where Tr stands for trace, P = (k~T) (k@ is the Boltz-
2"mann constant), and the Hamiltonians 'H&z ) and 'H(z)

are defined via Eq. (2.6). Thus we have proved that
the partition function of a system of 2"-0 TD's fac-
tors into a product of d Ising partition functions (with a
rescaled interaction potential J,~/d) in a transverse field
6 (Ref. 29).

In our approach (Sec. VI) we shall expand the free
energy arising from the Hamiltonian, Eq. (2.4), into a
virial expansion in the impurity concentration c for suf-
ficiently low c up to c, i.e. , pairs. The evaluation of
the first virial coeKcient20 involves the trace over a non-
interacting Hamiltonian, i.e. , the tunneling matrix T:
ln Tr exp( —P'8+) = N ln Tr exp( —P'T), with the tunnel-
ing matrix Z defined in Eq. (2.3). This term is easy to
evaluate. The second virial coefBcient involves the term
ln Tr exp( —P'R") (Ref. 20), where 'H" is the Hamiltonian
of an interacting pair. Sections III—V are exclusively deal-
ing with the evaluation of this term. In general it requires
the diagonalization of a pair Hamiltonian '8" which is an
(n x n ) matrix. In particular we shall be interested
in the case of 8-0 TQ's, i.e. , CN in KBr, the proto-
type orientational glass system. Before we turn to the
exact diagonalization of 'H", we treat a simpler problem
by making use of Eq. (2.7).

III. PAIRS OF 2"-ORIENTATIONAL TD'S

FIG. l. Orientations for an 8-0 tunneling unit. The p, 's

(o. = 1, . . . , 8), defined in Eq. (2.1), are pointing from the
center of the cube to the appropriate corner (potential well).
Tunneling in our model can occur, for example, from well 1
to the nearest-neighbor wells 2, 4, and 7. The energy of a
classical elastic dipole, i.e. , CN in KBr, is invariant under
180' rotations.

We have already shown in Eq. (2.7) that for 2"-
orientational TD's, the partition function of the total
Hamiltonian, Eq. (2.4), factors into a product of d two-
orientational Ising partition functions in a transverse field

This holds in particular for a pair. For d = 1 and
N = 2, Eq. (2.6) reduces to
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(3.1) II„=Circ (0, 1, 0, . . . , 0) =

(010 0 . . . 0)
0 0 1 0 . . . 0

Solving for the four eigenvalues E, , one finds

E1)2 ——+J, E3/4 —+Q4A2 + J2,

and for the pair partition function Z~ ~

(3.2)

Z(2)(P, J) = Trexp( —P'R") = ) exp( —P&,) (3 3)

z" '(P, J) = [z(')(P, J/d)]", (3.4)

with Z( )(P, J) from Eq. (3.3). The knowledge of the
pair partition function, Eq. (3.4), will be sufficient to
evaluate the second virial coefficient (Sec. VI). Equation
(3.4) does not apply to the TQ's nor to any other case
if the number of orientations n P 2". In particular, for
8-0 TQ's, we shall have to diagonalize the full (64 x 64)
matrix (Sec. VB). The latter calculations involve some
of the basic properties of circulant matrices, which will

be presented below.

Using Eq. (2.7) we can easily generalize this result to the
case of a pair of 2"-0 TD's in d dimensions. The partition
function for a pair of 2"-0 TD's, denoted as Z(2 )(P, J),
is by use of Eq. (2.7) given by

0 0
1 0

0 . . . . . . 1o. . . . . . o)

n —1

(.' = Circ (cp, c1, . . . , c„1)= ) (4 3)

In order to diagonalize C it is therefore sufficient to find a
matrix that diagonalizes II„. It is easy to verify (Ref. 30),
that such a matrix is given by

(1
1
1

1

Cd

1
~A 1

2(n —s}

(4.2)

The matrix IIn has the very important shig prope&y
that when multiplied to a matrix, say p, from the right-
hand side, shifts all elements in Q cyclically by one po
sition to the right. For example, if g is an n x n ma-
trix with elements a,~ (i, j = 1, ... , n), then the matrix
product AII„gives a matrix with elements a, ~ 1, where
the subscripts are understood to be modulo n Th.us
II2 = Circ(0, 0, 1, . . . , 0) and so forth. Note also that
IIP = II"„=Z„(Z„ is the n-dimensional identity) and
II'„= II„1 = II"„1(t stands for transpose), where the
negative exponent is understood to be modulo n. With
these properties, it is now possible to express any circu-
lant matrix (.', Eq. (4.1), as a polynomial in II„, namely,

IV. CIRCULANT MATRICES

To diagonalize the pair Hamiltonian 'PP we proceed as
follows: we show that if T, defined in Eq. (2.3), is a circu-
lant matri~, '8" can be brought into block-circulant form
and therefore readily be block diagonalized. The problem
is then reduced to the diagonalization of n (n x n) matri-
ces instead of one (n2 x n2) which greatly simplifies the
algebra. We now discuss briefly some of the basic theo-
rems on "circulants. " For more details see, for example,
Ref. 30.

A circulant matrix of order n is an (n x n) matrix (.' of
the form

~2(n —1) ~(n —1)(n 1)—
(4.4)

(4.5)

where 0„ is diagonal and

An = Diag (1)
C'd , (d, . . . ) Ld ) (4.6)

where I„*denotes the Hermitian matrix of the so-called
Fourier matrix P„, and u = exp(27t. i/n) is the nth root of
unity. The Fourier matrix X„ is unitary, that is P„Pn =
T„*T„=Z„. The following important theorem holds:

cp C] o ~ ~ C~
which is easily seen by carrying out the multiplication in

Eq. (4.5). It follows from Eqs. (4.3) and (4.5) that

(.' = Circ(cp, c1, . . . , c„1)=
Cn, 1 CO o ~ ~ C~

E„*CD = Diag (Ap, . . . , A„1) (4.7)

( c, C2 o ~ ~ cp ) and
(4.1)

where the c„'s represent arbitrary complex numbers. The
fundamental circulant matrix II„ is defined as the n-
dimensional matrix

n —1

A~ = ) c~td
v=0

j =0, . . . , n —1. (4 8)

Next we consider what happens if the c 's are them-
selves matrices, say of dimensionality m. Then instead
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of Eq. (4.3), we can write

C = Circ(Cp, Ci, . . . , C„ i) = ) II„C, , (4.9)

We next deFine the orthogonal matrix

8 = Diag (2', II,II, . . . , 11 ) . (5.6)

v=O

where the (." are now arbitrary (rn x rn) matrices and
(3 denotes a direct product. In this case it is also very
simple to show that the unitary transformation

A new representation of 'H" is obtained from the similar-
ity transformation

8'7PS = Circ( —JB"+?', —II, 0, . . . , 0, —II "),
(5.7)

(E„g2 )*C(&„g2 ) =
. . . A„, )

(4.10)

8 Diag (p(1}p(1} p(l}~(ra}) (5.8)

where use has been made of Eqs. (5.1) and (5.6), and we
have introduced the diagonal matrix

n —1

Ag' = ) C~Cd

v=O
(4.11)

Equations (4.10) and (4.11) will now be used to diago-
nalize the pair Hamiltonian 'PP.

V. DIAGONALIZATION OF Q~

The Hamiltonian of a pair, 'Mi'( J), ean be expressed as

Ri'(J) = —J(V C8 D)" + 2 g 2'+2 g?',
where we have introduced the diagonal matrix 0,

& = D g (~"} u(" S '"')

(5.1)

(5 2)

This is easily seen from Eq. (2.4) by setting N = 2 (by
the product p~ & p, ~ ~ we mean the usual vector dot prod-
uct). All matrices are understood to be n dimensional.
The tunneling matrix? was defined in Eq. (2.3), p( } in
Eq. (2.1). To clarify our notation, we treat the following
two-dimensional problems, before approaching the more
complicated case of the 8-0 TQ's.

A. Two-dimensional clock model

block diagonalizes C. The n resulting (m x m) matrices
A~ are Since Eq. (5.7) is of block circulant form, we can block

diagonalize it by making use of Eqs. (4.10) and (4.11).
The so-obtained n blocks Az are given by

A, = —JB"—(1+~ )11—[(1+~ )11]*, (5.9)

where j = 0, . . . , n —1 and * means Hermitian. For our
special choice for the p( }'s in Eq. (5.3), Eq. (5.8) yields
8 = (0+ 0')/2, where 0 was defined previously in Eq.
(4.6).

Finally we have to diagonalize the A~'s in Eq. (5.9).
YVe consider here only the following symmetries in a
plane: directions of orientation (local potential minima)
lying along the corners of a triangle (3-0), square (4-0),
hexagon (6-0). The calculations involve the diagonaliza-
tion of n (n x n) matrices [A~ in Eq. (5.9)], where n = 3,
4, and 6 is the dimensionality of the matrices 8 and II;
k = 1 for TD's and k = 2 for TQ's. For the examples
considered this presents no difficulties, however, the al-
gebra involved is somewhat tedious. The Anal results for
the energy eigenvalues E; (i = 1, . . . , n ) are summarized
in Tables I—IV for TD's and TQ's. The eigenvalues as a
function of J and 6 are obtained by changing E, ~ E,/4
and J ~ J/4 in the tables.

Provided that the tunneling matrix T is a circu-
lant, we can easily generalize Eq. (5.7). Assuming the
tunneling matrix? is of the more general form?
—Cire(0, 4i, . . . , A„ i), we obtain from Eqs. (5.1) and
(5 6)

Consider n-orientational tunneling units in a plane
with nearest-neighbor tunneling only and unit vectors

8'8"8 = Circ (—JB"+?', —AiII
—AzII, . . . ,

—6„ iII ") . (5.10)

p, ( } = [cos(2~n/n), sin(2~n/n)]', (5 3)

'T = —Circ(0, 1, 0, . . . , 0, 1) .

Hence 'RT is a block cireulant and

'R =?' C3 2'+ Z' I3?' = Circ (2, —2', 0, . . . , 0, —2') .

where a = 1, . . . , n and t denotes the transposed vector.
For convenience we measure in the following derivation
all energies in units of K. Formally this means we set
A = 1 throughout Sec. V. Using the notation introduced
in Eq. (4.1), we obtain from Eq. (2.3)

Using Eqs. (4.10) and (4.11)we can still block diagonalize
Eq. (5.10). The resulting n blocks are

TABLE I. Energy eigenvalues E, for 3-0 TD's and TQ's in
a plane. For TD's let K' = 3J/4 and E, = A; —J/4. For TQ's
set K = 3J/8 and E, = A, —5J/8. All energies are measured
in units of Q.

(5.4)

(5.5)

Eigenvalue
Ag

A2

A3 4

A5, 6

Energy
K —2
K+1

1 + v'9 + 2K + K2

(—1 + Q9 —4K+ 4K2)/2

Degeneracy

2
1
2
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TABLE II. Energies for 4-0 TQ's in a plane. The TD case
has been treated in Sec. III.

TABLE IV. Energies for 6-0 TD's in a plane.
R = v'108+ 7J2 cosC = [2J(5J —162)]/R3.

Eigenvalue
E1
E2
E3,4
E5,6

Energy
0

—J
(—J+ v'64+ J2)/2
(—J+ v'16+ J2)/2

A, =-Je" —) z.(~~"II-"+rl ),

Degeneracy
3
3
1
4

(5.11)

Eigenvalue

E3,4
E5,6
E7,8

E9,10,3.1,12

E13,14,15,16

E17,18
E19,20

E20,21

Energy Degn.
+J 1

+J/2 2
+v'4+ J~/2 2
+v'16+ J~/2 1

+/80 + 5J~ 6 v'2304 + 1056J2 + 9J4/~8 1

+/20+ 5J + v'144+ 264J + 9J /v8 2
+(—J + R cos[C'/3])/3 2

+(—J+ R cos[(C + 27r)/3])/3 2
+(—J+ R cos[(C + 47r)/3])/3 2

with j = 0, . . . , n —1. For simplicity we consider in the
following only cases in which the overlap energies 4„
between nearest-neighbor wells are the same, as was as-
sumed in Eq. (2.3). This approximation, that each parti-
cle finds itself in the same crystalline environment, would
break down for higher concentrations, when the local
crystal field becomes strongly disturbed by static random
elastic fields introduced by the host-impurity disorder. is

B. Three-dimensional problems

TABLE III. Energies for 6-0 TQ's in a plane.
R = v'27+ 4K cos4 = —8K /R, K = 3J/8,
E, = A, —5J/8.

Eigenvalue
A1

A2

A3, 4

A5, 6

A7, 8

A9, 10

A11,12

A13,14

A15

A16

A17

Energy
—K
K

+2+ K
+1+K

1 + v'9 + 2K + K2
—1 + v'9 —2K+ K2

(—1 + v'9 —4K'+ 4K~)/2
(1 + +9+ 4K + 4K2)/2

(K+ 2Rcos[C /3])/3
(K+ 2Rcos[(C + 2n)/3])/3
(K + 2R cos[(C' + 4n')/3])/3

Degeneracy
2

1
2
1
1
2
2

4

As applications of Eqs. (5.10) and (5.11), we consider
the following two problems.

(i) For 4-0 TD's and TQ's with potential wells lying
along the corners of a tetrahedron, the tunneling ma-
trix is given by 2 = —Circ(0, 1, 1, 1) (in units of 6).
Once the order of the states, [P, ) in Eq. (2.1), is cho-
sen, 8 can be readily found from Eq. (5.8). In this case
8 = Diag (1, —1/3, —1/3, —1/3). The eigenvalues are ob-
tained by diagonalizing the four (4 x 4) matrices A~ in
Eq. (5.11) for k = 1, 2 and Ai = A2 = As = 1. The final
result is given in Table V.

(ii) For 6-0 TD's and TQ's with potential min-
ima in the [100] directions, we can choose 2
—Circ(0, 1, 1, 0, 1, 1) and 8 = Diag(1, 0, 0, —1, 0, 0). In
the quadrupole case this leads to Table VI and for the
dipoles to Table VII.

For the 8-0 TQ problem the potential minima lie in

(P2 S P4 Szs) * 7e (P2 S P4 Szs), (5.14)

we can block diagonalize Eq. (5.13). The result for the
eight blocks is

A„, = -Je," —[I+(-I)&+ l]11,SII',
—[1 + (—i)q] Z; S II4 —(1+ i'i) Z, S II', , (5.15)

with p = 0, 1 and q = 0, 1, 2, 3. Again the problem
is reduced to the diagonalization of eight (8 x 8) ma-
trices. We are only interested in the quadrupole case
k = 2 (k = 1 was discussed in Sec. III). Defining

TABLE V. Energies for 4-0 TQ's and TD's in three di-
mensions. For TQ's K = 4J/9 and E, = A, —5J/9; for TD's
K = 2J/3 and E; = A, —J/3.

Eigenvalue
A1

A2, 3

A4, 5

A6

Energy
—2+K

2 + /16+ 4K + K'
+v'4+ K2

2+K

Degeneracy
5
1
3
1

the [ill] directions (Fig. 1). It is easy to show that
in this case the tunneling matrix cannot be brought into
circulant form. Instead it is possible to write T as a block
circulant with circulant blocks, namely 'Tq = —Zs S2 & &-
II2 S 2 (2&, where T&il = 114+ II4 and 2 ( l = 114. We
have used subscripts to show the dimensionality of the
single matrices. Figure 1 shows the order of the potential
minima 1—8 leading to this special representation of 2.
Defining the orthogonal matrix

& = »ag g2 SZ4, Z2 S II, ', Z2 S II, ', Z& S II, ',
rr, s z. , II, s 11,II, s 11,rr, s 11 ),

(5.12)

it is easy to show that

S'X~S = Z, S (—Je," + Z;) -Z, S 11,SZ, S 11s,

—Z2 (3 II', @22 (3 II4 —II2 (3 II,' (3 II& (3 II'4,
(5.13)

and Bs ——Diag(1, 1/3, —1/3, 1/3, —1, —1/3, 1/3, —1/3).
By use of the transformation
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TABLE VI. Energies for 6-0 TQ's in three dimensions.

Eigenvalue

Es 4

Es
E9
E10

Energy

(—J + 4 + v' J2 + 8J + 144)/2
(—J —2 + QJ2 —4J + 36)/2
(—J + 2 + v' j~ + 4J + 36)/2

—J
4

—2
0
2

Degeneracy
1
2
6
3
1
6
6
2

g4 = Diag (1, 1/9, 1/9, 1/9) and replacing Bs bye'2 SA4
in Eq. (5.15), the transformation (P2 SZ2)'A„q(%2 S&z)
yields some further sirnplifications. We obtain for the
resulting 16 (4 x 4) matrices

V„= Diag(Vii, Viz, . . . , Vi„) . (5.17)

Furthermore the quadrupole-quadrupole interaction is
invariant under the inversion of p; (Ref. 26). For even
n, we can then de6ne a matrix M„y2 with the prop-
erty Zq (3 M„y2 ——V„. Thus in the most general case
we only have to replace —JA4 in Eq. (5.16) by M4 =
Diag (Vii, Viz, Vis, Vi4), where the Vi~'s are some func-

The evaluation of Eq. (5.16) for p = 0, 1 and q = 0, 1, 2, 3
is easy, and the eigenvalues are listed in Table VIII.

It was mentioned in Ref. 25 that the full quadrupole-
quadrupole interaction is a tensor. In general the inter-
action potential V~ between two quadrupoles is of the
form V~ = V(p, , p, , r), where r is the vector connecting
the two quadrupoles at site i and j (r is considered to
be random, but fixed in a quenched system). Provided
the tunneling matrix 2 is a circulant or block circulant,
we could easily rederive Eqs. (5.11) and (5.15) for a more
general potential V& with the only change that —JB" in
our previous derivation had to be replaced by

TABLE VIII. Energies for 8-0 TQ's in three dimensions
in units of b, . R = V'12+ K~, cosC' = [K(9 —K )]/R,
K = 4J/9, E, = A, —5J/9.

Eigenvalue
Ai

A2

As/4

A5(6

A7(8

A9/10
Aii
Ai2

Ais

Energy
—K
K

+2+ K
kv'4+ K2

2+ v'16+4K+K'
—2 + v 16 —4K + K2
(K+ 4RCOS[C/3])/3

(K+ 4Rcos[(C + 2~)/3])/3
(K+ 4RCOS[(e+ 4~)/3])/3

Degeneracy
2
12
8
6
1
1
6
6
6

VI. HEAT CAPACITY FOR DILUTE
CONCENTRATIONS OF INTERACTING TD'S

AND TQ'S

We consider a quenched system of randomly dis-
tributed tunneling units. We further assume an inter-
action potential of the form J,~

= +6 r, , where r,~
is the distance between two impurities and b is a pos-
itive constant. The 6 indicates that the interaction is
competing with the same probability for being negative
or positive. 25 Starting from our model Hamiltonian in
Eq. (2.4), we expand the free energy into a virial expan-
sion in the impurity concentration c for sufBciently low
c keeping only terms up to c . Following Ref. 20, the
contributions to the free energy F = F~ ~ + F& ~ from
the erst and second virial coeFicients are given by

(6.1a)

tions of r which are easily obtained from the full tensor. 2s

Again the problem is reduced to the diagonalization of
16 (4 x 4) matrices, which can always be solved analyt-
ically. However, we are not going to pursue this prob-
lem here any further and continue with our simplified
Hamiltonian in Eq. (2.4). The result in Table VIII
concludes our discussion of the pair Hamiltonian.

TABLE VII. Energies for 6-0 TD's in three dimensions.
R = /28+ 3J cosC = (18J —80)/R, S = v'112+ 3J
cost' = (640 —36J )/S .

Eigenvalue
Ei,2

Es,4

E9
Eio

Eis
Ei4

Energy
(J+ 2 + v'J2 —4J+ 36)/2

(—J+2+ gj'+4J+36)/2
2

—2
0

2(—1 + R cos[C /3])/3
2(—1+ Rcos[(C + 2m. )/3])/3
2(—1+Rcos[(C'+ 4n.)/3])/3

2(2+ Scos[4/3])/3
2(2+ Scos[(C + 2~)/3])/3
2(2+ Scos[(@+4vr)/3])/3

Degeneracy
3
3
2
1
6
6
2
2
2
1
1
1

dJ
J2 (6.1b)

Np is the number of sites available to the impurities in the
crystal, c = N/Ka is the concentration and 1V the number
of impurities, v = V/1Va is the volume per site, Ja
6rp is the near-neighbor interaction, i.e. , the maximum
strength of the interaction. The operators 'T and '8"(J)
have been defined in Eq. (2.3) and Eq. (5.1), respectively,
and the trace (Tr) in Eqs. (6.1a) and (6.1b) is over their
eigenvalues. si The specific heat, C(T), is calculated from
C(T) = C(l) + C(2) with C(i) Q P2(c)2/QP2)( Py (i))

As our first application, we calculate C(T) for a sys-
tem of 8-0 TD's. The 2"-0 tunneling Hamiltonian is
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given in Eq. (2.5). Thus we obtain from Eq. (6.la) that
ln Trexp( —P'R+) = 3Nln[2cosh(AP)] and

100 I I I I i I I

C ' = 3cNck~ [APsech(AP)] (6.2)

Equation (6.2) is the Schottky specific heat. C(2) has to
be evaluated numerically by use of Eqs. (6.1b) and (3.4).
The result of this simple integration for two diferent con-
centrations of sLi+ in KC1 is shown in Fig. 2, together
with the experimental data from Ref. 8. There are two
adjustable parameters entering in our calculation: the
tunneling matrix element 4 and the maximum strength
of the interaction Jo. These parameters are readily de-
termined from the experimental specific heat. For both
of our graphs we have used the same values 4/k~ = 0.9
K (Ref. 32) and Jo/k~ = 550 K. This choice is in agree-
ment with previous results (Refs. 20—22) and experiment
(Ref. 8).

For the 8-0 TQ's we have to evaluate C( ) from Eq.
(6.lb) using the energy eigenvalues provided in Table
VIII. The total specific heat is again obtained by adding
C(2) and the Schottky contribution C(i& from Eq. (6.2).
Our result for 340 ppm of CN in KBr is shown in Fig. 3.
The solid line shows our predicted specific heat assum-
ing 6/k~ = 0.65 K and Jo/k~ = 450 K. These values
were chosen in agreement with Ref. 10. Our result im-
proved remarkably in comparison with experiment, if two
slightly different values for 6 in C&i) and C&2) were
used (see caption to Fig. 3).

Figure 3 also shows that the Schottky term C~ ~ alone
(long dashes) exceeds the experimental data by about
50Fo at the maximum, whereas for T below 0.2 K, C(i&

vanishes exponentially. Both of these findings are in dis-

10:

0.1

0.01 0. 1

(K)
10

FIG. 2. Specific heat for two diferent concentrations of
Li+ in KCI (8-0 TD's). The upper graph shows our result

for c = 150 ppm, the lower graph for c = 70 ppm. The
experimental data (circles, squares) were taken from Ref. 8.
In both calculations (solid lines) we have used b, /k = 0.90 K
(Ref. 32) and Jo/k = 550 K.

I

0. 1

FIG. 3. Specific heat for 340 ppm CN in KBr (8-0 TQ).
The open circles show the experimental data from Ref. 10.
The long dashes show the Schottky specific heat t without
the corrections from the second virial coefFicient. The solid
line is the total specific heat predicted from our calculation
assuming A/k = 0.65 K and Je/k = 450 K (Ref. 10). An im-
provement was made (short dashes) with values c = 320 ppm
and a b, i/k = 0.65 K for the noninteracting part [C (Zi)]
and a slightly different b,2/k = 0.55 K for the interacting part
[C (A2)] (Ref. 33).

agreement with experiment. A model of isolated defects
thus seems to be inappropriate to explain the experimen-
tal data. This discrepancy between theory and exper-
iment is usually explained in terms of a broad distribu-
tion function of overlap energies 4 which has its origin in
static random elastic fields. The existence of these ran-
dom fields seems to be well established in the interme-
diate to high concentration range. 7 3 However, we
feel that no justification for such a distribution function
exists in the very dilute limit, as c —+ 0. Furthermore it
has been estimated that the random strain fields needed
to explain the observed broadening of the Schottky spe-
cific heat would be unphysically large. A similar question
has been discussed previously elsewhere.

Figure 4 shows the specific heats arising from the first
and second virial coefncients in our model separately. For
T & 0.2 K, C~~~ greatly exceeds the Schottky contribu-
tion and therefore C = C(~&. The maximum strength
of the interaction Jo is then obtained by fitting C~ ~ to
experiment. C~ & reaches its minimum approximately
where C(i& has its maximum at T~ —0.836/k~. Thus
the net specific heat is predicted to be significantly re-
duced compared to C~ & at T —T~, and the Schottky
peak appears to be broadened, as is observed in exper-
iment. As c is increased beyond 500 ppm a dip be-
gins to show up in the predicted CN specific heat (not
shown). The resulting two peaks in the specific heat
arise in our model from the sum of the first and sec-
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FIG. 4. Specific heats C and t arising from the first
and second virial coefBcients, respectively.

the very low T-thermal properties and density of states
therefore requires an asymptotic expansion of the energy
eigenvalues given in Tables I—VIII for large J. We give
here only the final results, because the identical result can
be obtained in a simpler way from perturbation theory. 22

However, this perturbation approach was restricted to
the very low-temperature range T (( 6/kz.

For all symmetries treated in this paper, except the
8-0 TQ, the calculated specific heat is linear in T below
0.1 K, and the density of states is a constant for small
energies. 22 For 340 ppm of CN in KBr (8-0 TQ), we
find that as T is lowered below 0.1 K the specific heat
is proportional to T, where 0, —0.8. As T is further
lowered (below T —10 mK), C(T) is predicted to be
proportional to Ti~~. The density of states P(E) for
CN goes over from being approximately constant below
0.1 K to P(E) E i~2 for T less then 10 mK. 22 Below
1 mK there are no more energy states because of the
finite cutoff at the near-neighbor Jo which is of the order
k~500 K, and the specific heat is expected to vanish
exponentially. This is so because the smallest excitation
energies arise from the largest interaction.

ond virial coefBcients Ci 1 and Ci21: since C(21 scales
with c, a second peak in the specific heat will show
up as c is increased, where C( ) has its maximum at
about 0.25 K (Fig. 4). The double peak, which is also
observed experimentally, is usually explained by as-
suming a small perturbation on the crystal field poten-
tial, which has otherwise perfect octahedral symmetry
(Ref. 12). Here it is a direct consequence of the interac-
tion.

The very low Tbehavior -of C(T) and the density
of states in our model is determined by the lowest ex-
citation energies which result from strong interactions.
This seemingly contradictory result has been discussed
in length in a previous paper and is most easily un-
derstood using perturbation theory. In short, consider
an interacting pair of classical dipoles or quadrupoles.
If the ground state energy of the pair is degenerate and
the interaction J between a pair is assumed to be large,
the tunneling part of the Hamiltonian, Eq. (5.1), can be
treated as a perturbation. If the particles are only al-
lowed to tunnel between the n directions provided by the
crystalline environment, it is easy to show that the de-
generacy is not lifted in first order. Thus the tunnel
splittings (low-energy excitations) will be of the order
A~+

/~ J~~, where o. & 1 and ~1i && A. A calculation of

VII. CONCLUSION

We have used the special properties of "circulant"
matrices to obtain the exact energy spectrum for pairs
of interacting tunneling dipoles (TD's) and tunneling
quadrupoles (TQ's) for the various symmetries listed in
the text. We found low-energy excitations in all of the
considered cases from strong interactions in agreement
with previous results. Starting from a microscopic Hamil-
tonian, we have used these excitation energies to derive
the free energy of a very dilute system of interacting TD's
or TQ's mthout making use of mean-field theory known
to be very problematic in systems with random and com-
peting interactions. The low-temperature specific heat
and density of states were calculated. In particular we de-
rived the specific heat for eight-orientational TD's (sLi+
in KC1) and eight-orientational TQ's (340 ppm of CN
in KBr). We found good agreement with experimental
results supporting the idea that it is strongly interacting
tunneling units that give the anomalous low-T thermal
properties and density of states observed in dilute (orien-
tational) glasses. Since we deal here with very low con-
centrations, our work does not apply to the concentrated
mixed crystals discussed by Sethna and co-workers.
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