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Localization of classical waves in a random medium: A self-consistent theory
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We study localization of classical waves in a model of point scatterers, idealizing a random arrange-
ment of dielectric spheres (e= 1+Ae) of volume V, and mean spacing a in a matrix (e= 1). At distances
)&a energy transport is diffusive. A self-consistent equation for the frequency-dependent diffusion

coefBcient is obtained and evaluated in the approximation where noncritical quantities are calculated in

the coherent potential approximation. The velocity of energy transport and the phase velocity are renor-
malized in a similar way, even for finite-size scatterers. %'e find localization for d=3 dimensions in a
frequency window centered at co=2m/a, and for values of the average change in the dielectric constant
Ae= ( V, a )he exceeding —1.7.

In recent years there has been growing interest in stud-
ies of the propagation of classical waves in random
media. ' The revival of interest in the long-standing
problem of multiple scattering of classical waves was ini-
tiated by the discovery of the importance of quantum in-
terference effects for the transport properties of electrons
in disordered systems. While some of the features asso-
ciated with electron localization, such as enhanced
coherent backscattering, have been detected in light
scattering experiments as well, the localization of elec-
tromagnetic waves or other classical waves in random
systems has not been established beyond doubt. The
question of localization of classical waves has attracted
attention for two reasons. First, the properties of classi-
cal waves such as light waves, microwaves, and acoustic
waves in random media are of fundamental interest for
their own sake. Second, classical waves can serve as a
model systexn for testing the theory of Anderson localiza-
tion of electrons experimentally in a clean way, without
the complication of strong inelastic scattering and other
effects of electron-electron and electron-phonon interac-
tion. On the other hand, it is harder to localize classical
waves, mainly due to the fact that at low frequency the
efFect of disorder tends to average out in this case,
whereas electrons at low energy are trapped more
effectively, even by a weak random potential. Existing
theories predict localization of classical waves under cer-
tain circumstances. However, there is no conclusive
experimental evidence yet, although the recent experi-
ments by Czenack and collaborators provide strong indi-
cations for the existence of localization of light.

The outstanding problem in classical wave localization
is to find the optimal conditions for its realization. It has
been suggested that an intermediate-frequency window of
localized states separates the low-frequency extended
states characterized by Rayleigh scattering from the

high-frequency extended states described by geometric
optics. Theories based on the weak scattering limit and
on the coherent potential approximation (CPAi predict
frequency intervals within which localization should be
observed. ' These predictions are based on extrapolation
of results, obtained in the weak disorder regime. In addi-
tion it was recently recognized that considerable care has
to be exercised in transforming the results of the theory
of localization of electrons to the case of classical
waves. ' '"

This somewhat difficult situation has led to suggestions
of alternative pathways to localization. John' has pro-
posed that classical localization may be more easily
achieved for a weakly disordered system of periodically
arranged dielectric structures in the frequency regime
near a band gap. The question of photonic band struc-
ture in periodic dielectric structures is a fascinating sub-
ject with potential applications in the telecommunication,
information processing, optical storage, and sensor tech-
nology.

In this paper we present a self-consistent theory of lo-
calization of classical waves, similar to the one developed
for electron localization. ' ' There are important
differences in the formulation of such a theory for classi-
cal waves as compared to the case of electrons. The most
important one is that the equivalent of particle density is
not conserved. Unfortunately, this fact has not been
given sufficient attention in an earlier attempt to derive a
self-consistent theory, as pointed out recently. ' The
quantity conserved here is energy, not mass, leading to
diffusion behavior of the energy density. Another
difFerence is that the scattering potential is energy depen-
dent. As a consequence, the energy transport velocity
entering the diffusion coefficient for a strongly disordered
system may be appreciably renormalized, ' and, conse-
quently, diffusion coefficients can be quite small even far
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from the localization transition. Also, in previous ver-
sions of a self-consistent theory of localization the
single-particle quantities and the coupling constants were
calculated in the low density or the weak scattering ap-
proximation. It is known from the electron transport
problem' how to improve upon this unnecessary
simplification by calculating the noncritical quantities in
CPA.

For simplicity, we will in the following consider an
idealization of a real system, such as dense packed dielec-
tric spheres of random size scattering classical waves, for
example, light: a system of point scatterers distributed
statistically throughout the system. Then the only length
scale characterizing the system is the mean spacing of
neighboring scatters a. In the two limits of wavelength A,

of the incident wave small or large in comparison with a,
one expects effective-medium theory to work well,
whereas for A, =2~/co=a localization of waves should
occur for sufficiently large scattering strength.

We consider the propagation of classical waves in a
random medium described by the wave equation for the
scalar field V(r, t):

Here e(r) characterizes the randomly varying phase ve-
locity c(r)=1/&e(r). In the approximation where the
vector nature of the electromagnetic field is neglected, (1)
describes the propagation of electromagnetic waves in a
dielectric medium with spatially varying dielectric con-
stant e(r). We will assume the fiuctuations of e(r) to be
spatially uncorrelated, such that (e(r)) =e and
(e,(r)e, (r')) = W5(r —r'), where ei(r)=e(r) —e.

The (unaveraged) Green's function of the wave equa-
tion (1), Fourier-transformed with respect to time,
satisfies the Dyson equation

G(r, r', co)=G (r, r';co)

+ J d r"6 (r —r",co)U(r";co)6(r",r', co)

(2)

where co+=co+Q/2, k+=k+q/2, k+=k'+q/2, and Q, q
are the center-of-mass frequency and wave vector, respec-
tively. The long-wavelength —low-frequency behavior of
the classical wave system is, in contrast to the electronic
case, not governed by particle number conservation, but
by the conservation of energy, with c(dV/dt) being the
energy density of the wave field. The quantity
@„=(co/c b) Qadi, ,@j,i,.(q, Q) may be interpreted as an en-

ergy density correlation function, where the phase veloci-
ty c h is defined from the zero of the real part of the in-
verse of Gz(co) as c„i, (co)=1—ReXo(co)/co . C&„can be
shown to have the diffusion pole structure

i (co/c~i, )ImGO" (co)
4„(q,Q) =c (co) (3)

Q+iD (Q)q

in the limit Q, q~O [c(co) and Go (co) will be defined
below]. In the regime of localized waves, the diffusion
coefficient D (0) vanishes identically. In the following we
swill calculate D(Q) as a function of disorder and show
that a localization transition takes place in the model of
point scatterers in the regime co=2vr/a for sufficiently
strong coupling F.

The starting point for a calculation of the averaged
two-particle Green's function cllpi, ,(q, Q) is the Bethe-
Salpeter equation

X 5j k. + gyit-(q, Q)@P-t(q, Q)
II

(4)

where yj",z (q, Q) is the sum of all irreducible diagrams of
the four-point vertex function. We can write (4) as a ki-
netic equation with the help of the Ward identity

y~ =g&~,[6& —G~ ]

proximation' ' when Xi,(co)=Xo(co) is independent of the
wave vector.

The transport properties of the system can be extracted
from the averaged two-particle Green's function

@~(q,Q)= —(6 (k~, k'~;co~)6 "(k',k;co )),

with the "interaction potential" U(r, co)= —co [E(r)—1]
and the free propagator 6 given by its Fourier trans-
form 6„'"(co)=[(co+iO) —k ]

In the model of point scatterers e(r) is given by
N

E(r) 1=(KE—V, )g;',5(r —r;), with Nt the number and
nt=NJ/V= 1/a the density of scatters (d is the spatial
dimension). The point scatterers may be thought of as an
idealization of spheres of dielectric material of volume V,
and dielectric constant 1+Ae embedded in a matrix with
@=1. The two parameters characterizing the model may
be chosen as the average dielectric constant
F= 1+(V, /a")be and the average separation of scatter-
ing centers a.

The impurity-averaged Green's function Gi, ' (co) is
given in terms of the mass operator Xi", ' (co) by
Gi,

' =Gi, '(co) —Xz. The one-particle properties are ex-
pected to be uncritical at the localization transition and
hence may be calculated in CPA, i.e., in single-site ap-

co +(Q/2) +

co (GR ~63 )

where Xt, =Xj", (co+), etc. Compared to the case of
+ +

electrons, there is an additional (the last) term on the rhs
of (5), which has been missed in Ref. 7. This term arises
because of the explicit frequency dependence of the per-
turbation U(r, co) ~ co in (2).

Energy conservation is expressed by the equation

Q@"„qCl~,= ic(co) —ImG. O",
Cph

where the energy current correlation function corre-
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sponding to 4„has been defined as

+CO
CO

C&~,=c(co) g (k q)@,(q Q)
Cph

Here we ave introduced a renormal' d 1ize ve ocity c(co)
c ara

'
n. n e imit of small qc aracterizing energy diffusion. I th 1'

, c co) is given by

techniques developed for the f 1

ort' ' one m
e case o e ectron trans-

port, ' one may derive an equation of motion for 4.,
to 4 an
from the Bethe-Salpeter equation (4) h' h

' n, w ic relates back

3 for@
to „an ence allows one to derive th d'ff

) or @„.In the approximation for the irreducible ver-
tex yi, z q employed in the case of electron transport, ' '

c (co)

Cp

Cph

Cp

1
1 —

2 (yoReGO" +ReXO ), (7) 1
(ImXO" ) (ImGO ) ImGi, (co)@„(~k+k'~,Q

where Go co)=g&G& (co), yo=lmXO" /ImGO is the irre-
ducible vertex function calculated in CPA, and c = 1 is
the phase velocit in h

'
y

'
the homogeneous background medi-

c in, and cp —1 is

um. The renormalizmalization of c is a consequence of the ad-
ditional term in the Ward identit (5) h'

0, while ener
en i y, w ich is of order

, w i e energy conservation is already guaranteed b
the Q —+0 limit ofi of (5). We have calculated Go(co) and

ran ee y

Xo(co) in CPA and evaluated c( )
' h'c co in t is approximation.

The result is shown in Fig. 1. At 1 f
substantially smaller than one (for o

' '
ow requencies c(co) is

read denoted
'

one or positive b,E), as al-

a ig requency
e velocity of energy transport c(co) and th

phase velocit c', cocph co ) are seen to agree well. In fact,
ceo an te

small e. . in t e 1'
whenever the imaginary part of the mo e mass operator X is
sma e.g., in t e limit of low density of scatterers) d
c coincide. T '

ph
' 'de. This is seen immediately from (7) f

erers, c an

case of oint sc
rom or the

p in scatterers, and was shown in Ref. 11 f
eneral

e. or
g al momentum-dependent scatterinering within a low-

ensi y approximation. Therefore one m 1 d
that the strong reduction of c ( )

'
h
one may conc ude

c co wit respect to c h, as
measured experimentally by van Alb dn a act a., is purely
an effect of resonant scattering: In the vi

'

nances m is a ways large even for small density and

Let us turn to localization effects now. Employing the

X Do+2c (co)

2
ImXp

(lmG" ) D

—iQ
D(Q)

(8)

where

ImGI", (ImGk. )
(z) = (k.q) (k'.

z+(k+k') (9)

In CPA the bare diffusion constant is given by

Cph 1
0 =2c (co) g(k q) (ImG" )ImG"p 14

We have solved (8) numerically for D(Q) usin
u s ol 0 0 c'co), and Do. It is easily shown

that in CPA the parameter a can be absorbed into the
rescaled frequency ace, so that the only relevant parame-
ter in the model is the average dielectric constant F.

In Fig. 2, we present the mobility edge trajectory
separating extended from localized states. Notice that the
model correctly describes the underlying physics. In par-

the diffusion coefficient D(Q) is fou d t
' fun o satis y the self-

consistency equation

i coQ

Imrp~
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Also shown is the effective phase velocit
c»(co) in the disordered system. c(co) and
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c co an c~h(co) coincide for
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FIG. 3. The diffusion coefficient D(0) and the inverse locali-
zation length g

' are shown as a function of wave frequency cv

for @=5.

scattering) and high (geometric optics) frequencies, as ex-
pected, there are only extended states for any value of e.

In Fig. 3, the dc diff'usion coefficient D (0) for spatial
dimension d = 3 is shown as a function of wave frequency
co for @=5. For values 8~2.7 [corresponding to energy
velocity c (0) 5 0.6], D (0) is found to be zero within a fre-
quency window centered at ace=2. One may define the
localization length g by g =limn oD(Q)l( i 0), whic—h
characterizes the spatial extension of wave packets local-
ized in the system. (g/a ) is also shown in Fig. 3 as a

function of co. D(0) is seen to vanish linearly as co ap-
proaches the critical frequencies co& 2, whereas

g cc ~co
—cot 2~

'. Note that from (8) co& 2 is independent of
the renormalization of the transport velocity c(co). The
critical exponents for D(0) and g found here, s = I and
v= 1, are the same as those for the electron case. In di-
mensions d ~2 classical waves are found to be localized
for arbitrarily weak disorder.

In the region where the wavelength is large compared
to the size of the scatters, i.e., where the approximation
by point scatters is appropriate, the description of the lo-
calization transition as a function of aco and e presented
here is expected to be semiquantitative, with the possible
exception of a narrow critical regime, judging from the
very good agreement of a similar theory for electron lo-
calization' ' with exact numerical results for finite sys-
tems. The predictions of the theory may be tested experi-
mentally in systems with su anciently large relative
difference of dielectric constants Ae, such that the disor-
der parameter e may be large even for small density.
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co ch ] Rer, (~)
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co k BQ
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