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The correlated-factors theorem states that the harmonic average of a product of factors is given exact-
ly by the result of a difFerential operator e acting on the product of the averages of the factors. The
theorem is true both classically and quantum mechanically. It is proved and the form of the operator 8'
is found. The theorem suggests an approximation for calculating the free energy of anharmonic solids.
As an example, the approximate free energy is used to calculate the specific heat, magnetization, suscep-
tibility, and the dependence of the phase-transition temperature on the coupling constant for the P mod-
el on a square lattice. By comparing with Monte Carlo results, this approximation is found to be
significantly more accurate than the correlated Einstein model, self-consistent phonon theory, and
mean-field theory.

I. INTRODUCTION

The purpose of this paper is to present the correlated-
factors theorem and to give an example of how it can be
used to obtain approximations for determining the free
energy of anharmonic solids. The correlated-factors
theorem is an exact result for harmonic averages, which
states that

O=e I 0,

where the operator e accounts for the correlations be-
tween the different factors ft, which are functions of the
canonical coordinates. The detailed form of the
differential operator 8'is quite simple and is given at the
end of Sec. II. The theorem is valid both classically and
quantum mechanically.

Our main interest is in real crystalline solids. Howev-
er, to simplify the presentation the theorem will be illus-
trated here by applying it to the P model. This model,
sometimes referred to as the S4 model, ' is commonly
used an an example in the study of ferromagnetic and fer-
roelectric phase transitions. ' It is a continuous spin
variation of the Ising model with the Hamiltonian

square lattice of X particles with periodic boundary con-
ditions. The P model is essentially classical. Since H has
no kinetic energy term, its free energy is

1F= ——ln Id N pH— (4)

where (1/cr ) is introduced to make the argument of the
logarithm dimensionless, (1/P) =kz T, and kp is
Boltzmann's constant.

The pertinence of the correlated-factors theorem to
free-energy calculations can be seen by considering the
relationship

1 —Pf H —Hp)F=F ——ln(e0 p 0

which is exact for classical systems. Here, Fo and the
canonical average ( . )o are formed with Ho. Let the
Hamiltonian Ho be harmonic. When both the true Ham-
iltonian 0 and the harmonic Hamiltonian Ho are given
as sums of terms, the Boltzmann factor can be written as
a product of factors:

P(H Ho )

I
N

H= g [(b( ) sBs;]——
1&j&k&N

Jajksjsk By substituting this into Eq. (5) and using the correlated-
factors theorem, one obtains

where s; is the spin coordinate of the ith particle and
—oo &s, & ~. The double-well potential

P(s) =E [(s/o ) —1] (3)

is used. It has a maximum of height c. between minima at
+cr. B is proportional to the strength of the external
field, J is the nearest-neighbor coupling constant, and ajk
equals 1 when particles j and k are nearest neighbors and
equals zero otherwise. We consider a two-dimensional

1 1F=Fo——ln + ft o=Fo ln e g (fI)o
I I

As an example of Eq. (6), consider the P model. For it
we use the harmonic Hamiltonian

X Joa ks 'sk'
i j&k

where K is a spring constant and I is a constant force.
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f() t)(JPJ)SJSk
~J (10)

and

(12)

It is convenient to set I =i in the different one-particle
factors ft(s; ). Also, since each particle in a square lattice
has four nearest-neighbor bonds and each bond is shared
by two particles, there are 2N different two-particle fac-
tors fr(sj, sk). The different I values from N+1 to 3N
must be set into one to one correspondence with the
values of j and k that identify different nearest-neighbor
pairs.

The usefulness of Eq. (7) for determining the free ener-
gy follows from the presence of the operator e, which
facilitates the forming of series expansions and approxi-
mations. One simple example is the following expansion
in powers of the artificially introduced ordering parame-
ter A, .

ln e g (ft&0 = gin(ft&o+AZ+ Z2+ .

(13)

In many applications the adjustable parameters in the
harmonic Hamiltonian can be chosen so that both the
first- and second-order terms in this vanish, that is, so
that the following zeroing conditions are satisfied:

(14)

Z2= W g (ft&o

By using this expansion, satisfying the zeroing conditions,
and neglecting terms of third order and higher, Eq. (7)
gives the approximation

F=FO ——g ln(ft &o,
1

I

which can be both accurate and easily evaluated.
This approximation can also be obtained by replacing

the average of the product (gtft &o in Eq. (7) by the
product of the averages, Qt (ft &o. Since such a replace-
ment neglects the correlations between the factors in the
anharmonic part to the free energy, it will be called the
uncorrelated factors approximati-on, or UFA. The effects
of correlations on the anharmonic part are partially ac-
counted for by satisfying both zeroing conditions. Doing
so causes the UFA to be accurate through second order
in A, .

Two different approximations that are special cases of

K, I, and Jo are adjustable parameters. With this and—P(H —Ho )
Eq. (2) for H, the exponential e becomes

P(H H )
N 3N

Si I S-,Sk
I=1 I=N+1

where

the UFA have been considered in the past. In the un-
correlated pairs approximation (UPA) only the first
zeroing condition, Eq. (14), was satisfied. The harmonic
spring constants were determined in the traditional
manner by setting them equal to the second derivatives of
the potential energy. Jones and Hardy obtained accu-
rate predictions for the properties of solid argon from ab-
solute zero to the melting temperature with this approxi-
mation and the Barker-Fisher-Watts potential, which in-
cludes three-body forces. In the correlated Einstein mod-
el (CEM) both zeroing conditions were satisfied, but the
harmonic Hamiltonian was of the Einstein type, which
has no interparticle coupling terms. By including third-
order terms in a series expansion similar to Eq. (13), the
CEM gave results that were in excellent agreement with
available Monte Carlo (MC) estimates for both the hard-
sphere solid and the classical Lennard-Jones solid.

A general proof of the correlated-factors theorem is
given in Sec. II. Then, in Sec. III the equations that
determine the free energy for the P model in the UFA
are developed. Both zeroing conditions are satisfied and
the harmonic Hamiltonian, Eq. (8), is used. In Sec. IV
accurate predictions are obtained for the specific heat,
magnetization, and susceptibility for a wide range of tem-
peratures. The UFA is accurate at all temperatures ex-
cept those very close to the critical point and gives good
predictions for the dependence of the phase-transition
temperature on the coupling constant J. It is not, howev-
er, the type of approximation that can be expected to de-
scribe critical behavior correctly.

The predictions of the UFA are compared with those
of three other analytic approximations: the CEM, self-
consistent phonon theory' (SCP), and mean-field
theory" (MFT). The word "analytic" is used to distin-
guish these approximations from the statistical approxi-
mations produced by MC and molecular-dynamics
methods. In their simpler forms, the statistical methods
give estimates for the averages of phase functions for
small finite classical systems, and their accuracy is limit-
ed only by the size of the statistical sample used. Conse-
quently, they are very useful for testing the accuracy of
analytic approximations. By comparing with MC esti-
mates we find that the UFA and the CEM are
significantly more accurate than SCP or MFT, and that
the UFA is more accurate than the CEM. Also, prelimi-
nary results on the Lennard-Jones solid show that the
UFA gives predictions that are in excellent agreement
with the quantum effective-potential Monte Carlo esti-
mates of Liu and co-workers. '

Although the emphasis here is on determining the free
energy, the correlated-factors theorem can also be ap-
plied to the determination of phase averages. The CEM
has already been used to obtain a representation for the
radial distribution function g (r) of a hard-sphere solid,
and this representation has been utilized in a density-
functional treatment of melting. '

II. CORRELATED-FACTORS THEOREM

To utilize the correlated-factors theorem to determine
P(H —Hp)

the free energy, the Boltzmann factor e must be
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expressed as a product of factors. In general each factor
fi will be a function with several arguments s;, each of
which may be either a canonical coordinate or a linear
function of the canonical coordinates. For example, in
Eqs. (10) and (11) for the P model each factor has one or
two of the canonical coordinates s„.. . , s& as argu-
ments, and each s; occurs in several different factors. In
general the harmonic Hamiltonian Ho may contain both
linear and quadratic functions of the coordinates, and
there will be kinetic energy terms in both Ho and H that
cancel in H —Ho.

For the three-dimensional solids considered in the
UPA and CEM papers the true Hamiltonian had the
form" fs(s, )= f dki;e ' fr(kr ).

277
(19)

developing some notation the proof begins by using
Fourier transform theory and the cumulant expansion to
express the harmonic average ( gz fr )0 as a collection of
exponentials of averages. Then, a simple relationship for
the derivative of the exponential function allows several
of the Fourier transform operations to be inverted and
the terms that correlate the factors fz to be placed into a
differential operator e . The resulting theorem and the
explicit form for the operator W are given by Eqs. (31)
and (32).

A function fz(s; ) and its Fourier transform f~(kz; ) are
related by

+ g P(IR, R +s, —s I),Ip; I'

i j(k
(17) and

fr(ki )= JdsJ e' ."fr(sr )2' (20)

Combining these gives

fz(s;)= Jdkz;e " ' Jdsz, e ' 'fz(sz, ) . (21)

Capital letter subscripts label quantities associated with
different factors, while lower-case subscripts label quanti-
ties associated with different arguments, i.e., different
canonical coordinates or linear combinations of canonical
coordinates. Each canonical coordinate or linear com-
bination of canonical coordinates, s;, may be an argument
of several different factors. It is important to note the
distinction between s; and the transform variable sr;. It is
the s; that are averaged.

By applying Eq. (21) to every argument in every factor
in ( g~f~ )o and by moving the harmonic-average brack-
ets so they only enclose quantities that depend on the
canonical coordinates, one obtains

f~(q )=exp —PIP(IR~+q I)

—(q P .q~/2 —I q )] (18)

Here, R =R —Rk, and the parameters P~ and I were
introduced in the harmonic Hamiltonian. In the CEM it
was necessary to consider such factors as functions with
two vector arguments: f~k(sj. , sk).

In the rest of this section the P model is used to illus-
trate the proof of the correlated-factors theorem. After

where p, is the momentum of the ith particle and P(r) is a
pair potential. The canonical coordinates are the com-
ponents of the displacements s; of the particles from their
lattice sites R, In the UPA it was convenient to consider
factors that were functions of the "pair displacements"

qp sj sk which are linear combinations of the canoni-
cal coordinates, so that each factor was a function with
one vector argument:

(
(r) (r) (r) (r)

IIf. .=, H II Jdk. -p + X Xk" ~ II II Jd" -p —XXk;";
(2m ) i i r i r i

II fr(ss,
r

(22)

where P, the power of 2m. , equals the total number of arguments in all factors. Q(i' indicates a product of quantities
with the values of i that label the arguments of the Ith factor fi. The sum g,'.~' is defined analogously to the product
Q', '. For example, if the 9th factor had arguments s2 and s3, i.e., if f9(s2, s3 ) were one of the factors, then g'; ' would
indicate a sum of two terms, one with i =2 and one with i =3. In the P model on a square lattice there is only one
term in the sum g';i' when 1 ~I ~ N, while there are two terms in each sum when N (I& 3N. Thus, while gz alone im-
plies a sum of 3N terms, gzg';i' implies a sum of 5N terms, and P equals 5N.

Next, the cumulant expansion is used. When applied to a harmonic average of e', where L, is any linear functions of
the canonical coordinates, all cumulants of third order and higher vanish, so that

p &L ),——,
' (L —&L ),)' o (23)

This result is valid for both classical and quantum harmonic averages. ' For the classical canonical averages considered
here its proof is straightforward. After transforming the integration coordinates, or variables, in the averaging process
to normal coordinates, it becomes an exercise in completing the square and changing variables in integrals of exponen-
tials of a linear plus a quadratic function.

By using the cumulant expansion, the harmonic average in Eq. (22) becomes
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j
(I) (I) 1 (I) (J)

exp +i g g kt, s; . o=exp +i g gkt;&s; &o exp ——g g g g A;Jkt;kJJ
I i I i I i J j

where

A; =&As;bs &o

and

bs, =s, —&s, &, .

(24)

(25)

(26)

The sums over I and J in Eq. (24) can be separated into a single sum over I with I =J and a double sum pe, where the
prime indicates that terms with I =J are excluded. By substituting Eq. (24) into Eq. (22) and by changing several of the
sums in the exponents of exponentials to products of exponentials, one obtains

(I) 1 (I) (J)
&IIf.&.=, rI rI fdk; -p ——r'r rA„k;k;

I (2~) I IJ i j
1 (I) (I)

X Q exp ——g gA,"kt,.kl
I i j

(I) (I)
Q jdst exp i g—kt (st &s; &o.) fs(st ). (27)

When the same procedures used to obtain the above are applied to the average of a single factor, one obtains

(I)
&f (s, , . . . )&,= + J dki;

(2m. )

(I) (I)
Xexp ——g g A,jkt, kti

J

(I) (I)

+ Idst; exp i g—kt (st &s; &o) fr(st;, . . . ), (28)

where the variables being averaged are explicitly indicated and v is the number of arguments in ft. Note that the same
quantities appear at the end of both Eqs. (27) and (28).

To be able to use Eq. (28) to simplify Eq. (27) the exponential containing the double sum gtJ in Eq. (27) needs to be
exchanged with the integrations over the kI;. This is done by considering the exponential containing the sum to be a
power series and using the identity

k„=—t (ajax„)e'""""
x=0

(29)

to replace each kt; with ( i (BIBxi,. )—. The new variable xt; is to be differentiated before it is set to zero. The
differentiations (81'Bxt; ) can be exchanged with the integrations over the kt;. The needed factors of e ' " are obtained
by changing the functions ft(s; ) in Eq. (28) to f (s; +xt; ) [see Eq. (21)], which gives

(I)
1 ( I) (I)

&ft(s+xt . )&o= „Qfdkl exp ——g gA kt k(2m)"; ' 2

(I)
Xexp —i g kt (si; —&s; &o xt )ft(st;, . . . ') .

(I)

rI fd"

(30)

)&,= ~ ~&f,(., + „,. . . )&,
I I x=0

where

(I) (J)
W= —y y y A,,(ajax„)(ajax„) .

IJ i j

(31)

(32)

By combining the above results, Eq. (27) can be rewrit-
ten as

This is the correlated factors theore-m It is valid fo.r a
wide range of systems, and not just the P model. The
essential conditions for its validity are (a) that each of the
arguments of the factors ft is a linear function of the
canonical coordinates and (b) that the harmonic Hamil-
tonian is a sum of linear and quadratic functions of the
canonical coordinates. Since the cumulant expansion,
Eq. (23), is valid for both classical and quantum harmonic
averages, the correlated-factors theorem is valid both
classically and quantum mechanically.
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III. UNCORRELATED-FACTORS APPROXIMATION
MODEL

The essential equations for determining the free energy
for the P model in the UFA are given below by Eqs.
(35)—(38) and Eqs. (44), (46), and (47). The double-well
potential is given by Eq. (3).

The first simplification to make when applying the
UFA to the p model is to set the adjustable parameter Jo
in Ho equal to the nearest-neighbor coupling constant J
in the true Hamiltonian H. It then follows from Eq. (10)
that ft(s;, s )=1. Because of this, only the one-particle
factors fi(s;) given by Eq. (11) are needed. The reason
for initially having JOW J was to illustrate the generality
of the proof in the previous section.

For the UFA to be accurate through second order, the
adjustable parameters K and I in the harmonic Hamil-
tonian must be chosen so that the zeroing conditions,
Eqs. (14) and (15), are satisfied. The differential operator

I

and

(af (s;)/as; ) =0 (33)

(34)

where I =i. By taking the indicated derivatives, using
Eqs. (11) and (12) for ft(s;), and rearranging terms, one
can show that

(35)

and

8' is a sum of terms, each of which operates on two
diferent factors, ft and fz. Consequently, no factor is
differentiated more than once in Eq. (14) and no factor is
differentiated more than twice in Eq. (15). As a result,
one can satisfy both zeroing conditions by requiring that

Phg(s, )

K=
(

—PAP(s, . I

)
(36)

In addition to the explicit dependence on K and I in the
above, there is an implicit dependence that comes in
through the harmonic averages.

Because of the symmetry of the Hamiltonians, the har-
monic averages have the same values for all particles, i.e.,
for all i, so that there are just two independent zeroing
conditions. The form of the zeroing conditions in Eqs.
(35) and (36) is particularly convenient for the iterative
determination of E and I . Once these parameters have
been found, the UFA value for the free energy per parti-
cle is calculated with

F(T,B)/N=FO(T B)/N ksTln(e — ' )o, (37)

g(s),
Q(2m. A;; )

(38)

where g, instead of ft, has been used to indicate that the
formula is valid for any one-particle function g(s). The
width of this Gaussian probability density is proportional
to the square root A;;. It follows from Eq. (25) that A, , is
the mean value (or, variance) of the spin coordinate of
particle i:

which follows from Eqs. (16) and (11). Other thermal
properties can be obtained by difFerentiating F ( T,B).

A useful formula for evaluating the harmonic averages
needed in Eqs. (35), (36), and (37) can be deduced from
Eq. (28). For factors with a single argument there is only
one factor in the product +';I', and the one term included
in the sums +II'gl' has i =I=j. By taking the integral
over ki;, which is equivalent to taking the inverse Fourier

—1/2A "kI'
transform of e " ', one obtains

(.; 0'

s; =s; —I /(K N„„J), — (40)

where N„„=g a;. is the number of nearest neighbors.
For a square lattice X„„=4. Introducing the barred
coordinates into Eq. (8) for Ho gives

Ho =—g Q M,~s;sj +C,
J

where

(41)

M; =%5;.—Ja; (42)

and C is a constant. The harmonic average of the nth
power of a barred coordinate is

(s,.")0=(fd s e 's;")/( f d s e ') . (43)

From this and from the absence of any terms linear in the
s,. in Ho, it follows that (s; )0 is zero. This with Eq. (40)
implies that

(s; )0=1"/(K —N„„J) . (44)

By using Eqs. (25), (26), and (40) and introducing the

(39)

Before the above formula can be used, the dependence
of (s; )0 and A;; on the adjustable parameters I and IC in
Ho must be determined. To find this dependence it is
convenient to introduce barred coordinates defined by
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A, , =(s,. )0=(k~T/N) g (1/mk),
k

(45)

where the mk are the eigenvalues of M,". A more de-

I

transformation that diagonalizes the matrix M;, it can be
shown that

tailed analysis for a square lattice gives

k, T 1
dO

'}/(X —2J cos8) —(2J)
(46)

where the limit N~~ has been taken. Similarly, the
harmonic free energy per particle becomes

Fo( T,B) I 1 k, r+—kz T ln + f d81n —,
' (k —2J cos8)+}/(E —2J cos8) (2—J)

2(E —4J) 2 2mks T 2m o

(47)

IV. CALCULATIONS

The specific heat per particle cz, the magnetization per
particle m, and the isothermal susceptibility gz- can be
obtained by differentiating the free energy:

differentiating approximate free energies.
The CEM results were obtained by modifying the

methods developed in Ref. 7 to apply when the true
Hamiltonian is given by Eq. (2). The Einstein-type har-
monic Hamiltonian used is

c = ——(c} F/BT )
T 2 (48) Ho = g ( —,'Ks; —I s, ), (51)

m = — (BF/BB )—1
T (49)

which has no interparticle terms.
Both MFT and SCP can be obtained with the Gibbs-

Bogoliubov inequality'

y, =(am/aB), = ——(a'F/aB'), .
1

(50) F~FO+(H Ho)o . — (52)

In exact theory the magnetization m equals (s;), the
average of the spin coordinate formed with the true
Hamiltonian. In the UFA the magnetization equals the
harmonic average (s; )0.

Results for the P model on a square lattice with
c=o.= 1 and B =0 are presented in Figs. 1 —4. For com-
parison the predictions of the CEM, SCP, and MFT are
presented along with those of the UFA. All values for
c&, I, and gz. , were obtained by numerically

To obtain MFT one introduces the approximate Hamil-
tonian

Ho = g [P(s; ) (B+k )s; ], — (53)

which is not harmonic, and adjusts the mean-field B to
minimize the right-hand side of the Gibbs-Bogoliubov in-
equality. To obtain SCP one uses the harmonic Hamil-
tonian, Eq. (8), for the approximate Hamiltonian and ad-

UFA
CEM
SCP

I
I

I

I

I

1.5

0
0

0
Cg
N

(D

Ch
g$

1.0

0.5

0.0

UFA
CEM
SCP
MFT

~ MC
kBTc

1

I
I

I

I

I

I

I

I

FIG. 1. Specific heat per particle as a function of tempera-
ture at B =0 for the P model with J= 1 and e=o.= l. Results
for several difFerent approximations are given. See text for de-
tails.

FIG. 2. Magnetization per particle as a function of tempera-
ture at 8 =0 for the $ model with J= 1 and e= o = 1.
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UFA
CEM
SCP
MFT

~ MC

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

kBT

0
0.0 0.5 1.0 2.0 2.5

FIG. 3. Isothermal susceptibility as a function of tempera-
ture at B =0 for the P model with J= 1 and e = cr = 1.

FIG. 4. Dependence of the phase-transition temperature on
the coupling constant J for the P4 model at B =0 with e =o = 1.

justs the parameters K and I .
The equations for determining the free energy with

SCP are quite similar to those for the UFA. The condi-
tions that must be satisfied to minimize the right-hand
side of the Czibbs-Bogoliubov inequality are

(54)

and

(55)

which are similar to the zeroing conditions, Eqs. (35) and
(36). The free energy per particle is given by

F(T B)/N =Fo(T B)/N+(bP(s;) )o, (56)

which is similar to Eq. (37). Equations (38), (44), (46),
and (47) apply to SCP without modification.

The MC estimates presented in Figs. 1, 2, and 3 for
temperatures away from the phase transition were calcu-
lated for a 20X20 square lattice with periodic boundary
conditions. Each data point was obtained with a run of
25 X 10 steps after an initialization run of 4X 10 steps.
No extrapolation to the thermodynamic limit was made.
The MC values for kz T, given on the horizontal axes in
Figs. 1, 2, and 3 and in Fig. 4 were obtained from Mil-
chev, Heermann, and Binder.

A vertical line in Figs. 1, 2, or 3 locates the transition
temperature T, predicted by the indicated approxima-
tion. T, equals 2.64, 2.76, 3.11, 3.48, and 4.23, respec-
tively, for MC, UFA, CEM, SCP, and MFT. The CEM
(when J & 0.421) and MFT give second-order phase tran-
sitions, while the UFA and SCP (and the CEM when
J (0.421) give first-order transitions. The transition
temperatures for the first-order transitions are the tem-
peratures at which the free energies of the two phases are
equal.

V. CONCLUSIONS AND DISCUSSION

It is clear from the figures that the UFA and the CEM
are significantly more accurate than SCP or MFT and
that the UFA is more accurate than the CEM. Although
none of these four approximations can be expected to
predict critical behavior correctly, it is interesting that
the two approaches utilizing independent sites in their
development, the CEM and MFT, predict second-order
phase transitions, while the two approaches utilizing nor-
mal modes, the UFA and SCP, predict first-order transi-
tions. Presumably, the second-order prediction is the
correct one. Thus, as one would expect from the more
general type of harmonic Hamiltonian used in the UFA,
it is generally more accurate than the CEM, but the latter
approximation gives the better prediction for the order of
the transition.

In their application to the P model the UFA, the
CEM, and SCP use two adjustable parameters, K and I,
while MFT uses only one, the mean-field k Because of
this, it is not surprising that the UFA and CEM are more
accurate than MFT, but one must look elsewhere to un-
derstand the relatively low accuracy of SCP. A discus-
sion of the shortcomings of SCP and of a possible route
for overcoming them has recently been given by Morris
and Gooding. '

The equations for determining the free energy in SCP
can be viewed as approximations to the equations in the
UFA that apply in the limit of weak anharmonicity: To
see this, note that the strength of the anharmonicity can
be considered to be proportional to b,P. Then, if one ex-
pands Eq. (37) for the free energy in powers of the explic-
itly appearing bP and keeps only the lowest power non-
vanishing terms, one obtains the SCP result, Eq. (56). If
one similarly expands the UFA zeroing conditions Eqs.
(35) and (36), one obtains the SCP conditions Eqs. (54)
and (55). When doing this, one must remember that the
derivatives of P(s; ) and the associated terms containing
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E, I', and 8 in Eqs. (35) and (36) came from
differentiating b,P, and thus should be considered to be
proportional to hP.

The modulating factors e ~ ~/( e ~ ~ )o in the har-
monic averages in Eqs. (35) and (36) are a characteristic
feature of approximations based on the correlated-factors
theorem. Similar factors appear in the UPA and CEM,
but not in SCP. In exact theory a low probability density
is associated with regions of configuration space where
the potential energy is high. This low probability density
is better accounted for by harmonic averages with modu-
lating factors than by harmonic averages without them.
To see why, note that the potential P(s;) can become
significantly greater than the other terms in b,P(s; ). [See
Eqs. (12).] This causes b,P(s, ) to become large, which
causes the modulating factor to become exponentially
small.

As a final comment we point out an interesting inter-
pretation of the zeroing conditions. By transferring the

differentiations in Eqs. (33) and (34) from ft(s;) to the
Gaussian exp( —

—,'(s; —(s,. )o) /A;; ) in the harmonic aver-
age [see Eq. (38)], one can show that

(57)

and

(58)

These equations state that in the UFA the adjustable pa-
rarneters in Ho are chosen so that the harmonic average
of the spin coordinate is equal to its modulated-harmonic
average, and similarly for the variance.
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