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Response of superfluid vortex filaments to concentrated normal-fluid vorticity
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We simulate the motion of quantized vortex filaments moving under the inAuence of concentrated vor-
ticity in the normal Quid. These simulations show an exponential growth of ordered superfluid vortex
filaments in the core of the normal-Auid vortex. We explain the cause of this growth and develop formu-
las for the growth time scales and the minimum normal-Quid vortex circulation that causes this growth.
Finally, we compare these values to the lifetime and circulation of the vortex tubes, which should be
present in the classical turbulence of the normal Auid.

Helium II behaves as a superposition of two Auids: a
normal Auid and a superAuid. The superAuid component
contains vortex filament with an atomic scale core radius,
ao =1 A, and a quantized circulation ~. The normal-fluid
component is a classical fluid with a small viscosity p„.
Each Auid has its own density p„and p, and velocity field
v„and v„where the subscripts refer to the normal Auid
and superAuid, respectively. The two Auids interact
through mutual friction caused by the scattering of the
normal Auid by the superAuid vortex filaments.

Experiments and simulations' with the normal Auid
and superfluid flowing in opposite directions (loosely
defined as "counterflow") show that the superfluid vortex
filaments form a self-sustaining tangle of individual fila-
ments, with a dissipation due to the relative velocity be-
tween the Auids. This behavior is very unlike classical
turbulence. In contrast, recent experiments ' with
superAuid and normal-Auid Aows in the same direction
("coflow") have given results which are most easily inter-
preted as the Aow of a single Auid of density p=p„+p,
and viscosity p„. Particularly convincing are the experi-
ments by Borner and Schmidt which measured separate-
ly the circulations of the normal Auid and the superAuid
in a large vortex ring produced by a piston. They found
that the normal-Auid and superAuid circulations were
equal in magnitude and spatial distribution through the
vortex ring at all times measured. It has been suggested
by I3onnelly that in coAow the superAuid vortex fila-
ments are driven to mimic the circulation field of the nor-
ma1 Auid, yielding a state which is hydrodynamically
similar to a Navier-Strokes Auid. This state may be a
useful tool for the study of Navier-Stokes turbulence. It
definitely has important consequences for cryogenic en-
gineering. Previously, we have had no theoretical under-
standing of this state. In this work we describe a basic
process which drives the superAuid circulation to locally
match the normal-Auid circulation in turbulent flows.

The superAuid vortex filaments move as vortex fila-
ments in an ideal Auid with the addition of motion due to
the mutual friction with the normal Auid. This equation
of motion is

d s /d t =v, +vI +as' X ( v „—v, —vI ),
where s is the position of a point on the vortex filament,

vl is the self-induced velocity of the vortex filament, a is
a temperature-dependent coeScient of mutual friction,
and a prime denotes a derivative by arclength. We solve
this equation by a Runge-Kutta-Fehlberg method. The
self-induced velocity is given by the Biot-Savart law

(g —s)Xd ft(s) =
4~

/

g' —s/'

where the integral is taken over all filaments in the Auid.
The singularity inherent in the Biot-Savart law is handled
by a method due to Schwarz. In some situations a local
approximation of Eq. (2) is useful. The local induction
approximation (LIA) is vI =Ps

' Xs ", where
P=(n/4m. ) ln( AR /ao), 8 is the local radius of curvature
of the filament, and 3 is a constant of order 1. We use
the Biot-Savart law except where expressly indicated.

Through mutual friction, the superAuid vortex filament
is inAuenced by the normal-Auid velocity field v„. In the
present simulations v„ is held constant but nonuniform.
We are interested in the behavior of superAuid vortex fila-
ments in turbulent v, fields. As a simple model of this,
we use a single normal-Auid vortex tube to represent the
fine scale structure ' of the turbulent normal Auid.
Specifically, we use a Gaussian distribution of vorticity
about the Z axis. The resulting velocity field is

where I, is the total normal-Auid circulation in units of
~, r is the radius from the Z axis, and we shall call r, the
core radius. We define the normal-fluid circulation inside
the core radius as I „,=0.63I . In order to have a finite-
size simulation, the normal-Auid vortex is cut off arbi-
trarily at Z=+L by rapidly increasing the core radius
[see Fig. 1(a)]. This is artificial, but it serves our purpose
of forming a simple model of the vortex tubes. We have
found little dependence of any behavior on L. For the re-
sults presented in this work we have used L = 10r, .

We initiate the simulations with a small superAuid vor-
tex ring located a few core diameters r, from the normal-
Auid vortex core with its velocity vector pointed approxi-
mately towards the vortex tube [Fig. 1(a)]. The ring
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FIG. 1. Evolution of the superfluid vortex filament. The
—3simulation parameters are I „,=76, a=0.25, and r, =10 cm.

(a) t=0.0. The solid lines denote superfluid vortex filaments.
The dashed lines outline the normal-fluid vortex core. (b)
t =0.003 sec. (c) t =0.0066 sec. The arrow marks the site of the
Glaberson instability. (d) t =0.01 sec. A new loop forms. (e)
t =0.03 sec. Superfluid vortex filaments are concentrated in the
core of the normal-fluid vortex.

moves toward the vortex tube by its own self-induced ve-
locity until one side of the ring is captured by the
normal-Quid vortex core through mutual friction. The
side of the ring which is captured is always the side with
the circulation vector in the same direction as the
normal-fluid circulation vector. After capture, the ring is
stretched along the axis of the vortex tube, again by mu-
tual friction [Fig. 1(b)]. As the ring is stretched, it will
also rotate about the axis of th vortex tube due to its self-
induced velocity. The ends of the elongated vortex loop
rotate the fastest since their curvature is greatest [Fig.
1(b)]. This diff'erential rotation of the loop twists sections
of the superfluid vortex filament and leads to a normal-
Auid velocity along the filament in these sections. An axi-
al normal-Auid Aow along a superfiuid filament was
shown by Ostermeier and Glaberson' to cause an insta-
bility of the filament to the growth of helical waves. In
Fig. 1(c), the arrow indicates a section of the superfluid
vortex filament where the Glaberson instability is begin-
ning to grow. From this instability a new loop of vortex
filament forms (we occasionally observed multiple loops
forming simultaneously at single instability site, but a sin-
gle loop is typical). This new loop is also captured by the
normal-fiuid vortex tube [Fig. 1(d)] and it repeats the be-
havior of the initial loop. The original instability site
continues to produce new loops until it grows beyond the
end of the normal-Quid vortex tube. This process of loop
generation leads to an exponential growth of the length of
superAuid vortex filament. After a few repetitions of this,
a dense concentration of ordered superQuid vortex fila-
ments forms inside the core of the normal-Auid vortex
tube [Fig. 1(e)]. The density of these filaments is equal to
the local vorticity density of the normal fiuid (see Fig. 2).

The essential step in this process of exponential growth
is the formation of new vortex loops by the Glaberson in-
stability. With this in mind, it is easy to see that the ini-
tial conditions are unimportant to the growth. The true
beginning of this growth is in Fig. 1(c) on the section of
filament marked by the arrow, not in Fig. 1(a). This
growth could just as well be started from a low curvature
superAuid vortex filament which happens to come near
the normal-Quid vortex tube. The initial conditions of
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FIG. 2. Superfluid and normal-fluid velocity profiles at
t =0.0363 sec. Velocities are normalized by the maximum U„.
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FIG. 3. Exponential growth of the superfluid circulation in-
side the normal-fluid vortex core. The dashed line denotes the
normal-fluid circulation.

these simulations were chosen solely for computational
convenience.

In Fig. 2, we show the azimuthal velocity of both the
normal Auid and the superAuid taken along an arbitrary
test line (the X axis) through the vortex tube at Z=O.
The two velocity fields are well matched in a significant
region of the normal-Auid vortex core, and the superAuid
velocity outside the vortex core is increasing toward the
normal-fiuid velocity. The sharp spikes in superAuid
show very close approaches of individual vortex filaments
to the test line. The simulation was stopped at this point
because the CPU time per simulation time step had
grown impractically large due to the time necessary to
calculate the Biot-Savart law for a large length of vortex
filament. In Fig. 3, we show the circulations of both the
normal Quid and the superAuid inside the core radius.
The growth is exponential. By the end of the simulation
the superAuid circulation had grown to 36% of the
normal-Quid circulation and was still growing smoothly
with no indication that this growth was stopping. Since
the Glaberson instability is driven by the relative velocity
v =v —v we expect that this growth will cease whenns n s

v„, is zero (and therefore I, =I „). It is possible that the
growth of the superAuid circulation will actually cease at
some earlier point. At the present time we can make no
determination of when the growth stops.
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not be captured by the normal-fluid vortex. It is unlikely
that such a region will exist in a counterflow state, so we
expect that the process described in this work only occurs
in a coflowing state. In summary, we have identified a

process, specific to the coflowing state, which causes the
exponential growth of concentrated and ordered
superfluid vortex filaments inside the cores of the
normal-fluid vortex tubes present in turbulent flows.
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