PHYSICAL REVIEW B

VOLUME 47, NUMBER 17

1 MAY 1993-1

Monte Carlo evaluation of the influence of the interaction cross sections
on the secondary-electron-emission yields from polycrystalline aluminum targets

A. Dubus and J.-C. Dehaes
Universite Libre de Bruxelles, Service de Metrologie Nucleaire (Code Postal 165),
50, avenue F. D Roosevelt, B-1050, Brussels, Belgium

J.-P. Ganachaud and A. Hafni
Universite de Nantes, Faculte des Sciences et des Techniques, Laboratoire de Physique du Solide Theorique,
2, rue de la Houssiniere, 44072 Nantes CEDEX 03, France

M. Cailler
Universite de Nantes, Institut des Sciences de I’Ingenieur en Thermique, Energetique et Materiaux (ISITEM),
Laboratoire de Sciences des Surfaces et Interfaces en Mecanique, La Chantrerie (CP3023), 44087 Nantes CEDEX 03, France
(Received 11 March 1992)

The aim of this paper is to show that different assumptions for the interaction cross sections of low-
energy electrons in polycrystalline aluminum targets lead to very different calculated values of
secondary-electron yields, either in backscattering or in transmission. We emphasize the importance of
the description of elastic collisions, of the choice of the dielectric function, and the role of ionizing col-
lisions. We indicate that the comparisons between the published theoretical results are somewhat intri-
cate due to the differences in the transport description and in the choice of cross sections.

I. INTRODUCTION

Secondary-electron emission (SEE) has been the subject
of many experimental and theoretical works. Some re-
cent reviews describe the theoretical aspects of SEE.! ™7
In most cases, the electron emission is treated as a three-
step process. The primary particles (electrons or ions),
penetrating into the material, interact elastically and
inelastically with the electrons and the ionic cores of the
target. The inelastic interactions give rise to excitations
of electrons [the internal secondary electrons (SE’s)]
which undergo elastic and inelastic scatterings. The cas-
cade of inelastic scatterings leads to a multiplication of
excited electrons. All the electrons propagate in the solid
and some of them, arriving at the surface, can escape
through the vacuum-medium potential barrier.

In the literature, many different assumptions are made
to treat the electron interactions in solids and their trans-
port in the target. We present here a comparison of
Monte Carlo simulation results obtained using various
sets of electron interaction cross sections in polycrystal-
line Al targets. This study is not a critical review giving
the best cross sections to choose, but instead an analysis
of the sensitivity of the SEE properties to these choices.

We first discuss the SEE models used by several
groups. Then we describe the interaction cross sections
they have used. Finally, we present some results for poly-
crystalline Al targets both for backscattering and for
transmission geometries. We will limit ourselves in this
paper to the calculation of yield values. For the back-
scattering geometry, we study the true secondary yield &
(defined as the number of electrons, per incident electron,
going out with an energy less than 50 eV) and the back-
scattering yield 7 (number of electrons going out with an
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energy larger than 50 eV) as a function of the incident-
electron energy. For the transmission geometry, we
study the backscattering and transmission coefficients 7z
and 7, (defined as the numbers of electrons going out
with an energy larger than 50 eV in the backward and
forward directions, respectively) as a function of the tar-
get thickness, for 1-keV incident electrons. We em-
phasize the important role played by the elastic process,
compare several dielectric functions for the electron in-
teractions in the jellium, and point out the influence of
the ionizing collisions.

II. OVERVIEW OF THE MOST IMPORTANT
MICROSCOPIC MODELS OF
SECONDARY-ELECTRON EMISSION

Realistic descriptions of SEE were given in the 1950s
by  Bruining,® Baroody,” Wolff,!° Sternglass, !
Streitwolf,'? and Stolz!? among others. Their models had
the general advantage to be fully analytical models, but
for this reason, they had also to use rather rough approxi-
mations. Since 1970, more realistic microscopic models
have been proposed. In the papers of Bennett and
Roth,™ Chung and Everhart,!’ and in the extensive work
made by the groups of Nantes, Osaka, Nice, Berlin, and
Brussels, many different assumptions have been used both
for the electron interactions and for the transport pro-
cess. We give below a brief overview of these assump-
tions.

A very interesting models has been developed by
Schou®!® based on an analogy between SEE and sputter-
ing. Schou’s model cannot be considered as a true micro-
scopic model because it makes use of macroscopic quanti-
ties as input data (stopping power of electrons, energy
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deposition law for electronic excitations). Its major ad-
vantage is that it can be used for a very wide range of in-
cident particles and target materials.

Bennett and Roth!* have solved the Bethe-Rose-Smith
(BRS) form!” of the Boltzmann equation by finite
differences. They have shown that taking into account
the primary-electron transport and backscattering, in-
stead of using a simple straight-ahead path model, could
increase the SE yield 8 by a factor of 2. They assumed
that the internal electrons are produced by the primaries
through a screened Coulomb interaction and the trans-
port mean free path (MFP) for the primaries was taken
from Ref. 17.

Chung and Everhart!’ have put in evidence the role of
plasmon decay in the SEE from polycrystalline Al tar-
gets. Because the primary electrons were assumed to fol-
low a straight-ahead path with no energy loss along the
SE escape zone, the yield they calculated has to be com-
pared to the partial yield §, due to the ingoing primaries
only, thus neglecting backscattering effects. The excita-
tion function consists in bulk and surface plasmon contri-
butions and in individual collisions with the conduction
electrons. The decay of plasmons results from nearly
vertical interband transitions and is described in a two-
band model. As done by Berglund and Spicer!® for pho-
toemission, they assumed that, during its transport to the
surface, an excited electron could suffer only zero or one
inelastic collision. No electron multiplication by cascade
effects was taken into account.

The work done in Nantes by Cailler!® and
Ganachaud®® has mostly been devoted to the modeliza-
tion of the electron interaction cross sections in metals.
They have mainly used a Monte Carlo simulation code to
describe the transport and escape of electrons.?! For
polycrystalline Al targets,?>?>23 they calculated the elas-
tic cross section by the partial-wave expansion method
2(PWEM) using a muffin-tin potential taken from
Smrcka.?® They described the conduction-electron gas by
the Lindhard dielectric function?® and the ionizing col-
lisions by the classical formulation of Gryzinski.?’ They
took approximately the surface collective excitations into
account. Their main results are the electron yields 6 and
7 for low-energy incident electrons (E ~100 eV -1 keV)
on polycrystalline Al targets and the energy and angular
distributions of the true secondary and backscattered
electrons.”? They have put in evidence the role of bulk
and surface plasmon damping on the SEE characteris-
tics.?>282° They found a satisfactory agreement with ex-
perimental results. They also extended their work to the
SEE from noble metals,?>?%30 and in Refs. 31-34, they
analyzed the Auger emission of Al, discussing the escape
process and the shape of the L,; VV Auger line.

The interest of Shimizu and co-workers in SEE and
Auger emission is more than 20 years old. They
developed several Monte Carlo codes dedicated to the en-
ergy deposition of incident electrons, to the emission of
secondary and Auger electrons, and to scanning electron
microscopy.*® "2 The paper by Koshikawa and Shim-
izu*® can still be considered as a classical reference. In a
recent work,? they calculated the elastic-scattering cross
section by PWEM using the analytical expressions given
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by Bonham and Strand for Thomas-Fermi-Dirac*® and

Hartree-Fock* potentials. They also developed an origi-
nal use of Gryzinski’s excitation function?” for conduc-
tion electrons, based on the work of Krefting and Rei-
mer*® by defining a mean binding energy for the band.
The approach used in this paper was applied to several
elements in Refs. 38—41 and extended to compound ma-
terials in order to estimate the electron-backscattering
effect in Auger electron spectroscopy. Recently, Ding
and Shimizu*? used measurements of the optical loss
function Im[ —1/e(0,w)] in order to modelize the in-
teractions of incident electrons with the valence-
conduction bands of Si, Cu, and Au targets. They ap-
plied their model to electron backscattering, Auger elec-
tron spectroscopy, and SEE. Their calculations are in
good general agreement with experiments.

Bindi, Keller, Lantéri, and Rostaing in Nice have stud-
ied SEE and the electron transmission through thin films
by solving numerically the Boltzmann equation by finite
differences. In Ref. 46, they used elastic collision MFP’s
taken from Ref. 20 for Al and energy-range relationships
deduced from the experimental results of Rostaing.*” For
the incident electrons, they solved a BRS form!” of the
Boltzmann equation in order to calculate the backscatter-
ing characteristics of thick Al, Ag, and Cu targets*® as
well as the transmission and backscattering coefficients
nr and 1 for thin Al targets.** The more “classical”
form of the Boltzmann equation was retained to study the
SE transport. This model was extended in Ref. 50 to SEE
from Cu and Au targets. As done by Cailler and
Ganachaud,’! the source function is deduced from the
optical loss function Im[—1/e(0,w)] taken from
Wehenkel.’> For the elastic collisions, the differential
section is a screened Rutherford one with a screening pa-
rameter deduced from the MFP given in Ref. 20. More
elaborate sets of cross sections were used in Refs. 53 and
54 for polycrystalline Al targets. The interactions with
the jellium were modelized by an improved form of the
Lindhard function,?® i.e., Mermin’s function®® (see Sec.
III B 1). Using this model, they studied the fine structure
superimposed on the energy spectrum of the transmitted
and backscattered electrons. We have to point out their
interesting study of the influence of the reduced decay
time ¢ in Mermin’s model® on the transmitted and back-
scattered energy spectra.

Rosler and Brauer in Berlin have calculated the
characteristics of electron- and proton-induced electron
emission from polycrystalline Al targets. In Refs. 56 and
57, they have given a general theory for nearly-free-
electron (NFE) metals and applied it to the SEE charac-
teristics of polycrystalline Al targets. Their treatment of
primary electrons uses simplifying assumptions. They
approximate the primary trajectory (in the 1-2 keV
range) by a straight-line path. SE’s excited by the pri-
maries are described by means of an excitation function
S(ko, k). They consider three mechanisms for electron
excitations. The L-shell core electrons are excited via un-
screened Coulomb interactions. These core states are
represented by Bloch sums and the excited states are de-
scribed by orthogonalized plane waves (OPW’s).’® The
conduction electrons are excited due to screened
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electron-electron collisions, the screening function being
the Lindhard dielectric function.?® Finally, electrons can
be excited by decay of plasmons via interband transitions
described in a model potential scheme.’®° The above
description was extended to incident protons®“®? and
generalized in Refs. 63 and 64. The transport of SE’s is
described by the “infinite medium slowing down” model
introduced by Wolff?° for SEE. In this model, the inter-
nal electron source and the internal electron flux are uni-
form. The electrons slow down and multiply as if the
medium were infinite. The elastic-scattering cross section
is evaluated from the phase shifts calculated by Pendry®’
in a muffin-tin scheme. They also consider inelastic col-
lisions with the jellium in the frame of the Lindhard
dielectric function.?® They obtained results in good
agreement with experiments. For incident electrons, the
yield they calculate is the partial yield §, due to the
penetrating primaries. They have clearly shown the im-
portance of plasmon excitation and damping processes in
SEE. From their calculations, it appears that the most
important contribution to §; in the 1-2 keV energy range
is due to the core electron excitations. Larger contribu-
tions can be obtained when the OPW formalism®® is sub-
stituted to the classical formula of Gryzinski.2’” They
have also shown the crucial influence of the elastic col-
lisions on the internal electron angular distribution flux,
the effect being to render this distribution more isotropic.
Good results have also been obtained for the electron
yield y in the case of incident protons. Recently,% they
have emphasized the importance of dynamic screening on
the calculated ratio of the electron yield to the stopping
power for protons incident on polycrystalline Al. At last,
they have shown that the inner-shell processes are dom-
inant for electrons in the 1-10 keV range and for protons
above a few MeV.%’

Devooght, Dubus, and Dehaes in Brussels have
developed approximate solutions of the Boltzmann equa-
tion designed for SEE induced by electrons and pro-
tons.>”® In the “improved age-diffusion model,”®> the
internal electron source is first calculated separately. The
Boltzmann equation for the SE’s is then solved in the P,
approximation after replacing the true scattering kernel
by a “synthetic kernel.”’! They used approximations
similar to those of the Fermi age theory’! in order to ob-
tain an analytical expression of the Green’s function of
the problem. For Al targets, their interaction model is
quite similar to that given in Ref. 22 but neglecting ioniz-
ing collisions. They obtain rather good results for SEE
from polycrystalline Al targets. Their second approach,
the “transport-albedo” model,”®"* is an improved version
of the “infinite medium slowing down” model,!%3657
corrected in order to take into account the partial
reflection boundary condition at the vacuum-medium in-
terface by using the formalism of radiative transfer of
Chandrasekhar.”* They applied this model to the elec-
tron emission induced by low-energy protons incident on
polycrystalline Al targets and obtained rather good re-
sults for the electron yield and energy spectrum. Recent-
ly,”® they have introduced an integral transport correc-
tion model that corrects the “infinite medium slowing
down” model by using a first-order collision expansion
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for the correction flux. The results are in rather good
agreement with Monte Carlo calculations.

From our description of the most recent theoretical
models of SEE, it appears that a wide variety of assump-
tions have been used and for the charged-particle interac-
tions in the target and for the transport description of the
incident particles and of the SE’s. A summary of the as-
sumptions of the different groups is given in Table I. It is
intricate to make a direct comparison between the vari-
ous theoretical models due to the different sets of cross
sections, the various necessary simplifying assumptions
introduced to make calculations tractable in a given mod-
el, the way the transport process itself has been described,
etc. The comparison to experiments has also to be made
carefully. Let us remark that, while rather elaborate
models have been given for the interaction cross sections,
this has only been possible for NFE metals, and in prac-
tice, essentially for polycrystalline Al. A similar state of
achievement has still to be reached for other materials.

III. INTERACTION CROSS SECTIONS FOR
LOW-ENERGY ELECTRONS IN
POLYCRYSTALLINE ALUMINUM TARGETS

In our calculations, polycrystalline Al is described in a
randium-jellium model (this assumption is implicit in the
works of all authors). The electrons interact inelastically
with the jellium, i.e., the gas of delocalized conduction
electrons. They also interact elastically and inelastically
(by ionizing collisions) with the randomly distributed ion-
ic cores, which constitute the randium.

These three types of collisions will be examined succes-
sively in the following sections for electrons in the 10
eV -1 keV range.

A. Elastic collisions

Internal electrons interact elastically with the ionic
cores. The role of elastic collisions in SEE has been put
in evidence by Ganachaud and Cailler,?>?* among others.
For most authors, in the SE energy range (E =~10-100
eV), the potential around each ion is central. A screened
Rutherford cross section has sometimes been used,
though it is only strictly valid for higher energies. In a
recent review, Jablonski’® emphasized the importance of
the elastic collisions in Auger electron spectroscopy and
x-ray photoelectron spectroscopy, but he only considered
free-atom potentials. It has been shown’”’® that below
100 eV, i.e., typically in the SE energy range, the
difference between free-atom potentials and solid-state
potentials is drastic, indicating that free-atom potentials
become rather questionable in the low-energy range. A
convenient way to describe electron states and scattering
in solids is to use “muffin-tin” potentials.”’ In the follow-
ing, we shall just give a very brief description of the non-
relativistic PWEM method and of the screened Ruther-
ford formula. More detailed information can be found in

Ref. 7.
1. Partial-wave expansion method

and screened Rutherford formula

In the PWEM description, a particle of energy
E =#?k?/2m suffers a deflection by an angle  with a
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differential scattering cross section o(8) given by

© 2

ol =~1; 3 (21 +1)e*'sin8,Py(cos8) | ,  (3.1)

where P, is the /th order Legendre polynomial and §; the
corresponding phase shift. The total scattering cross sec-
tion is then given by

GCI=2ﬂfo”a(6)sin6d6 —’21 2 (21 +1)sin%, ,  (3.2)
and the elastic MFP is given by
)\’(flz(jviono'el)—1 ) (3.3)

where N, is the density of ionic cores. A very often
used form for the elastic-scattering cross section is the
well-known screened Rutherford scattering formula in-
troduced by Wentzel in 1927.%° The differential cross sec-
tion for one ionic core of charge Z is

Z%* 1 1
(47e€p)® 4E? (1+2B—cosh)?

oR(0)= , 3.4

where B is the screening parameter. The total scattering
cross section is given by
Z%* 1 T
(4mey)* 4E? B(1+P)
(3.5)

r =27 [ "o (8)sin0d6=

The whole problem for the Rutherford cross section is
the choice of B. These aspects have been discussed
thoroughly in Ref. 7. As previously done by Bindi,
Lantéri and Rostaing,*° in the present work, 8 has been
deduced for polycrystalline Al from a given elastic MFP

gin¥ do/d?¥ (arb. unitg) gin® do/d¥ (arb. unitg)
3 55 r
’— 45 |
2r 20 eV 35
25

1.5
0.5 |

1+
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}\’el(E) by
B(1+B)=1656.6 Ae (A) (3.6)
[E(eV)]’ '

where A, (E) has been chosen as the elastic MFP calculat-
ed by the PWEM method from Smrcka’s potential.?’

We compare in Fig. 1 the differential elastic-scattering
cross sections (in polar diagram) for several incident-
electron energies. Curves are normalized by
f of(0)sin6dO=1. The Smrcka scattering cross-section
shows structures which are absent from the monotonous
Rutherford one. In the whole energy range, the former
one is more forward peaked than the second one. This
has, as is shown further, important consequences on the
SEE yields either in backscattering or in transmission.

B. Inelastic interactions with the jellium

Much work has been done to calculate the inelastic in-
teractions of charged particles in solids within the dielec-
tric formalism. The wave number and frequency-
dependent dielectric function e€(k,w) describes the
response of the medium to an external point charge.?!

The differential inverse mean free path (DIMFP) for an
electron of energy E is given by®!

d*(1/A) _  me? 1,
dodk Amle HE k

m|l——1
e(k,w)

(3.7)

where #iw is the energy, #k is the momentum transfer,
and Im[ —1/e(k,w)] is the energy-loss function.

The most popular dielectric function for the electron
gas has been given by Lindhard.?® It describes adequate-
ly the NFE materials such as Al. Many authors have
tried to improve the Lindhard dielectric function by in-

100 eV

o
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FIG. 1. Comparisons of angle differential
elastic cross sections for various electron ener-
gies. Solid curves are for the Smrcka potential
(Ref. 25) and dashed curves are for screened
Rutherford cross sections with the same mean

free path. Curves are normalized.
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troducing a finite lifetime for the elementary excitations®
or by taking exchange and correlation effects into ac-
count.’%83

In the following, we describe the Lindhard function,
the corrections for exchange and correlation, and the
correction that takes into account a finite lifetime for the
elementary excitations. Then, we indicate the way the
different dielectric functions can be introduced in the cal-
culations. We compare the characteristics of the corre-
sponding inelastic MFP’s and analyze their possible
influence on SEE.

1. Random-phase approximations

Conduction electrons in polycrystalline Al behave ap-
proximately as free particles in a positive uniform back-
ground. The simplest expression for the dielectric
response of a free-electron gas is the Hartree-Fock ap-
proximation (HFA).8! Coulomb interactions between tar-
get electrons are neglected. This gives rise to®!

1

=1+U(k k,w),
EHFA(k,CO) ( )XO( @)

(3.8)
where U(k)=e?/€sk? and y,(k,w) is the free-electron
polarizability.

The true electrostatic potential in the medium @(k,®)
differs from ¢.,,(k,®) by the induced potential ¢, 4(k,w)
given by

Pina(k, @) =@(k, ) = @y (K, @)
Pext(k, @)

_— k,
€HFA( k,a)) ¢en( @)

=U(k)xo ko) @o(k, @) - (3.9)

The HFA is a very rough approximation. A much
better approximation replaces in Eq. (3.9) the external
J
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potential @, (k,0) by the true electrostatic potential

¢(k,w). This is the random-phase approximation
$1(RPA) and
X()(k,a))
k,0)= .
Xrealko )= otk ) 610
and
erpalk,0)=1—U(k)x(k,0) . (3.11)

As is obvious from the form of Eq. (3.10), the HFA ap-
proximation is a first-order approximation, while RPA
takes higher-order polarization processes into account.

The effect of short-range interactions is to surround
each electron by a depletion of negative charge. This can
be accounted for by a factor 1—G (k) that lowers the
influence of the induced potential in Eq. (3.10). Hence
Eq. (3.10) is modified, giving rise to an electron polariza-
bility including the exchange and correlation effects

Xo(k,a))
1=[1-G () ]U (k) k,0)

Xexc,cor( K, @)= (3.12)
This subject has been thoroughly reviewed by Kugler®?

and Mahan,® for instance. Vashishta and Singwi®* gave
for G (k) the form

— 2
Gk)=d(1—e 2/ (3.13)
and, for Al, 4 =0.895 and B=0.336. More involved
forms of exchange and correlation corrections replace the
static function G (k) by a dynamic complex function
G(k,w).8>86

Another important modification of the Lindhard func-
tion has been introduced by Mermin® in order to take
into account the finite lifetime 7 of the elementary excita-
tions according to the following expression:

(1+i/wr)[egpalk,0+i/T)—1]

EM(k’w):ef,RPA(k’w)=l+

In the present paper, we limit ourselves to the compar-
ison between the dielectric functions of Lindhard,?® and
Mermin,> and Vashishta and Singwi.®* This will, howev-
er, allow us to check the influence of the important physi-
cal phenomena without focusing on untractable calcula-
tions.

2. Properties of the dielectric functions

As is well known, the elementary excitations in a free-
electron gas can be split into collective and screened indi-
vidual excitations. The two types of excitations are clear-
ly distinguished in the framework of the Lindhard dielec-
tric function.?? The bulk plasmons are well-defined exci-
tations from k=0 up to the cutoff value k, where the
plasmon dispersion line w=w(k) [equivalent to
e(k,w)=0] enters the individual excitation zone. Beyond
this limit, one can consider that a plasmon decays im-
mediately by the creation of one electron-hole pair in the
conduction band. When one uses a real function G (k) to

1+i/ClJT[8RPA(k,(A)+i/T)_1]/[8RPA(k,O)_1] ’

(3.14)

[
include the exchange and correlation effects, the clear
separation between individual and collective excitations
still persists. The plasmon dispersion relation is, howev-
er, slightly modified.”> When considering a finite lifetime
for elementary excitations, the situation is more complex.
In order to characterize the plasmon line, it is better to
take, for each value of k, the value of » which maximizes
Im[—1/gp(k,w)]. The plasmon line has now a finite
linewidth AE, (k) and one can use the following ap-
proximation:

N A(K)[AE, ,,(K)]?
M o—wy(k)PH[AE, ,(K)]?

(3.15)

1
eylk,w)

Im

Hence, o =w,,(k) represents the plasmon dispersion
relation. The damping of excitations can be character-
ized by the factor ¥ such that
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= = jim 2128 316 Moo (B)
0 (0)7 k-0 Fiwy (k) 100
where 7 is the lifetime of the elementary excitations and
o,(0)= Y/ Ne?/eym is the classical plasma frequency. 80
Ganachaud? tried to give an estimation for y. He pro-
posed ¥y =0.1 as a good compromise to fit both the exper-
imental width AE, ,(0)=0.5 eV and the overall shape of 60
the plasmon line for several values of k.5 We have
used this value in our calculations.
It appears that the plasmon lines calculated from the 40
Lindhard,?® Mermin,*> and Vashishta—Singwi84 dielectric
functions are quite similar.
More important differences appear between the elec- 20
tron interaction MFP’s both for individual and collective
excitations. The inverse mean free path (IMFP) for
binary electron-electron collisions is given at energy E by 0 el Ll Y
1 10 100 1000
T (3.17) E (eV)
lee(E) maoE o FIG. 2. Binary electron-electron collision mean free paths
where @(w) is the loss function defined by calculated from the Lindhard function (Ref. 26) (O), the
. Vashishta-Singxi function (Ref. 84) (O), and the Mermin func-
+1 1 tion (Ref. 55) (A).
plo)= [, " Im ey |4k (3.18)

where k , (w) and k _(w) are the values of the wave num-
ber k which limit the individual excitation zone. Their
expressions have been given in Ref. 89. For the Lin-
dhard® or the Vashishta-Singwis“ dielectric functions,
the plasmon excitation IMFP is calculated from?%%

;_ng 1 1
}"pl(E) aOE plasmon line k |a€1(k,a))/(ak)|

dtio ,

(3.19)

where €,(k,w) is the real part of the dielectric function
e(k,w). The integration is performed along the plasmon
dispersion line w=w_ (k) between the limit #iw, ;, and
fieo, . 208

For the Mermin function,’” the plasmon line has a
finite linewidth and the IMFP can be evaluated from

pl

11 ke dk
Ag(E)  maoE fo k F(k,E), (3.20)
where
fiw,(k) A (k)[AEl/z(k)]z

F(k,E)= %
fiw, (k) 4ﬁ[a)—a)M(k)]2+[AE1/2(k)]2 @

_ A(K)AE, (k) Wil —awy (k)] l“’Z""

rctan

2 AEl/z(k) (k) ’

(3.21)

where w,(k) and w,(k) are suitable integration limits.?

The MFP’s for individual electron and plasmon excita-
tions are compared in Figs. 2 and 3. For plasmon excita-
tions, the MFP becomes larger when the Lindhard func-
tion is replaced by the Mermin one and still increases
when the Vashishta-Singwi function is used. For
electron-electron collisions, this order is reversed.

The total inelastic MFP in the jellium is obtained from

Ao (B, (E)

Mgl E)=—2 B
inf e (E)+Ay(E)

(3.22)

The inelastic MFP’s for the three dielectric functions
are compared in Fig. 4. One observes that, in the SE en-
ergy range (E <50 eV), the inelastic MFP is larger for
Lindhard’s version than for that of Mermin and Vashish-
ta and Singwi, while above 50 eV, this order is reversed.
The important consequences of such differences on the
computed values of yields will be thoroughly examined in
Sec. IVB.

3. Excitation of secondary electrons
and bulk plasmon damping

The calculated SEE yields are mostly sensitive to the
values of the MFP’s, i.e., integrated values, but are much

At (B)

Lol 1 VRN SR W S S |

1000

E (eV)

FIG. 3. Plasmon excitation mean free paths calculated from
the Lindhard function (Ref. 26) (O), the Vashishta-Singwi func-
tion (Ref. 84) (O), and the Mermin function (Ref. 55) (A).
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FIG. 4. Inelastic mean free paths in the free-electron gas cal-
culated from the Lindhard function (Ref. 26) (O), the
Vashishta-Singwi function (Ref. 84) (O), and the Mermin func-
tion (Ref. 55) (A).

less sensitive to the differential aspects of the interactions
and excitations of electrons (energy and momentum
transfers), which can be computed from Im[ —1/e(k,w)]
and @(w). In the present calculations, these have only
been evaluated from the Lindhard function.

Many papers have been devoted to the study of
plasmon decay. The crystalline structure of the solid and
the presence of a surface and impurities in the lattice are
responsible for the damping of collective excitations.?%%°
It has been shown by Hasegawa® that interband transi-
tions are an important cause of plasmon decay. While
plasmons can a priori decay via the excitation of more
than one electron,?° processes involving only one electron
are preponderant.'>!%?° As already done Ganachaud
and Cailler,2>?? we have assumed here that the probabili-
ty of the excitation of one electron by plasmon damping
is proportional to the density of the electron states in the
valence-conduction band. Hence, the probability of the

372 1
1_ —

1
ga(xay)=;

x+1

+%1n[2.718+(x —)172]
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excitation of one electron of energy E above the bottom
of the conduction band is proportional to

VE[E +#oy(K)] .

The dielectric functions considered here above are only
valid for an infinite electron gas. Of course, for emission
phenomena, the surface of the solid cannot be ignored.
Roughly speaking,’®? the plasmon dispersion relation
e(k,w)=0 has to be replaced in the surface zone by
1+e(k,0)=0. This transformation affects a limited spa-
tial zone at the vacuum-medium interface. For the sake
of simplicity, it has been assumed in this paper that this
zone extends from z, in the vacuum to z, in the solid.?®??
In this domain, the collective bulk excitations are simply
replaced by purely surface excitations.

For practical calculations, it has been assumed that, in
the surface zone, the plasmon creation MFP could be
simply set equal to the bulk MFP [provided the energy is
corrected by the difference between the classical bulk and
surface plasmon energies: iw,(0) —#iw, ,(0)]. The order
of magnitude of z; and z, is 1 A.* z, and z, can in fact
be viewed as varying with the electron energy.®? Such as-
pects have not been considered in the present paper. Sur-
face plasmons just as bulk plasmons have been assumed
to decay by the creation of one excited electron from the
conduction band.

(3.23)

C. Ionizing collisions

The interactions of charged particles with the electrons
of the K and L inner shells of Al are generally considered
apart from those with the conduction band.

Most authors have used the classical formulas of
Gryzinski?’ In this treatment, an electron of energy E
loses an energy amount AE by ionization according to
the energy differential cross section

Oy
AE?

where 0,=656 eV?> A%, xE/U,, y=AE /U,, U, is the
binding energy of the considered inner shell, and

o (E,AE;U,)=

g,(x,y), (3.24)

1/(1+y)

-2 (3.25)
X

The energy AE that an electron of energy E can lose varies between U, + Ep and E — E. Integrating Eq. (3.24) over

AE practically gives the simple formula of Gryzinski,
372
g —
Us x

2
1+
3

1
1_~_
2x

x+1

For Al, the K shell, which has a binding energy of 1559
eV with respect to the Fermi level, plays no role at the
primary energies considered in this paper. For the L
shell, the L, subshell has two electrons with a binding en-
ergy of 118 eV and the L,; subshell has six electrons with
a binding energy of 74 eV.

In[2.718+(x —y)!/?] l .

(3.26)

[

We compare in Tables II and III the electron inelastic
MFP’s and the stopping powers for interactions with the
jellium and with the L shell. The ionizing collisions are
much less frequent than the interactions with the jellium;
nevertheless, their influence on the electronic stopping
power is very important and even becomes preponderant
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TABLE II. Comparison of inelastic mean free paths for electron interactions with the jellium (Mer-

min description) and with the L-shell electrons.

E (eV) 20 50 75 100 150 250 500 750 1000
Ain(E) (1:\) (jellium) 7.1 34 3.9 4.5 5.7 8.2 13.8 19.0 24.0
Ain(E) (A) (L shell) 276.0 126.0 93.0 103.0 127.0 151.0

above 500 eV. Their effect is to limit the penetration of
the primaries in the target and to concentrate the elec-
tron source at moderate depths.

Rosler and Brauer® have used a quantum-mechanical
description of the ionizing collisions. They showed that
important differences with respect to Gryzinski’s formu-
lation?’ appear, especially on the energy distribution of
the excited electrons. Such quantum-mechanical aspects
were not considered in this work.

Holes created in inner shells can decay via Auger tran-
sitions (the fluorescence yield being here negligible). This
Auger deexcitation has been presently accounted for.

IV. RESULTS

We study, in the following, the outgoing electron yields
8 and 7 for electron emission in backscattering from
thick Al targets and the backscattering and transmission
coefficients 17z and 7 for incident electrons on thin Al
targets. These yields have been evaluated only for nor-
mal incidence and obtained with a Monte Carlo simula-
tion code. Several calculations have been made with vari-
ous assumptions about the electron interaction cross sec-
tions. In all our calculations of & and 7, we have con-
sidered N =10000 primary-electron trajectories, whereas
for gz and 7, we have considered N =25000. The order
of magnitude of the yields is unity; hence, a rough estima-
tion of the relative statistical error is given by 1/V'N,
which is presently 1%. This statistical aspect must be
kept in mind when comparing yield values from different
Monte Carlo calculations. We emphasize in the follow-
ing the influence of the description of elastic scattering,
the influence of the choice of the dielectric function, and
the importance of ionizing collisions.

A. Influence of the description
of elastic collisions

Our analysis of the influence of the elastic effect on the
yields will deal with the three following aspects. First, we
give some theoretical considerations based upon the
Boltzmann equation. Second, we study the influence of
the angular behavior of the elastic-scattering cross sec-

tion. For that, we shall compare the results obtained
from Smrcka’s potential’?> by a PWEM method, to those
evaluated with a screened Rutherford formula (but ad-
justed so that it gives an identical value for the MFP).
Third, we shall use a more overall approach, and check
the influence of the multiplication, by a constant factor k,
of the elastic MFP as a whole in the energy range con-
sidered.

1. Boltzmann equation

The role of elastic scattering in SEE is double. It
influences strongly the penetration of the primary elec-
trons in the target. It also plays a role in the transport of
the SE’s themselves, i.e., the electrons excited by the pri-
maries or by the cascade process.

As described in Ref. 3, the transport of the primary
and secondary electrons can be studied by solving the
Boltzmann equation. In plane geometry, where the depth
x is the only space variable, we obtain in the stationary
case the total flux ®(x, E,u) of the electrons with an en-
ergy E and moving in a direction y=cos6f with respect to
the x axis.

Two differential scattering cross sections appear in this
equation. First, the true scattering cross section
3. (E'—E,u'—p) gives the probability that an electron
is scattered from (E’,u’) to (E,u). It can be written as
the sum of an inelastic and an elastic part:

S(E'—-E,u—u)=Z2 (E',u'—u)d8(E —E’)

+3, (E'—Eu—p) . @.1)

Second, to take into account the excitation of electrons
by collisions with the jellinm and by ionizing collisions,
the Boltzmann equation also includes an excitation cross
sections 3S(E’'—E,u'—pu). It gives the probability that
an electron (E’,u’) excites another electron at energy E in
the direction . In terms of these cross sections, the
Boltzmann equation can be written as

TABLE III. Electronic stopping power S,(E) for electron interactions with the jellium and with the

L-shell electrons.

E (eV) 20 50 75

100 150 250 500 750 1000

S.(E) (€V/A) (ellium) 191 614  5.66
S.(E) (eV/A) (L shell)

5.06 4.12 2.91 1.64 1.17 091
0.31 0.78 1.28 1.44 1.30 1.16
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a o +1 ’ ’ s ’ ’
oy TE(E) | Pr(x,Ep)= fE f_l [2,(E'"—E,p'—>p)+2(E'—E,p'—>p) 1@ r(x,E',p')dE"dy’ | @.2)
[
where S (E')= [F [*IS(E'>E,u'—>p)dE dp is the the surface.  The critical cosine for escape

total scattering cross section (inverse mean free path) at
energy E’.

For normal incidence of electrons (at energy E,) the
boundary condition is

®1(0,E,u)=8(u—1)8(E—E,)

+H[pu (E)—pl®(0,E,—u) (u>0).
(4.3)

The first term expresses the ingoing primary-electron
flux, while the second term (the Heaviside step function)
expresses the partial reflection of the internal electrons at
J

®(x E,,L)=fE°°f_+1‘[zs(E

0
Hox

with the partial reflection boundary condition

®(0,E,p)=H[p (E)—p]®(0,E,—p) (1>0) (4.6)
and
s g LB s
QU Ep)= [T [ SUE'—E,p—p)
X®,(x,E",u )dE'dy’ . @.7)

In most cases, the primary- and secondary-electron en-
ergy ranges are very different.> Hence, the differential
scattering cross sections are also very different (see, for
instance, Fig. 1 for the elastic differential cross section).
Hence, solving Eq. (4.2) directly for ®(x,E,u) can be a
very difficult task.

Considering separately the primary and secondary
electrons greatly simplifies the problem because distinct
techniques can be applied to calculate the both fluxes. In
J

2B, (Ew=[" [z~

To solve this equation, we use the Legendre polynomial
expansions

21+1

Q. (Ep=S Q(E)P,(u (4.9)
1=0
O (Ep)=3S 21+1<1>,(E)P,(y), (4.10)
=
and @ 20 +1
S(E'—Ep—p=S B(E'—E)P()P, (1) ,

=0
(4.11)

'>E,u'—u)+3(E

E,u—pu)+35(E'—E,u'—>p) o (E

p(E)=1"U,/E, where U, is the potential barrier at the
surface.

The Boltzmann equation (4.2) with boundary condition
(4.3) can in principle be solved directly to give the total
electron flux. However, it is convenient to split the total
flux ®7(x,E,p) in a primary-electron flux ®,(x, E,u) and
a true secondary-electron flux ®(x,E,u):

D, (x,E,u)+P(x,E,u) . (4.4)

As is easily seen,’ P, is the solution of Eq. (4.2)
without the 3} creation cross section and satisfying the
boundary condition (4.3). Once <I>p is known, we can cal-
culate ® by solving Eq. (4.2), which includes now a
source term Q(x,E,u):

D (x,E,u)=

' SE,u—p)®(x,E ) dE'dp' + Q(x,E,u) ,  (4.5)

the following, we will use this splitting in the discussion
of the influence of the elastic collisions on both the
primary- and secondary-electron fluxes.

In order to explain the influence of elastic scattering on
the secondary-electron flux, we will use the ‘infinite
medium slowing down” model.> This model considers
that both Q(x,E,u)=Q_,(E,u) and P(x,E,u)
=® _(E,u) are uniform, at least in the depth zone from
which the secondary electrons can escape. This model
has been used by several authors!®® and gives rather good
results® though it has been shown in Ref. 75 that it
overestimates the yield by about 30% for protons in-
cident on polycrystalline aluminum targets. It is worth
noting here that this model can only be used to solve the
Boltzmann equation for secondary electrons and not for
primary electrons.

With the assumption of uniformity of Q, and ¥, Eq.
(4.5) becomes

' udE'dp' + Q. (Eyp) 4.8)
[
SUE SEp—p)= 3 2l g e L E)PwP )

1=0
(4.12)

which give a slowing down equation for each angular or-
der I:

3. (E)®,(E)
=wa[B,(E’—>E)+Bf(E’—>E)]<I>,(E')+Q,(E) .
4.13)



11 066

Since the scattering events are either elastic or inelastic,
we can write

S (E)=ZH(E)+Z,4(E), (4.14)

where 2 (E)=1/A,(E) is the elastic cross section (in-
verse mean free path) and 2; (E)=1/A,,(E) is the in-
elastic cross section. From Eq. (4.1), we have

B(E'—>E)=Z4(E")8(E —E'){P; 4(E"))

+B, e E'—E) , (4.15)

where B, .(E'—E) is the inelastic part of the true
scattering kernel B/(E’'—E). (P,yel(E’)) is the average
elastic moment at angular order / and its expression is

EEI(E')(P,,el(E')>=f:lzel(E',l—»,u)P,(y,)d;L. (4.16)

We have obviously (P, 4(E'))=1 and |[{P; 4(E")}| =<1
forl=1.

Introducing the above expressions in Eq. (4.13), we ob-
tain

{Einel(E)+ [ 1— <P1,el(E) ) ]Eel(E)]cpl(E)
= [ [ 1Bijna(E'—E)

+BJ(E'>E)|®,(E"YdE'+Q)(E) .  (4.17)

As (P, 4(E))=1, one can see, by inspection of Eq.
(4.17), that the elastic collisions have no influence on
®y(E) but that they influence the higher-order angular
terms ®,(E). As explained in Ref. 68, it can be shown
from Eq. (4.17) that increasing the elastic cross section
or making it more isotropic decreases the value of ®,(E)
(for /= 1). As a consequence, the influence of the elastic
collisions on the angular flux ®(E,u) is to make it more
isotropic because ®,(E) remains unchanged. Hence, the
influence of the elastic collisions on the true secondary
yield §, at least the part due to the transport of the inter-
nal excited SE, is only a second-order effect, since the
integ}nal SE source term Q(E,u) is itself almost isotro-
pic.

However, the effect of elastic collisions on the
primary-electron transport and penetration is very im-
portant. In a first approximation, it can be considered
that, in the primary-electron energy range, the inelastic
collisions give rise to energy losses but to negligible angu-
lar deflections, while the elastic scattering events lead to
angular deflections without energy losses. The penetra-
tion of the primaries in the target is limited both by their
energy losses and by their angular dispersion due to mul-
tiple elastic scatterings. The so-called “transport MFP,”
well known in neutron transport theory,’* can be intro-
duced to characterize the loss of directivity suffered by
the primary beam.

It can be easily deduced from the elastic MFP by intro-
ducing the following “synthetic” kernel (see Williams,!
for instance, to find information about the use of “syn-
thetic” kernels, i.e., approximate cross sections with ad-
justable parameters that are used instead of the real cross
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sections):

2tr(l':)

HE'—E, ' —p)= +Zpa(E)B(p—p')

XS8(E—E') . (4.18)

This “‘synthetic” scattering kernel is made of two
terms. The first one is the “transport” cross section
[A(E)=1/Z,(E) is the elastic “transport MFP”’] that
gives rise to the isotropic elastic scattering part, and the
second one is the “forward” cross section that gives rise
to no energy loss and no angular deflection. The anisot-
ropy of the elastic cross section is then concentrated in
2¢wa( E), whereas the loss of directivity of the electrons is
concentrated in 2, (E).

The elastic scattering kernel
can be approximated by the

WE'—E,u' —u).

In order that the “synthetic” kernel resembles most
closely the original one, we adjust 2, (E) and Z4,4(E) so
that the first two angular moments (P, (E)) and
(P, 4(E)) are the same for = and 3. Hence, we obtain

S(E)=3(E)+344E) , (4.19)
S( Py o(E)) =S o(E) . (4.20)

SJNE'—E,u'—u)
“synthetic” Kkernel

The angular characteristics of the elastic collisions are
now contained in a global way in both the “transport”
and “forward” cross sections. Hence,

1 AqE)
SH(E)  1—AP 4(E)) ~

The ratio 2 (E)/Z,(E)=AE)/A,(E) gives an idea of
the number of elastic collisions necessary for an imping-
ing electron to lose the memory of its initial direction.
We compare in Fig. 5 the transport MFP’s deduced from
the Smrcka potential and from the screened Rutherford

Al E)=

(4.21)

A (A)

1000,
L]
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. 8
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2 4 e
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FIG. 5. Elastic transport mean free path A, and elastic back-
scattering mean free path Ags calculated from (solid line) the
elastic mean free path deduced from the Smrcka potential (Ref.
25) and (dashed line) screened Rutherford cross section with the
same mean free path as deduced from the Smrcka potential.
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cross section (giving the same elastic MFP). The Smrcka
transport MFP is larger, in the whole energy range, than
the Rutherford one by a factor of about 1.3. Hence, us-
ing Smrcka’s version for elastic scattering leads to a
much deeper primary-electron penetration. The order of
magnitude of A (E), at E =1000 eV, is of about 100 A.
It gives a good estimate of the mean penetration depth of
the primaries in the target. Let us notice that the trans-
port MFP is about 10 times the elastic MFP at 1000 eV
and that this number increases with electron energy.
Some authors have used a so-called elastic backscattering
cross section (see Ref. 32 for instance). To define it, only
collisions giving rise to a reversal of the electron direction
are considered. The corresponding MFP is almost one
order of magnitude larger than the transport MFP in the
primary-electron energy range considered (see Fig. 5).
This elastic-backscattering MFP is not in fact the correct
variable to be taken into account to describe the
primary-electron penetration (and transmission) because
it is a MFP for complete reversal of the electron direction
and not a MFP for the loss of directivity of the electron.

2. Influence of the angular description of elastic collisions

We compare in Fig. 6 the yields § and 7 obtained with
both descriptions of the elastic scattering. The values of
the backscattering coefficient 1 are slightly modified by
the choice of elastic cross sections. Above 300 eV, Ngum
is slightly larger than ng,, k..

The influence of the elastic collisions is much more evi-
dent on the true SE yield 8: 8y, is larger than 8, in
the 100-500 eV range. As indicated above, the elastic
collisions mostly influence the penetration of the incident
primaries into the target. At 500 eV, the transport MFP
A (E)=48 A for the Smrcka description and A (E)=40
A for the Rutherford one. These values are of the order

0.80

0.60

0.4C

T T T T T T T T T
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FIG. 6. Influence of the choice of the elastic cross section. &
and 7 yields as a function of the primary electron energy E,.
Rutherford’s description (Q) and Smrcka’s description (Ref. 25)
(0,+).

11 067

of magnitude of the depth from which the electrons can
escape (d =~50-75 A for Al). As the transport MFP
characterizes the limitation of the penetration of the in-
cident primaries into the target due to elastic effects,
below 500 eV, the SE source is mainly concentrated
within this depth. In the Rutherford description, the
electron source is concentrated closer to the surface and,
as a consequence, the yield 8 is enhanced. Above 500 eV,
the transport MFP becomes larger than the depth from
which the electrons can escape. Consequently, no
significant difference between the 8 yield values can ap-
pear.

The influence of the calculation of elastic collisions on
the electron penetration is confirmed by the calculation
of g and 7y yields for 1-keV electrons incident on thin
films (see Fig. 7). As shown for 7, the 7 values are
slightly larger for the Rutherford description than for the
Smrcka description. The influence on 17z and 7 is more
apparent as soon as the target thickness exceeds 75 A,
i.e., the order of magnitude of the transport MFP for 1-
keV electrons.

In order to check more fully the influence of the angu-
lar description of the elastic collisions, we have made ad-
ditional calculations by using some rather extreme as-
sumptions on the angular behavior of the elastic col-
lisions (while keeping the same elastic MFP): An isotro-
pic and a completely forward-peaked cross section were
used. In the former case, the transport MFP is equal to
the elastic MFP. In the latter case, the elastic transport
MFP is infinite.

The 8 and 7 yields obtained using both assumptions
are compared in Table IV to those obtained with the
Smrcka and the Rutherford descriptions.

These results clearly indicate the strong influence of
the angular behavior. For isotropic elastic collisions, the
penetration of incident primaries into the target is very

1.20

77R777'I‘
1.00 ¢

0.80

0.60
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FIG. 7. Influence of the choice of the elastic cross section.
nr and 77 backscattering coefficients as a function of target
thickness d for 1000-eV incident electrons. Rutherford’s
description (O) and Smrcka’s description (Ref. 25) (+).
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TABLE IV. § and 7 yields obtained using various angular descrlptlons of the elastic collisions. The
ionizing collisions have been left out for these calculations (z, =z, =0.0 A).

E (eV) 50 100 200 300 400 500 600 800 1000
Smrcka 8 0.68 0.84 0.97 0.90 0.78 0.66 0.60 0.47 0.37
description

7 0.00 0.17 0.26 0.29 0.29 0.30 0.31 0.31 0.32
Rutherford ) 0.77 1.01 1.06 0.98 0.81 0.70 0.61 0.45 0.37
description

7 0.00 0.14 0.24 0.29 0.31 0.32 0.33 0.35 0.36
Isotropic 8 0.81 1.01 1.10 1.03 0.96 0.84 0.77 0.63 0.55
collisions

n 0.00 0.22 0.42 0.52 0.59 0.62 0.66 0.71 0.74
Forward- 5 0.12 0.41 0.52 0.47 0.42 0.35 0.30 0.23 0.18
peaked
collisions 7 0.00 0.002 0.002 0.004 0.005 0.006 0.006 0.006 0.006

limited. Most incident primaries are backscattered and
the § yield is enhanced because these backscattered pri-
maries give rise to an important electron source contribu-
tion very close to the surface. When elastic collisions are
completely forward peaked (and thus play no role), the
backscattering yield 7 is very low because only inelastic
collisions are responsible for angular deflections of the in-
cident primaries.

The 8 yield is decreased because the backscattered pri-
maries do not contribute any more to the excitation of
electrons. When comparing the Rutherford and Smrcka
descriptions, it is clear that the Rutherford description is
closer to the isotropic case than the Smrcka description.

Apart from the comparisons dealing only with the an-
gular aspects of the elastic collisions, we have made some
tests about the influence of the magnitude of the elastic
MPFP by multiplying rather arbitrarily the elastic MFP by
a constant factor k, ranging from 0.5 to 2.0.

The 6 and 7 yields calculated with several values of k
are compared in Table V. The influence of k is obvious: §
and 7 decrease as k increases. Multiplying the elastic
MFP by a constant factor results in multiplying the
transport MFP by the same factor. For k less than 1, the
primary-electron penetration in the material is reduced.
Hence, more primaries are backscattered and the true
secondary yield & is enhanced too.

As a conclusion, it appears that the description of elas-
tic collisions influences strongly the calculated yields &

and 7 through its influence on the primary-electron
penetration. Moreover, the elastic scattering is globally
well accounted for by using the Smrcka description. This
is confirmed by the comparison of the calculated values
of & and 7 to experimental results (see Sec. IV D).

From the dependence of 774 on the target thickness d,
one can roughly estimate the primary range R at E,=1
keV. Conventionally, this range is taken as the value of d
for which 7,=0.01.

Following Fitting,”*> R can be estimated from

R(E,)=900p"*E}* , (4.22)

where p is the density of the target, R is in A, and E,
keV. Fitting’s formula gives R =407 A at E,=1 keV for
Al targets. From the 7, values, we can roughly estimate
that R ranges between 300 and 350 A using the Smrcka
description. This is in rather good agreement with the
value predicted by Fitting’s formula.

B. Influence of the choice of the dielectric function

Changes in the dispersion relation or in the shape of
the loss function ¢(w) influence mainly the electron spec-
trum in the characteristic energy-loss region. Integrated
quantities such as the secondary yield & or the back-
scattering coefficient 17 are much less sensitive to these
rather differential features. This is the reason why the

TABLE V. 8 and 7 yields calculated after multiplication of the elastic mean free path by a constant

factor k. The ionizing collisions have been left out for those calculations (z, =z, =0.0 A).
E (eV) 100 300 600 1000
k 8 n 8 7 8 n ) 7

0.50 0.99 0.26 1.25 0.38 1.01 0.39 0.71 0.39
0.75 0.90 0.22 1.16 0.31 0.96 0.32 0.69 0.33
1.00 0.87 0.17 1.10 0.27 0.90 0.28 0.66 0.29
1.50 0.79 0.13 1.00 0.22 0.87 0.23 0.62 0.24
2.00 0.70 0.11 0.98 0.20 0.81 0.20 0.59 0.21
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FIG. 8. Influence of the choice of the dielectric function. &
and 7 yields as a function of the primary-electron energy E,q
calculated from the Lindhard function (Ref. 26) (O), the
Vashishta-Singwi one (Ref. 84) (O), and the Mermin one (Ref.
55) (A).

only aspect we have studied here is the modification of
the MFP values due to a particular choice of the dielec-
tric function. Variations between dispersion relations or
loss function shapes have been simply ignored.

We compare in Fig. 8 the electron yields 6 and 7 ob-
tained using the MFP’s calculated from the three dielec-
tric functions. The backscattering coefficient 7 is rather
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FIG. 9. Influence of the choice of the dielectric function. ,
p, and o partial yields as a function of E,, calculated from the
Lindhard function (Ref. 26) (O), the Vashishta-Singwi one (Ref.
84) (O), and the Mermin one (Ref. 55) (A). 7 is the yield result-
ing from bulk plasmon decays, o is the yield resulting from sur-
face plasmon decays, and p is the rest of the § yield.
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insensitive to this choice. Indeed, above 50 eV, that is, in
the region where the primary-electron transport is con-
cerned, the inelastic MFP is not very sensitive to the
dielectric function.

On the contrary, this choice strongly influences the
true secondary yield 8§, which is reduced by using the
Mermin function instead of the Lindhard one and still
further by using the Vashista-Singwi function. In fact,
the reduction is almost independent of the incident-
electron energy, the factor being approximately 0.9 when
replacing the Lindhard function by the Mermin one and
0.85 when the Vashista-Singwi function is substituted for
the Mermin one.

For a better understanding of the results presented in
Fig. 8, we have separated the different contributions to
the yield 6 (see Fig. 9). The first one 7 comes from the
electrons created by the volume plasmon decay. The
second one o is due to the electrons created by the sur-
face plasmon decay. The rest has been labeled p. This
latter contribution is mainly due to the electrons excited
by individual collisions within the jellium but also to the
electrons produced by the ionization of the inner shells
and the subsequent Auger relaxation. In our calcula-
tions, the separation of & into several contributions has
been made by reference to the type of event which has
directly led to the creation of an escaping electron. For
Rosler and Brauer, the same label is assigned to an elec-
tron created by the primary beam and to the whole cas-
cade it generates.

According to our calculations, the surface plasmon
component o is always small. The two others 7 and p are
important and of similar magnitudes.

The influence of the choice of the dielectric function is
much more important on 7 than on p.

The above results are clearly due to a MFP effect. The
total inelastic MFP in the range E <50 eV increases from
the Vashista-Singwi function to the Mermin and then to
the Lindhard one. For the SE’s which have their energy
within this domain, this results in an enhanced escape
probability. One can, in a crude model, consider that the
escape probability P(x,E) for an electron of energy E,
which has a distance x to travel before reaching the sur-
face, is given by

P(x,E)~e */ME) (4.23)

where A(E) has been, in a rough approximation, taken as
the inelastic MFP A;,(E) at the same energy. For x =10
A and E =10 eV above the Fermi level (both values are
representative of the escape depth and of the energy of
the internal SE’s), exp[ —x /A;,(E)]=0.648 for the Lin-
dhard function, 0.594 for the Mermin one, and 0.547 for
the Vashishta-Singwi one. Their relative values are in
good agreement with those calculated for 8.

When looking at the partial contributions 7 and p, the
influence of the choice of the dielectric function on 7 is
enhanced because, when going from the Vashishta-Singwi
function to the Mermin and then to the Lindhard func-
tion, the plasmon excitation cross section increases.
Hence, less plasmons are created when using the
Vashishta-Singwi function instead of the two others and
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m is much lower. On the contrary, for p, the increase of
the electron-electron collision MFP gives rise to a com-
pensation of the escape probability effect.

The 1z and 7m; values are nearly independent of the
choice of the dielectric function. This confirms that this
latter influences essentially the escape of SE’s.

C. Influence of ionizing collisions

We compare in Fig. 10 the 8§ and 7 yields calculated
with and without including the ionizing collisions. The
backscattering coefficient 7 is slightly decreased (by
about 10% in the whole energy range considered) when
including these collisions. The true secondary yield & is
much more influenced by them, for primary energies
above 150 eV (this value corresponds to the inner-shell
ionization threshold).

At 1 keV, 8 is decreased by a factor of 2 when ionizing
collisions are neglected. As indicated above, these col-
lisions are rather infrequent events, but their contribution
to the electronic stopping power is very important. This
contribution even becomes preponderant at 1 keV.

For SEE, the influence of ionizing collisions is double,
first on the penetration of primary electrons into the tar-
get and also as a source contribution.

This last role has been emphasized by Rdsler and
Brauer.% Their treatment of the ionizing collisions
differs from ours as it is a quantum-mechanical treat-
ment, while Gryzinski’s formulation?’ is a classical one.
In fact, what they have shown is that the ionizing col-
lisions give the most important contribution to the partial
electron yield §, as the backscattering effects are treated
apart in their work.

In order to compare our results with theirs, we have
calculated §,, and we obtained results close to theirs
since, for instance, we could estimate that, at 1 keV,
about 50% of the partial yield §, is due to the ionizing
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FIG. 10. Influence of the ionizing collisions. 8 and 7 yields
as a function of the primary electron energy E,, calculated with
(+) and without (O) ionizing collisions.
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collision source.

We show in Fig. 11 the transmission and backscatter-
ing coefficients 17z and 74 for 1-keV incident electrons on
thin Al films, and for a normal incidence, obtained with
and without ionizing collisions. The backscattering yield
ng is not much modified by including the ionizing col-
lisions, while the transmission yield 7, is much more
affected. That clearly indicates that the ionizing col-
lisions play an important role in SEE by the limitation of
the penetration of the primaries into the target. Addi-
tional calculations were also made, considering only the
inelastic-scattering events due to the inner shells, while
the creation of electrons due to the relaxation processes
was simply ignored. At 1 keV, we obtain §=0.18, i.e., a
result which has to be compared to §=0.61 for a calcula-
tion including the whole role of the ionizing collisions
and §=0.37 for a calculation which completely ignores
them. This allows, by difference, to check the importance
of the source effect. The results show that the second as-
pect, that is, the influence of the ionizing collisions as a
source term, is not negligible.

The maximum range of incident electrons estimated by
using Fitting’s law®® is R =407 A for 1-keV electrons in-
cident on polycrystalline Al targets.

When inner-shell collgsions are included, a value of R
between 300 and 350 A can be estimated. Neglecting
them leads to an estimation ranging between 400 and 450
A.

More complete results have already been presented”®
where it was shown that the reduced coefficient n(d /R)
was also in good agreement with that given by Fitting®
for Al, when ionizing collisions were included.

D. Comparisons to experiments

In Fig. 12, we compare values for § and 7 calculated
with our standard model (using PWEM from Smrcka’s
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FIG. 11. Influence of the ionizing collisions. 7z and 7
backscattering coefficients as a function of the target thickness d
calculated with (+) and without (O) ionizing collisions.
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FIG. 12. Comparison of the calculated yields & and 7 to ex-
periments. The solid curves correspond to the theoretical
values calculated within the standard model. The other curves
correspond to experiments. The A’s correspond to Roptin’s
measurements (Ref. 97), short dashed curves correspond to
Roptin’s measurements corrected for the acceptance angle, the
s correspond to Richard’s measurements (Ref. 98), medium
dashed curves correspond to Bronshtein-Frajman measurements
(Ref. 99) and long dashed curves correspond to Thomas-
Pattinson measurements (Ref. 100).

potential,25 Lindhard’s function,? and Gryzinski’s formu-
1a?" as ingredients) to experimental results. It is clear
that, at least, the order of magnitude of the calculated
yields is in good agreement with experiments.

The values we have calculated for 8 seem to be some-
what larger than the experimental results coming from
various references.”’ "% Let us remark that, for in-
stance, Roptin®’ measured 8 and % with an analyzer
which had an acceptance angle 8, limited to 50°. We
have tried in Fig. 12 to correct the values given by Rop-
tin for these effects. This was done by assuming a
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cosinusoidal distribution for the emitted electrons. In
that case, the correction simply amounts in multiplying
the above results by a factor 1/sin?0,. As a consequence,
our theoretical results become bracketed between both
uncorrected and corrected results.

V. CONCLUSION

One aim of this paper has been to recall the diversity of
the assumptions made by various authors working on
SEE in their theoretical models.

Our own study based on a Monte Carlo simulation
model has led stress on the influence of these assumptions
on the SE calculated yields for 100 eV-1 keV primary
electrons incident normally on polycrystalline Al targets.

First, we have emphasized the effect of the elastic col-
lisions which limit the penetration of the primary elec-
trons into the target and also make the internal excited
SE flux more isotropic. Second, we have tested the
influence of the choice of the dielectric function used to
describe the excitations of the conduction electrons.
Stress has been led on the MFP values issuing from these
various functions. More differential aspects have been ig-
nored. Last, the role of the ionizing collisions was con-
sidered. These are responsible for an additional source
term and also they limit appreciably the penetration of
the primary beam. All these modifications give apprecia-
ble differences in the computed yields.

A comparison between theoretical estimations and ex-
periments shows that the correct order of magnitude is
gained in our model. However, it is quite evidently rath-
er difficult to extract from the experimental measure-
ments the precise role of such and such theoretical in-
gredient. This also makes sometimes imprecise a com-
plete comparison between various models.
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