
PHYSICAL REVIE%' B VOLUME 47, NUMBER 2 1 JANUARY 1993-II

Spin-wave expansion of the ground-state energy of the square-lattice Heisenberg antiferromagnet
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A spin-wave expansion is used to compute the ground-state energy of the square-lattice Heisenberg
antiferromagnet to order 1/s. It is found that the ground-state energy per bond, 6O, is given by
@0=—s —0. 157947s —0.006237s +0.000107s '+O(s ). For s = —', this expression gives the value

eo= —0.3350, which is in good agreement with the more precise Green's-function Monte Carlo and
series-expansion estimates of the ground-state energy.

The Hamiltonian for square-lattice Heisenberg antifer-
romag net,

H= gS;Sj. ,

where the sum extends over distinct pairs of nearest
neighbors, has attracted much attention in recent years
among physicists. ' ' The square-lattice s =

—,
' Heisen-

berg Hamiltonian (1) is assumed to describe the antiferro-
magnetic, undoped insulator La2Cu04 or the oxygen-
deficient YBa2Cu306 or other undoped copper oxide ma-
terials (for a review see Ref. 1). It has been suggested
that an investigation of magnetism in these materials may
lead to a better understanding of the nature of high-
temperature superconductivity. ' '

Despite its simple form, the Heisenberg Hamiltonian
(1) appears to be a great theoretical challenge. The exact
solution for the ground state and excitations is known
only for the s =

—,
' chain. ' Unfortunately, Bethe's'

method cannot be generalized to the investigation of
higher-dimensional systems. A number of approximate
and numerical methods has lately been developed and ap-
plied to the theoretical investigation of the spectral
characteristics of the two-dimensional model (1).'
Experiments with LazCu04 and other quasi-two-
dimensional systems have also been carried out. ' Impor-
tant results have been obtained, but the problem of the
ground state of the square-lattice Heisenberg antifer-
romagnet has not yet received a definitive solution. '

At present, there is considerable numerical evidence
showing that the ground state of the square-lattice model
(1) has a finite sublattice magnetization m, whose exact
value is still under discussion. Published theoretical esti-
mates of m for s =

—,
' vary from m =0.24 to m =0.43 (see

Ref. 1 and the references therein). The experimental sit-
uation is also unsettled, mainly because the staggered
magnetization of La2Cu04 strongly correlates with the
oxygen content of the sample. ' Clearly discernible, al-
though smaller differences are found in estimates' of the
ground-state energy Ep.

One way to obtain precise estimates of Ep and m is
connected with calculation of the corrections within the
framework of spin-wave theory. It is well known that
corrections to the classical Neel state in this theory may

m =s —0. 19660s +Os ' —0.00068s +O(s ) . (2)

The first two terms in (2) are known from the linear
spin-wave theory of Anderson' and Kubo, ' which also
gives the first two terms in the expansion of Ep ~ The
third term in (2), as well as the corresponding 0 (1) term
in the expansion of Ep, are calculated in Ref. 18 by ac-
counting for the magnon-magnon interaction to the
lowest order. The power series (2) of m generates asymp-
totically small terms and therefore the theory is self-
consistent up to this order. The values of m, obtained
from (2) for s =

—,
' and s = 1, are in agreement with the re-

sults of recent numerical calculations. ' '

Similar higher-order SW calculations of the self-energy
and spin-wave velocity in the DM formalism have been
performed by Canali and co-workers. ' " Using the
Holstein-Primakoff (HP) transformation, Igarashi and
Watabe' have calculated corrections to the self-energy
and magnetization. Although some discrepancy' be-
tween published results ' '" exists, these investigations
demonstrate how useful spin-wave expansions can be.

In the present work the spin-wave expansion, to
O(1/s), of the ground-state energy of the square-lattice
Heisenberg system (1) has been determined. The result
obtained shows that the expansion of Ep up to this order
generates small corrections and gives very good estimates
of the energy.

We shall use the DM formalism which is the most
tractable in terms of number of well-behaved spin-
wave —spin-wave interaction vertices. ' ' "' It is
known ' that all infrared singularities in the DM scheme
cancel out order by order. This property is not shared by
the HP formalism. The introduction of bosons in model
(1) through the DM transformation and the diagonaliza-
tion of the corresponding quadratic form have been con-

be expanded as a power series in 1/s. It turns out"
that although asymptotic, these spin-wave expansions
may be quite useful for a general understanding of
square-lattice antiferromagnet characteristics even for
s =

—,'. This has been most convincingly demonstrated re-

cently in Refs. 3, 9—11. Castilla and Chakravarty, using
the Dyson-Maleev (DM) formalism, calculated the
O(1/s ) term in the spin-wave (SW) expansion of m and
concluded that
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sidered many times in the literature (see, for example,
Refs. 3, 4, and 20). Here we shall give only the final re-
sult for the square-lattice Hamiltonian (1), expressed with
the u-v bosons a]„]33],in the form presented in

HDM= 2s—N 4s—g(1 —Ek)+H' '+H' ',
k

(3)

is calculated in Refs. 12, 18, and 21. From this correc-
tion and the constants in (3) the first three terms in the
spin-wave expansion of Eo,

Do= Eo/2N= ——aos —a]s —a2s +a3s '+ .

where N is the number of sites, —2s N is the energy of
the Neel state; —4s gz (1 —s], ) is the energy of zero-
point fluctuations; Ek=4sck is the energy of the spin
wave; s],=[1—y (k)]'~ is the corresponding dimension-
less energy; y(k) =( cosk„+ cosk )/2;

H2 = & Ek«k ] +&]A) (4)
k

is the Hamiltonian of the noninteracting spin waves; and
H' ' is the magnon-magnon interaction operator. The
expression for H' ' obtained in Ref. 20 (see also Refs.
3,4, and 9) shall not be repeated here. One should note
that H' '-O(1), whereas H' ' [easily seen from (4)] is
proportional to s. Therefore, for the characteristics of
the Hamiltonian H' '+H' ' formal expansions in the
power of 1/s can be constructed, with H' ' treated as a
perturbation.

The first-order correction to the ground-state energy

gE(]) —(H(4) )

are obtained

ao = 1, a, =(2/N) g (1—Ek) =0.157 947,
k

a2=(a]/2) =0.006237 .

The quantity 6'o represents the energy per bond. The en-

ergy per site in the case considered is 2 6o.
Our aim here is to calculate the correction AEO ', from

which the coe%cient a3 in the expansion (5) can be deter-
mined. It is well known that the expression for the
second-order correction to the ground-state energy in the
case of Hermitian operator of interaction

(olH"'lp) (plH'"lo)
(p) E

may be applied as well in the case of non-Hermitian
operator of the interaction considered here, namely, H' '.
In (7), l0 ) and lp ) are the ground and excited states of
H' ', respectively (Eo ' =0).

Analyzing the H' ' structure, one sees that only
definite states of H' ', namely, the states

) —
~t~ &t f31 Pt lo)

where qi+q2 —
q3

—q4=0 or K, K being a reciprocal-
lattice vector, contribute to the sum over p in (7). After
that, the matrix element (0lH' lp) is easily obtained:

(olH' 'lp) =( —8/N)V(,'4„)b(1+2—3 —4),
where b,(1+2—3 —4) is the Kronecker delta function
and the vertex V' ' is given by the expression

(34]2) v]Up[&(4 —1 —2)v3u4+y(3 —1 —2)v4u3]+u]u2[y(4)U3u4+1 (3)U4u3 ]

—[y'(2 —4)v3u, U2u4+y(1 4)v3u2v—, u4+ y(2 —3)v4u, vzu 3+@(1—3)v„uzv] u3 ] . (9a)

Here 1 =q, , uq = [(1+sq)/2sq]', and v„=[(1—Eq)/2sq]' . For the matrix element (plH'4'l() ) we have
(plH' 'lo) =( —8/N) vI]&34) b(1+2—3 —4), where

V(]234) U3U4[y( 1 )v, uz+1 (2)v2u] ]+u3u4[y(2 —3 —4)veau] +y( 1 —3 —4)v, u2]

—[y(2 —4)U3u, v2u4+y(1 —4)U3u2v, u4+y(2 —3)v4u, vzu3+y(1 —3)U4uzv]u3], (9b)

Further transformations of (7) lead to the following re-
sult:

b,E() '/2N=(1/s)a3, $ =(1/4)
(p) (1234)

and

a3 = —(2/N ) g b, (1+2—3 —4) . (10)
(1234) F i+ C2+ E3+C4

The long-wavelength singularities of the integrand in
(10) can be most easily studied by using the parametriza-
tion of the DM vertices (9) proposed in Refs. 3 and 4.
Our analysis of the singularities of (10) resembles the
analysis of the singularities of the O(1/s ) correction to
the staggered magnetization made in Ref. 3. After some

algebraic manipulations, it can be proved that the in-
tegrand in (10) has an integrable singularity at the point

qi =q2=q3=q4=0 and discontinuities at points q& =0,
q2=0, q3=0, and q4=0. As a consequence we have

l
AEO( '

l
( ao, i.e., the calculation of bEO( ' in the DM for-

malism does not lead to a divergence.
To calculate numerically the integral in (10), the in-

tegrand at the singularity points was determined by mak-
ing a Taylor expansion, performed at the neighboring
nonsingular ponts. The calculations were carried out on
a sequence of condensing grids. The grid step was chosen
in such a way that the precision of the coefficient a3,
quoted below in (11) is guaranteed.

As has been shown in Refs. 9 and 11, a correct treat-
ment of umklapp processes is essential for the calculation
of the spin-wave velocity. We checked here the impor-
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tance of umklapp processes by evaluating the integral (10)
in two different ways. Assuming that the umklapp pro-
cess is not essential for az, we replaced in integrand 3 by
1+3 and 4 by 2 —3 and we integrated over q„q2, qz in the
Brillouin zone (BZ). This way a&= —0.000263 was ob-
tained. After that we accounted correctly for umklapp
processes, taking q4= q)+ q2

—
qq if q)+ q2

—
q~ is within

BZ or q4=q&+q2 —
q&

—K if q, +q2 —
q& is outside BZ.

In this case a very different value for a &, namely,
a

&
=0.000 107, was obtained. This difference demon-

strates the importance of umklapp processes in the calcu-
lation of higher-order corrections to the ground-state en-
«gy.

With a& calculated in this way and with use of expres-
sion (6), we obtain the following expansion for the
ground-state energy per bond of the square-lattice
Heisenberg antiferromagnet:

Do = —s —0. 157 947s —0.006 237s

+0.000107s '+O(s ) .

The absolute values of the coefficients of expansion (11)
decrease and the corrections due to the last two terms are
small. The first three terms in (11) for s= —,

' give" ' '
6o= —0.3352. The inclusion of the O(l/s) term in the
expansion of Do rises this energy to Bo= —0.3350. The
latter value is in good agreement with the more precise
estimate 6'o= —0.33465, obtained by the series expan-
sion of Zheng, Oitmaa, and Hamer' and by the Green's-
function Monte Carlo method of Runge' (the other nu-
merical estimates of 6'o are reviewed in Refs. 1 and 12).
For s =1, the result from (11) is 8&&= —1.1641, which is
in agreement with the estimate ho= —1.1635+0.0005,
calculated by use of series expansion around the Ising
limit.

Recently, using both the Dyson-Maleev and Holstein-
Primakoff formalisms, Hamer, Zheng, and Amdt and
Zheng and Hamer have considered, in particular, the
O(1/s) term in the spin-wave expansion of of Eo and
they have evaluated this term by methods different than
ours. Their results for as, namely ai =0.000108(3) Ref.
23 and as =0.0001071(1) Ref. 24 are in full agreement
with Eq. (11)of the present work.

These results show that spin-wave expansion to 0 (1/s)
(11) is a useful expansion for calculation of the ground-
state energy of the square-lattice Heisenberg antifer-
romagnet.

In the present consideration we have ignored effects
caused by the introduction of the infinite-dimensional bo-
son operators replacing the finite-dimensional spin opera-
tors. The values of the first three coefficients in series (2)
and (11), calculated in spin-wave theory, ' ' have been
confirmed ' later by a computation of the zero-loop and
one-loop corrections to the free energy and magnetization
in a spin-operator scheme, i.e., without bosonization.
Hence, the "nonphysical" states of HDM do not contrib-
ute to the values of the first three coefficients in (2) and
(11). Based on the consideration given in Ref. 3 no essen-
tial contribution of the "nonphysical" states to the fourth
coefficients in (2) and (11) may be expected. It will be in-
teresting to check this expectation by one (in our opinion)
rather nontrivial investigation of two-loop corrections to
the free energy and the magnetization in the spin-
operator scheme.
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