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Electron-correlation eÃects in the impurity conductance
of doped-semiconductor quantum wires
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The effect of electron correlations in the impurity conductance of the shallow-donor impurity
band in a semiconductor quantum wire, connected by two ideal leads, is studied by using the
Hubbard model in an alloy-analogy approximation. The hopping integral and the intrasite Coulomb
interaction energy are estimated numerically from variational wave functions for random impurity
configurations. For one electron per impurity, it is shown that there is a considerable reduction in the
impurity conduction due to electron correlations. For a given impurity concentration, the disordered
wire turns into an insulator at a much shorter sample length than that estimated previously by
neglecting correlations.

Fowler et al. reported measurements of the near-
threshold conductance of a very small metal-oxide-
serniconductor structure as a function of carrier concen-
tration at very low temperatures. The conductance was
shown to be characterized by strong fluctuations. The
observed temperature dependence of the peaks supports
the mechanism of resonant tunneling through localized
states. The states are supposed to be localized around
impurities and other defects. Recently, two of us (J.F.W.
and E.A.A.S.) (Ref. 3) have investigated, numerically, the
zero-temperature conductance of a GaAs/Ga~Alq As
channel as a function of the Fermi-energy location within
the shallow-donor impurity band, which is separated
from the conduction band. In the low-impurity con-
centration regime, the simulation of this quantum wire,
described by a finite one-dimensional disordered tight-
binding model, showed peaks similar to those observed
experi. mentally. The location of the peaks as a func-
tion of Fermi energy (or carrier concentration) varies ran-
dornly from sample to sample. They constitute a meso-
scopic signal of the actual impurity configuration of the
sample. Electron correlations, however, have been ne-
glected in this first study. Because of reduced dimen-
sionality of these semiconductor structures, electron cor-
relations are expected to play a greater role as compared
to the effects in bulk semiconductor.

In this work, we consider the effects of electron cor-
relation in the impurity conductance of a semiconductor
quantum wire, by regarding this system as a disordered
finite Hubbard chain. The intrasite Coulomb repulsion
of this Hubbard model is calculated using a variational
solution for the electron state bound to shallow donors
in quantum wires of different widths. The electron trans-
mission through the Hubbard chain is studied within a
simple approximation in which the opposite-spin elec-
trons are treated as quenched site disorder in addition
to the underlying hopping disorder. The amount of site
disorder is directly related to the intrasite Coulomb re-
pulsion. The results are compared to the electron trans-

where a~ and a, are the creation and annihilation op-
erators of an electron of spin o. at the randomly located
impurity site R, with energy E, and n, is its number
operator. Following Ref. 3, the hopping integral

V,~
= V(Z = IZ, —Z~ I)

and the intrasite Coulomb interaction energy

g2
(3)

mission obtained in the absence of Coulomb interaction.
Within this approximation, electron-correlation effects
are found to reduce considerably the zero-temperature
impurity conductance of small semiconductor quantum
wires in an experimentally relevant range of wire widths
and impurity concentrations.

Recently, Meir, Wingreen, and Lee4 have treated the
problem of transport through a quantum dot with strong
electron correlations, by studying the Anderson model5
of a single impurity weakly coupled to ideal leads with
an on-site Coulomb correlation. Within this model, they
were able to explain the anomalous temperature depen-
dence of conductance peaks observed experimentally. In
this work, we consider a more complicated problem and
study the quantum transport of the shallow-donor impu-
rity band in a semiconductor wire including electron cor-
relations. Here one has to deal with electron-correlation
effects in many impurities randomly distributed in a fi-

nite semiconductor wire, connected by two ideal leads
on both sides. To take electron correlation into account,
we extend the tight-binding model studied previously to
the Hubbard model described by the Hamiltonian

H=E, ) n, +) Vivat a~ +U) n, n, , (1)
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are calculated using a variational solution for the bound-
state wave function g(r —R, ) = (rli). In the above
equations, K is the dielectric constant and Z is the sep-
aration between the impurities along the wire axis. Here
and hereafter we neglect the hopping integral between
the second and higher neighbors impurities. It should
be noted that the intrasite Coulomb interaction depends
only on the geometry of the confining potential.

Figure 1 shows the calculated U for a square wire as a
function of its side or wire width W. In the infinite bar-
rier approximation we use, the trial bound wave function
reads

g(r) =Wc so( *)cos( ")e (4)
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FIG. 1. Intrasite correlation energy U as a function of the

width of the square wire W, as given by Eq. (3). Effective
atomic units are used and the value for the bulk semiconduc-
tor is assigned.

where N is the normalization constant and a is the vari-
ational parameter. One can see a strong increase in the
correlation energy as the wire width is reduced. It ap-
proaches the value corresponding to the bulk for wires
of cross-section area of the order of 8ai'i x 8ao (ao is the
effective Bohr radius).

In an infinite one-dimensional ordered chain, the Hub-
bard model has been solved exactly7 and it has been
found that, for one electron per site, the system behaves
like an insulator for all values of U. One would expect no
electron transmission probability for such an infinite sys-
tem. However, because the localization length is finite
for finite U, the transmission probability can be nonzero
for a sufBciently small chain. In this paper we are par-
ticularly interested in determining this crossover to finite
electron transmission, since it leads to a critical length
for metallic behavior. For a finite one-dimensional disor-
dered Hubbard model, described by Eq. (1), exact solu-
tions are not available and one has to resort to some ap-
proximation. Here we solve this model by using the alloy
analogy, which has the advantage of reducing the prob-
lem into an effective disordered one-body tight-binding
model that can be treated as before. In the alloy anal-

ogy it is assumed that, for the motion of an electron of
spin o, the —o. spin electron can be regarded as frozen at
the particular sites in a random configuration. In other
words, a o electron can be thought of as moving in an
alloy composed of sites of two types. On the sites occu-
pied by —o. electrons, it will experience a potential equal
to U+ E, with occupation probability n and on the
empty sites, there will be a potential equal to E with
occupation probability 1 —n . Here n is the av-
erage number of —o electrons per site. In a system of
randomly distributed paramagnetic impurities with one
donor electron, this alloy analogy replaces the Hubbard
Hamiltonian (1) by the one-body Hamiltonian

where the site energies E, are distributed randomly with
two values E and E +U with probability 2. It should be
noted that for a paramagnetic system with one electron
per site n =n =1 —n

For an infinite disordered chain described by the
Hamiltonian (5), all states are localized. io Thus the sys-
tem behaves as an insulator consistent with the exact
results of the one-dimensional ordered Hubbard model. 7

Thus, for our purpose, the alloy analogy can be consid-
ered a good approximation to the Hubbard model in Eq.
(1). To go beyond the present approximation one has to
take into account the effect of the motion of —o. electrons
on the propagation of a o electron. As far as the a. spin
electrons are concerned, the motion of —o. spin electrons
is such that a given site energy resonates between E, and
E,+U. The effect of this resonance is to broaden the two-
site energy which in turn can increase the transmission
probability. This effect, known as resonance broaden-
ing corrections, s is complicated to be taken into account.
Therefore for the mathematical simplicity we ignore this
effect here.

The transmission probability is now obtained with the
method described in Ref. 3. In this method a decima-
tion procedure exists that reduces the finite portion of
the alloy chain to just two sites connected through an
energy-dependent effective interaction. In this decima-
tion or renormalization technique, sites can be removed
from the lattice many, or one at a time, leaving invari-
ant the form of the tight-binding equations. We call the
final site energies at the left and right EL, and E~, re-
spectively, and the effective hopping V,p. In order to
calculate the electron transmission, we connect at the
left and right of this effective portion uncorrelated semi-
infinite perfect linear chains. Along the lead, on the left,
we assume an incident Bloch wave e'"', plus a reflected
part re '"', and on the right a transmitted wave tei"' .
Here a is the nearest-neighbor distance of the uniform
impurity distribution (a = n, , where n, is the linear
impurity concentration), l denotes the impurity position,
k is the electron wave vector, r is the reflection coeFi-
cient, and t is the transmission coefBcient. The wave
vector A: is such that the incident wave vector has energy
E = —2V cos(ka), so that we can probe the energy inter-
val [

—2V, 2V] of the impurity band [V = V(a)—note, it
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depends on the impurity concentration]. We match the
probability amplitudes at the right and left of the finite
correlated chain with the Bloch waves, and the two tight-
binding equations at EI. and ER give two equations with
two unknowns for r and t. Finally we calculate the trans-
mission coefIIcient T = tt*. If the entire chain were or-
dered (no correlation or disorder), we would obtain T = 1
for all energies in the above interval.

To measure the effects of the electron correlations we
compare in Fig. 2 the critical length, for which the aver-
age transmission probability becomes less than 10, for
a given impurity concentration, when calculated with and
without correlation, This critical length can be taken as
a measure of the localization length for the infinite quan-
tum wire. The calculation is done by taking the average
over impurity configurations as well as the average over
the site energies for each configuration in the presence of
correlations. The results are shown in atomic units for
two wire widths. Typically, 100 realizations were used
in each average procedure. Note that the transmission
goes bellow 10 much sooner with correlation as one
increases the sample length L with a fixed impurity con-
centration. One concludes from Fig. 2 that the addi-
tional effective site disorder due to the electron-electron
correlation reduces significantly the critical length, or al-
ternatively the localization length, of such chains; the
reason being that the amount of effective site disorder U,
as shown in Fig. 1 and the average hopping energy (see
Fig. 1 of Ref. 3), are both of the same order of magnitude
(few effective Rydbergs) in this range of wire width and
impurity concentration. When the wire width is reduced,
further decrease in impurity conductance is observed due
to the stronger confinement and smaller hopping between
impurity sites.

In summary, we have investigated the effects of elec-
tron correlations in the shallow-donor impurity band in
a semiconductor quantum wire. A Hubbard model was
used in order to access semiquantitatively the effects of
electron correlations on the critical sample length for
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metallic behavior studied previously. The hopping in-
tegral and the intrasite Coulomb interaction parameter
were estimated numerically and the alloy analogy approx-
imation was used to solve the model approximately. It
was shown that electron-correlation effects reduce consid-
erably the average impurity conductance and the critical
length, in the case of a half-filled band or one electron
per donor.
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FIG. 2. Critical sample length I for metallic behavior
as a function of the impurity concentration n, , for wires of
5ao x 5ao and lao x lac, with (continuous lines) and without
(dashed lines) electron correlations. L can be regarded as a
measure of the localization length of the infinite system. The
curves give a critical length above which the average electron
transmission is n.egligible (see text) and a metal-to-insulator
crossover.
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