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Uncertainty principle and off-diagonal long-range order in the fractional quantum Hall effect
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A natural generalization of the Heisenberg uncertainty principle inequality holding for non-Hermitian

operators is presented and applied to the fractional quantum Hall effect (FQHE). This inequality was

used in a previous paper to prove the absence of long-range order in the ground state of several one-

dimensional (1D) systems with continuous-group symmetries. In this paper, we use it to rule out the oc-

currence of Bose-Einstein condensation in the bosonic representation of the FQHE wave function pro-

posed by Girvin and MacDonald. We show that the absence of oF-diagonal long-range order in this

two-dimensional (2D) problem is directly connected with the q behavior of the static structure function

S{q) at small momenta.
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Important results on the role of fluctuations in systems
with broken symmetries have been obtained in the past
using a famous inequality due to Bogo1iubov. This in-
equality provides important constraints on the static
response of the system and yields, ' through the use of
the fluctuation-dissipation theorem, the following result
for the fluctuations of a general physical operator 3:

(I At, A } )([Bt,[H,B]]))ksTI([At B])l (I)

( [At, A } )( IBt,B}) ) l([A,B])l' (3)

already derived in Ref. 7. %'hen 3 and 8 are Hermitian,
both Eqs. (2) and (3) coincide with the usual uncertainty
principle inequality (A )(B ))—,

' ([A,B])l . In Ref.
7, we derived result (3) using a difFerent method, based on
auxiliary operators related to the physical ones through a
linear transformation. Other generalizations of the un-

certainty principle for non-Hermitian operators have
been considered in the literature (see, for example, Refs. 9
and 10). However, diff'erently from such generalizations,
our inequalities (2) and (3) are characterized by the oc-
currence of the commutator on the right-hand side, a
typical and important feature of the traditional Heisen-
berg uncertainty principle.

It is worth comparing the Bogoliubov inequality (1)
with the uncertainty principle inequality (3). While the
former explicitly accounts for the role of thermal fluctua-
tions, the latter turns out to be particularly powerful at
low temperatures where quantum fluctuations become
more and more important. Note that result (3) does not
involve the Hamiltonian of the system in an explicit way,
and hence it expresses fundamental properties of fluctua-
tions, regardless of the explicit form of the interaction
and of the energy spectrum of the system. Another im-
portant feature of result (3) is that it does not imply sta-
tistical equilibrium, and can be consequently used by
averaging on arbitrary nonequilibrium states.

A useful (also rigorous) inequality, yielding the Bogo-
liubov [Eq. (1)] and the uncertainty principle [Eq. (3)] ine-
qualities in the high- and low-temperature regimes, re-
spectively, is given by

(IAt, A})(IBt,B})

In Eq. (1), A and B are two arbitrary (non-Hermitian in
general) operators and H and T are, respectively, the
Hamiltonian and the temperature of the system. Fur-
thermore [ A, B }

= A tB+BA, [ A, B ] = A tB BA—
and ( ) is the statistical average (without any loss of gen-
erality, here and in the following we assume
& A) =(B)=0).

Inequality (1) was successfully employed in Refs. 4 —6
to prove the absence of long-range order at finite temper-
ature in a relevant class of one- (1D) and two-dimensional
(2D) systems including Bose superffuids and supercon-
ductors, isotropic ferromag nets and antiferromagnets,
and crystals. The Bogoliubov inequality is not, however,
particularly useful in the study of fluctuations in the low-
temperature regime dominated by quantum effects. Ac-
tually, Eq. (1) becomes useless in the zero-temperature
limit, while the original Bogoliubov inequality, without
the use of the fluctuation-dissipation theorem, provides
direct information only on the static response ' of the
system and not on its fluctuations.

On the other hand, fundamental restrictions on quan-
tum fluctuations are in general provided by the Heisen-
berg uncertainty principle. This principle, usually formu-
lated for Hermitian operators, can be generalized natural-
ly to the case of non-Hermitian operators starting from
the inequality

+& A'A &&B'B&+&&AA') &BB'&) I&[A', B]&l,
(2)

l([A,B])I
cotgh ~ '"" "]'

( IBt,B})
(4)

which can be easily proven applying the Schwartz in-
equality to the scalar product defined by
( A, B)—:( A B ), and using the inequality
I&[A,B]&l I&A B)l+l(BA )I. From Eq. (2), not-

with P= ilk&T This inequality . is stronger than (1) and
(3) at all temperatures, and belongs to a general class of
inequalities that can be derived using, for example, the
formalism of Ref. 11.
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Several nontrivial results have been obtained recently
starting from the uncertainty principle inequality (3). In
particular in Ref. 7, we have proven the absence of long-
range order in an important class of 1D systems at zero
temperature, such as Bose liquids, isotropic antifer-
romagnets, and crystals. The proof is based on the study
of the infrared divergent behavior, induced by a symme-
try breaking in the system, in the Auctuation term
( [ 3,A ] ) at zero temperature. These results provide
the T =0 analog of the Hohenberg-Mermin-Wagner
theorem. Another useful application is the nonper-
turbative study of isospin impurities in N =Z atomic nu-
clei, ' through the explicit determination of a rigorous
lower bound for isospin Auctuations. This is an interest-
ing problem characterized by a nonspontaneously broken
symmetry in a finite system.

In this work, we provide another interesting applica-
tion of the uncertainty principle inequality (3) by ruling
out the existence of Bose-like off-diagonal long-range or-
der in the fractional quantum Hall effect (FQHE) at
T =0. This result is particularly relevant because it con-
cerns the absence of long-range order in the ground state
of a 2D system.

The bosonic representation of the many-body wave
function

(5)

was used in Ref. 13 in order to investigate the problem of
off-diagonal long-range order in the FQHE and to point
out the existence of deep analogies between the behavior
of superffuidity and the FQHE. In Eq. (5), %z is the fer-
mionic wave function of electrons, v=1/2k +1, where k
is an integer, is the usual filling factor, and a; . is the an-
gle between the vector connecting particles i and j and an
arbitrary fixed axis. Using Laughlin's expression' for
the ground-state wave function %F, the authors of Ref.
13 concluded that there is not Bose-Einstein condensa-
tion in the bosonic wave function %~, but only algebraic
long-range order (see also Ref. 15). The same result was
obtained in Ref. 16, starting directly from the Chern-
Simons-Landau-Ginzburg theory (CSLG).

An interesting question is whether the absence of
Bose-Einstein condensation in %z follows from the expli-
cit Laughlin's choice for the wave function %~ (or from
corresponding assumptions in the CSLG theory) or rath-
er has a more general and fundamental reason. In the
following, we will show that the absence of Bose-Einstein
condensation is a direct consequence of the uncertainty
principle inequality (3) applied to a charged system in an
external magnetic field, without specific assumptions for
the ground-state wave function VF. This result differs
from the case of neutral 2D Bose systems, which are in-
stead expected to exhibit Bose-Einstein condensation at
T =0.

Let us apply inequality (3) to an arbitrary Bose system
exhibiting Bose-Einstein condensation. We make the
choice 4 =a& and B =pz, where az and pz=gi, ai, +zak
are the usual Fourier components of the particle creation
and density operators relative to the Bose system. Using

the Bose commutation relation [az,pz] =ao, inequality

(3) gives [2nii(q)+1]2NS(q) ~ ~(ao) ~, where nii(q)
=(azar') and S(q)= I/N(p zpz) are the momentum
distribution and the static structure function, respective-
ly. If gauge invariance is broken, the average value (ao )
does not vanish and its modulus coincides with QNno,
where n p is the fraction of particles in the condensate, a
quantity characterizing the long-range order in the sys-
tem. Inequality (3) then becomes'

1=q G(q)
1/2

where we have made use of the well-known f-sum rule

2

fAS(q, co)dco=
2m

and introduced the static response function

G(q)= f—S(q, co)des .
1

(10)

In neutral liquids, S (q) vanishes linearly with q at zero
temperature as a consequence of the finite value of the
compressibility y=lim O2mG(q), and this behavior en-
sures, in particular, the absence of long-range order
(no=0) in the ground state of 1D Bose systems. 7

Charged liquids in an external magnetic field H are

no
nii(q) ~

4S (q) 2

Result (6) very explicitly shows the constraints im-
posed by the uncertainty principle on the momentum dis-
tribution of the system. It is useful to recall here that use
of the Bogoliubov inequality (1), with the same choice for
the operators 3 and B, yields a different constraint,

npmkg T
nii(q) ~

q 2

useful only at finite temperature. In particular, result (7)
can be used to rule out the existence of Bose-Einstein
condensation (no=0) in 1D and 2D Bose systems at
TWO.

Let us apply result (6) to the bosonic wave function (5).
The following comments are in order here: (i) the static
structure functions S(q) relative to the Bose and Fermi
wave functions of Eq. (5) are identical, as obviously fol-
lows from the nature of transformation (5); (ii) though
n~(q) should not be confused with the electronic momen-
tum distribution, its normalization is nevertheless fixed
by the total number N of electrons.

The key point to discuss now is the low-q behavior of
the static structure factor

S(q)= fS(q, co)da~,

where S(q, co) is the usual dynamic structure factor. The
function S (q) obeys, at T =0, the rigorous inequality

' 1/2

S(q) ~ f coS(q, co)dc' f—S(q, ai)den
1
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characterized by a suppression of density fluctuations, re-
sulting in the quadratic law

&(q)q p= g

2m co,
(12)

for the static structure function where co, =eH/m is the
usual cyclotron frequency [for a discussion of the low-q
limit of S(q) in the FQHE, see Ref. 18]. Result (12) can
be straightforwardly obtained starting from the Kohn's
theorem' stating that the leading behavior of the dynam-
ic structure function at small q is given by

2

lim pS(q, co) = 5(co—co, ),
2m co~

(13)

and hence that the cyclotron resonance exhausts the
energy-weighted sum rule (10). With the assumption that
the system has no gapless excitations, one immediately
finds that the same is also true for the non-energy-
weighted sum rule (9), and hence one recovers Eq. (12).

From Eq. (12) and our inequality (6), we conclude that
n~(q) diverges as n pm co, /2q, and consequently the nor-
malization condition gqnit(q)=X cannot be fulfilled in
this 2D problem unless no=0. The physical interpreta-
tion of this result is very clear (see also Ref. 15): the mag-
netic field suppresses the fluctuations of the electronic
density and, according to the uncertainty principle, it in-
creases the bosonic field fluctuations that destroy the con-
densate. The logarithmic divergency resulting from the
I/q behavior in n~(q) emphasizes in an explicit way the
analogies between this problem and the problem of 2D

2

G( )q q O (14)

The vanishing of G(q) for q~O expresses the in-
compressibility of the system, a peculiar property of the
FQHE. The q behavior of G(q) is expected to be
preserved by the addition of a small amount of impurities
in the system, whose effect is to broaden the cyclotron
resonance (13). Also in this case, using the rigorous ine-
qualities (6) and (9), one can consequently rule out the
presence of long-range order in the system.

Useful discussions with A. Aronov, E. Seiler, and S.
Zhang are acknowledged. L.P. wishes to thank the hos-
pitality of the Dipartimento di Fisica dell'Universita di
Trento.

neutral Bose superfluids at finite temperature. While in
the latter case the absence of long-range order was prov-
en by Hohenberg at TWO, employing the Bogoliubov in-
equality (1), yielding result (7) for the momentum distri-
bution, in this work we have shown the corresponding re-
sult for the fractional quantum Hall effect at T=0. Of
course our results do not exclude algebraic off-diagonal
long-range order, whose occurrence was explicitly found
by Girvin and MacDonald' and by Zhang, ' nor the oc-
currence of other types of long-range order such as re-
cently discussed by Read. '

Starting from Eq. (13), one can also calculate the static
response function (9) in the low-q limit. In the absence of
gapless excitations, one finds
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