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We propose a model for energetics of solids, based on a direct solution for the density matrix directly
from the Hamiltonian. The approach is suitable for obtaining an approximate, finite-ranged density ma-
trix in a basis of localized orbitals. This scheme scales linearly with the size of the system, and should
represent an improvement over the much-used embedded-atom, cluster-functional, and bond-order po-
tentials.

During the last decade there has been a Aurry of activi-
ty in the field of atomistic simulations of materials prop-
erties. Most of these simulations are based on modeling
the band structures of metals and semiconductors with
tight-binding (TB) Hamiltonians. Although reasonable
model Hamiltonians exist for many materials, solving for
the dynamics of large systems through direct diagonaliza-
tion of the Hamiltonian sufFers from a scaling problem:
the time required for diagonalization scales like O(N, )

where N, is the number of atoms in the system.
The scaling problem has been addressed by the devel-

opment of other schemes. The recursion method, for ex-
ample, provides an approximation to the density of states
(DOS) and scales like O(N, ). Other workers have
modeled the energetics in terms of simple, explicit func-
tions of the Hamiltonian. One such model, the
embedded-atom method (EAM) (and the closely related
Finnis-Sinclair method and effective-medium theory )

has been used quite successfully in the investigation of
complicated defects (such as surfaces, grain boundaries,
and dislocations) in the noble metals. Many-body in-
teractions (sometimes in the form of "bond-order poten-
tials") have likewise been devised for semiconductors.
For metals from the central transition series, recent pro-
posals' ' have focused on "cluster functionals" involv-
ing three- and four-body interactions.

This paper will describe a scheme based on the direct
calculation of the density matrix from the Hamiltonian.
This approach is suitable for obtaining an approximate,
finite-ranged density matrix. The computational time for
this method scales 1inearly with the size of the system.
We demonstrate the method for some well-studied exam-
ples, and conclude that the present method may prove su-
perior to the recursion method and to many-atom poten-
tials.

We start with a single-particle Hamiltonian H connect-
ing various sites (we consider here only s states, but the
extension to p and d states is straightforward). The densi-
ty matrix p=O(pl H) commutes with th—e Hamiltonian
and has tEe same eigenstates. The eigenvalues of p are
the occupation numbers for the states. The chemical po-
tential p is defined by fixing the total number of electrons,
N =Tr[p], and the band energy' is given by E=Tr[Hp].
An interesting way of expressing the well-known varia-
tional theorem' is to consider any symmetric matrix p
and the associated energy function E=Tr[Hp]. Then
the true ground-state density matrix is given by minimiz-
ing E with respect to p with two constraints: (1)N= Trp
and (2) the eigenvalues of p must be bounded between 0

and 1. Of course, the nonholonomic constraint on the ei-
genvalues causes difIiculty in implementing this variation-
al theorem.

A solution to this difriculty can be obtained by consid-
ering a property of the smeared step function O(P, z)
=1/(1+exp( —Pz)). Here, P is like an inverse tempera-
ture parameter, but we attach no physical significance to
its value; we are, instead, trying to approach the asymp-
totic solution for infinite P. The first derivative with
respect to P can be written in terms of O itself:
BO/BP =z O&( 1 —O&). We could solve numerically for
O(P, z) by starting with O(O, z)= —,'. Then we integrate to
some finite Il using the differential equation.

We can do the same for p. In general, the solution to
the variational problem is p =1im(P —+ oo )O(P, z ), with
z =pl —H. Thus, we start out at 13=0 with p=f 1 (f is
the fractional site occupancy) and solve t)p/i)P
=zp(1 —p). As will be explained in the following, it is
more generally useful to symmetrize the equation of
motion as

ap (p pz+pzp+zp p)
=(-,') Iz p]—

which is the basis for what follows.
The physical significance of the equation is given by

considering the basis where p is diagonal with eigenvalues
n . The eigenvectors of p depend on P, but because p is
Hermitian, d (p ) /dP =d ( n ) /d P. Then Eq. (1) be-
comes

d(n )/dP=(p H)n (1—n ), — (2)

where H =(a~H~a). Here it is clear that i. p&H „,
n will tend to 1 (filled states below the Fermi level), and
if p(H, n will tend to 0 (empty states above). At the
fixed point, when the derivative vanishes, we have the
condition that either n (1 n)=0 (in w—hich case n =0
or 1) or (p H) =0 (in wh—ich case we are at the Fermi
level, where the occupation can be fractional). One can
prove some useful properties of the equation of motion.

(1) The true density matrix is the asymptotic solution
to Eq. (1) [that is, p=O(~, z) satisfies i)p/813=0]. This

follows easily from [p, H ]=0 and p p =p.
(2) Requiring that N is constant fixes

p= Tr[Hp(1 —p)]/Tr[p(1 —p)]. This equation may look
rather strange at first, because as I3~ oo, p p~p and p is
the ratio of two numbers of going to zero. However, at
finite P, p is not idempotent, and p is well defined. Actu-
ally, this equation for p is quite reasonable. Define the
broadened delta function 5(P,z)=t)O(P, z)/Bz. We can
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show that 5(P,z)=PO&(I —8&). Thus, p(1 —p) is related
to the density of states at the Fermi level, and p is equal
to the Fermi energy. (Of course, another way to go is to
fix p from the beginning and let the number N vary. )

(3) One can demonstrate readily from Eq. 2 that if the
eigenvalues of p(O, z) are bounded between 0 and 1, then
they will remain similarly bounded for finite /3.

(4) dE/dP, =0. Using Eq. (1),

Bp Bp

ap
' —

aI3
' -'ap=Tr H = —Tr z

and working in the basis which diagonalizes p, it is simple
to rewrite dE/dI3 as

—
—,'+[3(n +n~) —2(n +nr+n n )](z ),

CX, g

which is negative definite for n bounded by 0 and 1.
(5) In using the equation of motion for the density ma-

trix, it may be useful to form an initial guess as to which
p(O, z) which does not commute with H. This would be
the case, for example, if one has the solution for one set
of atomic positions and then allows the atoms to move
slightly, as in a molecular-dynamics calculation. In that
case, starting with the previous solution for the density
matrix may be more efficient than starting over from
scratch. However, we must now show that Eq. (1) pro-
vides a reasonable solution when the initial guess does
not commute with H. In this case, one can show that the
equation of motion removes the part of p that does not
commute. That is for the solution of Bp/BP=0,
[H,p]=0. Again working in the basis which diagonal-
izes p, the fixed point gives 0=x~zz~z, with
x &=3(n +n&) —2(n +n +n nz). The commutator
C=[p,H] has elements C z=(n —nz)z z. Now
x =0 if either n =n =0 or 1, in which case C z is
also zero. If x &0, then z =0 and C

&
is zero any-

way. This requirement dictates the symmetrized form of
Eq. (1); some other choices of the ordering do not force
the commutator to vanish at the fixed point.

The equation of motion can be restated as a steepest-
descent solution to a modified variational theorem. Con-
sider minimization of G =Tr[H(3p p

—2p p p)] with
respect to variations in p, and one recovers Eq. (1). In
this way, we have turned the variation of a functional
linear in p with nonholonomic constraints into the varia-
tion of a7unctional which is nonlinear in p without con-
straints. ' In fact, many of the properties proven above
are easier to prove using this G function. In general, it
may be easier to deal with minimization of G than with
the equation of motion [Eq. (1)].

At this point one can make comparisons to the previ-
ous work of McWeeney. ' ' McWeeney demonstrated a
method for varying p within the restricted space of idem-
potency (p=p p). TTiis restricts the eigenvalues of p to be
0 or 1 dunng the entire variational process. Using
steepest descents within this subspace gives
Ap=EP( —,')(zp+pz —2pzp). All of the properties listed

above apply to this equation of motion as well. McWee-
ney applied this to calculations of molecular systems.
The difference in the present work is in allowing p to be
nonidempotent, and also in developing the approximation

for extended systems that will be discussed in the follow-
ing.

In practice, one cannot solve for the exact density ma-
trix of an extended system. This is because p, . has infinite
range and an infinite number of elements. However,
there are reasons to believe that to a good approximation
one can consider p; to be cut

off

beyon some range (i.e.,
banded in a localized basis). For a free electron metal in
Nd dimensions, the density matrix between sites separat-
ed by a distance r falls off'like r ~, where p =(Nd+1)/2.
For insulators, the density matrix decays exponentially.

The idea of limiting the range of the density matrix is
supported by the successes of the EAM (Finnis-Sinclair),
many-body potentials, the cluster functionals, and bond-
order potentials. These schemes represent approxima-
tions where the density matrix is manifestly banded.
For example, the band energy in the Finnis-Sinclair
[EAM (Ref. 4)] is assumed to scale with the second
moment on each site: E = —a(g Qpz ), where

p2 =g„& (H„) and a is an empirical constant. This
can be rewritten in terms of a density matrix as
E =Tr[Hp], with the off-diagonal elements of p taken to
be

Q!
pmn H „,+ (3)

)/P2, m +P2, n

which has the same range as the Hamiltonian. The EAM
accounts locally for coordination effects and has been
very successful in application to noble metals. But it is
well known that the EAM neglects directional-bonding
contributions that are important for metals from the
center of the transition series and for semiconductors.
An improvement that helps incorporate some of the
directional bonding is to include higher powers of the
Hamiltonian, which in effect includes many-body clusters
in the energy. The range of the density matrix is then
some small multiple of the range of the Hamiltonian.
Moriarty's many-body potential, ' Pettifor's bond-order
potentials, " and Carlsson's fourth-moment cluster func-
tional' can be expressed in just such a way, and do ac-
count for directional-bonding and band-filling effects. In
all of these schemes, the approximation to the density
matrix is justified by physical argument and comparison
to reference systems. With this motivation in mind, it
seems reasonable to approximate the density matrix by a
banded matrix.

We can rank the quality of solutions then by the range
of p. This can be compared with the cluster functionals,
where the range is determined by the powers of H. The
lowest (nontrivial) level is to set the range of p equal to
the range of H. This would be compared with the EAM
(second-moment treatement). However, even for a cutoff
at nearest neighbors, the present scheme incorporates
more of the essential physics than the EAM. (This will
be demonstrated in examples near the end of the paper. )

We therefore propose to solve the equation of motion
[Eq. (1)] for a "pruned" density matrix. At each itera-
tion, the change in p is computed only for elements inside
the cutoff; elements outside the cutoff are always held at
zero. For the pruned case, the properties [(1)—(5)] listed
previously must be modified. For example, the final solu-
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tion for the pruned density matrix may not commute
with the Hamiltonian. Nonetheless, the algorithm gives
in practice a very reasonable approximation to the
correct density matrix, and in the limit of large range we
recover the exact solution.

The practical implementation of this algorithm in-
volves the streamlining of the banded matrix multiplica-
tions in Eq. (1). The number of nonzero elements of p
scales linearly with the number of sites X, in the super-
cell. In ordinary matrix multiplication, many of the mul-
tiplications involve elements with value 0. Instead, it is
more efticient for large systems to construct multiplica-
tion maps whereby only nonzero multiplications are con-
sidered. Doing this reduces the computer time to O(N, ).

Having implemented this scheme we can now display
the behavior of solutions for three well-studied examples:
one-dimensional (1D) infinite chain, the semi-infinite
chain, and a vacancy in a simple cubic lattice. In all
cases we consider a nearest-neighbor distance of 1, and a
Hamiltonian with a nearest-neighbor interaction of —1

and no other interactions. We have picked fairly simple
examples for ease of analysis; in the future we will publish
results of work on more complicated systems.

In the first example, we consider an infinite, linear
chain. For this case, p „=sin[~f(m n)]l[ t(r—m—n)],
where f is the band filling (number of electrons per site).
The envelope of this function decays like 1/distance,
which is not very fast. But because the total energy is

„p „H„,what we really need to do is calculate p at
the nearest neighbor only, and it will be demonstrated
here that po& converges well with the cutoff distance. In
Fig. 1, we show the density matrix as calculated from Eq.
(1) using different cutoff distances, and compare it to the
exact solution. The convergence in the density matrix is
quickest for half-filled bands. In Fig. 2, we plot the ener-

gy for different fillings and different cutoffs. Using the
cutoff at the nearest neighbors gains better than 90% of
the total energy in the half-filled case. It is clear that the
convergence is faster for half-filled bands.

The second example involves a semi-infinite chain. In
the full solution, the Fermi distribution function intro-
duces a long-range effect of the termination of the chain:
the density matrix develops long-range oscillations. To
illustrate the oscillations, we look at the density matrix
between a site (n) and its neighboring site (n +1), as a
function of n (the end of the chain is at n = 1). Figure 3
shows the exact and approximate solutions. At f=-,'-, the
exact solution oscillates with a wavelength of two lattice
spacings and has a decay envelope of 1/n. Solving Eq. (1)
under these conditions shows a similar oscillation even
when we prune the density matrix to nearest neighbors,
although the oscillation is damped out by n =6.

In the third example we consider something more com-
plicated: the change in the band energy for creating a va-
cancy in a simple cubic supercell of 1000 atoms. The
traditional band-structure calculation gives 0.42. The
current method gives 0.21 for a density matrix cutoff
after nearest neighbors and 0.40 for a cutoff after third-
nearest neighbors.

Compared to many-atom potentials, the current
scheme has the advantage that it produces a variational
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density matrix that obeys the eigenvalue constraints. It
can be demonstrated easily that the density matrix corre-
sponding to the EAM [Eq. (3)] violates the eigenvalue
constraints (as is also true for the many-atom potentials).
The current method produces the best physically reason-
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FIG. 2. Energy evaluated for various cutoffs in the density
matrix. The energy is normalized by the exact result. Results
for f= —' (diamonds) and f=

—,
' (squares) are shown.

m (site)

FIG. 1. Elements of the density matrix for an infinite 10
chain of sites with s states and nearest-neighbor interactions.
The plot shows po vs m. Comparison is made between approx-
imate solutions (1-NN cutoff is labeled by squares, 7-NN cutoff
is labeled by diamonds) with the exact solution (labeled by cir-
cles). (a) f= —' (half-filled). (b) f=

—,
' .
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FIG. 3. Oscillations in the density matrix for a semi-infinite,

1D chain of sites. The quantity plotted is the nearest-neighbor
element p„„+& vs the site index n. The end of the chain is at
n = 1. The band is half-filled (f= —'). The approximate solution

is for a nearest-neighbor cutoff in the density matrix. In both
solutions, the asymptotic (bulk) value has been subtracted off
and also used as normalization.

able density matrix within the constraint of the cutoff dis-
tance.

The recursion method approximates the DOS, which
involves an additional integral to produce a total energy;
the density matrix, on the other hand, is already an in-
tegrated quantity. During a molecular-dynamics run (or
energy minimization), the recursion coefficients must be
recalculated at each time step; knowledge of the recur-
sion coefficients from previous steps is of no partiuclar
help. However, the density matrix from a previous step
can be used as the starting point for finding the current
density matrix and will decrease the number of iterations.

In terms of computational costs, we find that the densi-

ty matrix with a range twice that of the Hamiltonian is
comparable in speed to second-level recursion and to
four-atom potentials.

Finally although we have framed the discussion of the
current method in terms of tight-binding theory, the
same arguments follow for using a self-consistent Hamil-
tonian expressed in a localized basis. For example, a cal-
culation of the properties of a supercell of Si atoms using
local-density-approximation (LDA) Hamiltonian with
Gaussian basis would be entirely feasible. Another appli-
cation would be the study of the Hubbard Hamiltonian
(or any model that can be cast in tight-binding form),
where a density matrix for each spin would be coupled by
a local electrostatic interaction.

In conclusion, we have proposed a means of calculat-
ing energetics from a one-electron Hamiltonian, based on
the density matrix. Previous models of the energetics can
be expressed as Ansatze for the density matrix. The
current scheme calculates the density matrix in real space
with the approximation that the elements are cutoff at
some range, and scales linearly with the size of the sys-
tem. Three examples illustrate the utility of this ap-
proach. It is straightforward to extend the calculations
to more complicated Hamiltonians (such as Gaussian-
basis LDA or tight-binding calculations for s -p semicon-
ductors or d-band metals) and to nonorthogonal basis
functions.
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