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We study the gap for one-particle excitations as a function of the on-site repulsion U and the disorder
W in the disordered Hubbard model in two and three dimensions. We consider the half-filled band case
in the paramagnetic phase of this model. The analysis is done within the alloy-analogy approximation
using the localized-eigenstates approximation to calculate the density of states. We find that there is a
critical U, for a gap opening at the Fermi level in both two and three dimensions. This allows us to
determine a phase diagram of the model that separates a Mott-Hubbard insulating phase and an
unspecified gapless phase. The critical U, line grows with disorder and tends to be linear for large
enough W. Our results are consistent with previous real-space renormalization-group studies.

The Hubbard Hamiltonian' is a standard model in the
study of strongly correlated electronic systems. Al-
though it attracted much attention in the past as a model
for narrow-band metals, it is not yet fully understood.
Nowadays, it has attracted a renewed interest as a model
for the electronic properties of the high-T, superconduc-
tors discovered by Bednorz and Muller.>3

The Hubbard model reads

H=En,— 3 T;(cc;,+ He)+ 3 Unyn;, (1)

i,o i,j i
where E; is the binding energy of one electron at site i, z;;
is the intersite hopping energy, usually taken between
nearest neighbors and site independent, and U is the on-
site repulsion energy. In the presence of disorder, E; is a
random site-dependent energy, with some probability dis-
tribution of width W.

In the uncorrelated limit (U =0) this Hamiltonian
models the motion of one electron in a disordered lattice.
This leads to the problem of Anderson localization,*
which is now almost understood in the context of a scal-
ing theory.” However, the problem of the interplay of
disorder and interactions is still a subject of current
research where many questions remain unsolved.’ !° The
disordered Hubbard model (also called the Anderson-
Hubbard model) has been studied in this context. Kim-
ball® gives a qualitative “phase diagram” in the U-W
plane, where for large U an insulating phase with a gap in
the density of states exists. There is also a gapless phase
which is divided in a metallic region (for small W) and a
gapless Anderson insulating region. This is confirmed by
a real-space renormalization-group calculation of Ma’ in
three dimensions. Shimitzu, Aoki, and Kawimura® claim
to have developed an improved real-space decimation
method, and they calculate the dependence of the gap
both with U and W. Also, Allub’® has performed a ther-
modynamic study of the model with binary-alloy disorder
using a mean-field hopping approximation. The effects of
the interactions on the localization properties have also
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been studied.'®

Furthermore, it is known that disorder can be an im-
portant ingredient in the high-7, superconductors.
There, disorder comes from the oxygen vacancies and the
random distribution of holes in the Cu-O planes.!! There-
fore, the study of the Anderson-Hubbard model is also of
interest within this context.

In this paper we present results for the Anderson-
Hubbard model in the half-filled band case for the
paramagnetic phase (ny=n;=1). In this case the spec-
trum for one-particle excitations is symmetric and the
Fermi energy lies in the middle of the band (uy=U/2).
We model the disorder in E; with a Gaussian distribution
of probability

1 —E?2w?

P(E;) aW e . (2)
We treat the correlations in the alloy-analogy approxi-
mation, which is as follows. We think of the propagation
of an electron of spin ¢ as if it were moving in an alloy
consisting of two species, in concentrations n_ and
1—n_, for which the binding energies are E; + U and E;,
respectively. This analogy would be exact if indeed the
n_ were fixed during the motion of the n,. This treat-

ment, for the ordered case, with the coherent-potential
approximation (CPA) is equivalent to the “scattering
correction” considered by Hubbard [Ref. 1(b)] in the
third of a series of papers in this model, and it leads to
the exact result in the atomic limit. Recent applications
of this alloy-analogy approach in intermediate-valence,
heavy-fermion, and high-7, problems are mentioned in
the works of Ref. 12. Note that in the disordered case,
we have a problem of a binary alloy superimposed to a
continuous distribution of disorder.

Instead of using the CPA, we are going to use a
method that we have developed recently,'? for the calcu-
lation of densities of states. This method works in any di-
mension d > 1 for hypercubic lattices with diagonal dis-
order, and it was called the localized-eigenstates approxi-

10 888 ©1993 The American Physical Society



47 BRIEF REPORTS

(a)

6 3 0 3 _6 9 12 15

FIG. 1. Densities of states D (E) of the Anderson-Hubbard
model in the alloy-analogy approximation, obtained with the
LEA. (a) For U=2; (b) for U=9, a gap opens.
(0, W=0; /A, W=1.) The lattice size is 30X30X30. Aver-
ages were taken over five disorder configurations.

mation (LEA). It has been compared favorably with ex-
act diagonalization of small three-dimensional (3D) sam-
ples of a binary alloy problem.!® This method is numeri-
cally efficient, allowing calculations in large samples. It is
also superior to the CPA especially for minority com-
ponents where the CPA gives very structureless densities
of states.

The LEA has been discussed and justified in Ref. 13. It
essentially relies on the knowledge (through exact diago-
nalization) of the eigenvalues in one dimension, and the
extension of a dimensional dilution property that is exact
in the ordered case. For example, for two dimensions we
first diagonalize along chains in, say, the x direction.
Then we determine the site of localization with the previ-
ous eigenvalues as diagonal energies, and the result comes
out as the 2D approximated spectrum.

In Fig. 1 we show the one-particle density of states in
the alloy-analogy approximation, calculated with the
LEA, both for ordered (W =0) and disordered (W+0)
samples of size 30X 30X 30. (From now on, we give the
values of W and U in units of ¢.) Figure 1(a) shows the
case for small U (U =2). Clearly, the effect of disorder is
to produce a broadening of the band. For a large value of
U, a gap opens at the Fermi level, splitting the band in
two subbands. An example of this is shown in Fig. 1(b)
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for U=9. In this case, we see that the broadening of the
subbands due to the disorder causes a decreasing in the
gap width.

To obtain the gap width G as a function of U and W,
we use the following procedure. We calculate the dis-
tance in energy AE between the two eigenvalues closest
to the Fermi level up=U /2. Before the opening of a gap
AE will be of the order of the average separation B /N be-
tween energy levels in a finite system, with B the band-
width and N the size of the system. When AE is consid-
erably larger than B/N a gap G =AE will be opened at
pp. In the inset of Fig. 2(a) we show the behavior of AE
as a function of U for both 2D and 3D samples. For
small U we see that AE fluctuates but AE <B /N so there
is no gap, and after a certain value of U a gap starts open-
ing. Due to the fluctuations of AE in this critical region,
it is difficult to define a U,. We see that for large U the
gap increases linearly for both two and three dimensions,
and extrapolating this linear behavior to the horizontal
axis we can estimate a value of U,. For two dimensions
the U, for samples of size 30X 30, 50X 50, and 90X 90 is
6.2, 6.0, and 6.0, respectively. In three dimensions sam-
ples of size 10X 10X 10, 20X20X20, and 30X30X30
give U,=7.1, 7.9, and 7.5, respectively. The value of U,

15 , ;
! x 30x30x30 (a)
% 2
10p :""ﬁ fﬁ

20
15 , : ' ‘
. (b)
\x—\\&\
~x_
10} \‘\\
m ;\S—»ﬂ <
< e
51 Ry
. *ﬂs\e\\\ﬁ\ \ ™ i

0 1 2 3

FIG. 2. Behavior of the gap at the Fermi level for lattices of
size 10X 10X 10. (a) As a function of U
(o, W=0; O, W=1; X, W=2). The gap for large 2D
(90X 90) and 3D (30X 30X 30) ordered samples is shown in the
inset. (b) Gap as a function of W(o, U=10; 0O,
U=15; X, U=20).
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for three dimensions is of the order of the one obtained
by Ma’ and by Shimitzu, Aoki, and Kawimura,® although
they differ from the value obtained with the Gutzwiller
approximation.'*

The effect of disorder is shown in Fig. 2(a). There we
show the gap as a function of U for different values of the
disorder. As the disorder reduces the gap, the value of
U, increases with W. Also, it is clear from the plot that
the linear growth of the gap with U is independent of the
presence of disorder. The behavior of G ~(U — U, )° with
s=1 in the ordered case (W =0) was also obtained by
Ma’ and by Shimitzu, Aoki, and Kawimura® in their
real-space renormalization-group calculations. Here we
see that this linear relationship also holds in the disor-
dered case.

In Fig. 2(b) we show the behavior of the gap as a func-
tion of the disorder W for fixed values of U. The gap de-
creases due to the broadening of the subbands produced
by the disorder, and it tends to disappear at a critical dis-
order W,. Also, in this case the gap is G~(W —W,)"
with »=~1. This linear behavior is in agreement with the
results of Shimitzu, Aoki, and Kawimura.?

Finally, in Fig. 3 we show the phase diagram of the
model in the plane U-W. We have plotted the U (W) line
obtained by extrapolating the linear behavior of G vs U
for different W’s. This line separates two phases. For
large U there is a phase with a gap at the Fermi level, and
therefore it corresponds to a Mott insulator. The other
phase below the U, (W) line is a gapless phase. This
phase diagram is similar to the one sketched in the paper
by Kimball® and to the one calculated by Shimitzu, Aoki,
and Kawimura.! For low W the U, line tends to U,(0)
with zero slope. For large W there is an asymptotically
linear dependence of U (W). It has a slope of U,=6.7
W(W /t— ), which is very close to the fixed point
found by Ma’ for (¢t /W, U /W)=(0,8.3). We cannot com-
pare directly with the value of the linear slope obtained
by Shimitzu, Aoki, and Kawimura,® since in their case
they have a uniform probability distribution of disorder
instead of a Gaussian disorder, as in our case.

In conclusion, we have found the remarkable fact that
the phase diagram obtained with the allow-analogy ap-
proximation is very similar to the one obtained with
renormalization-group calculations”® for the Anderson-
Hubbard model in three dimensions. Also, we have in-
troduced a method for the evaluation of the density of
states'? in the alloy-analogy approach of the Hubbard
model, instead of the standard CPA, which is more accu-

BRIEF REPORTS 47
30 Mott Insulator A~ :
G>0 4 o

20 -
Q
- 7 Gapless Phase

0
0 1 2 3 4 5

FIG. 3. Phase diagram of the Anderson-Hubbard model.
The critical U, line is plotted as a function of W.

rate and gives reasonable results. It remains to separate
in the gapless phase the possibility of a metallic behavior
or an insulating behavior due to disorder.*’ This re-
quires a look at the localization properties of the elec-
tronic states at the Fermi level in the gapless phase.
There exists the possibility that the eigenstates can be lo-
calized in this phase due to the disorder, and hence non-
conducting even when the density of states shows no gap.
Actually, we expect that this will be the case for W large
enough. Therefore, the analysis has to be complemented
with a determination of the localization length as a func-
tion of the energy. This means to determine the mobility
edges in the upper and lower Hubbard bands, obtaining
the behavior of a mobility gap as a function of U and W.

However, this analysis is beyond the LEA method,
since this approximation relies on an extension of the lo-
calization properties of the eigenstates in one dimension
to higher dimensions.!* Then it cannot give any transi-
tion from extended to localized states. We can speculate
that in the phase diagram of Fig. 3 the critical line
separates between an insulating phase with a gap and an
insulating phase with localized states at the Fermi level,
at least for W >>t. A metallic phase would also exist
below that critical line only for small disorder. Work in
this direction, tending to extend the LEA method in or-
der to be able to study localization properties, is in pro-
gress.

We acknowledge useful discussions with A. A. Aligia
and R. Allub. D.D. and C.W. acknowledge support
from the Consejo Nacional de Investigaciones Cientificas
y Técnicas, Argentina.

l(a) J. Hubbard, Proc. R. Soc. London Ser. A 276, 238 (1963); (b)
281, 401 (1964).

2J. G. Bednorz and K. A. Miiller, Z. Phys. B 64, 188 (1986).

3P. W. Anderson, Science 235, 1196 (1987).

4P. W. Anderson, Phys. Rev. 109, 1492 (1958).

5P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287
(1985), and references therein.

6J. Kimball, J. Phys. C 14, L1061 (1981).

M. Ma, Phys. Rev. B 26, 5097 (1982).

8A. Shimitzu, H. Aoki, and H. Kawimura, J. Phys. C. 19, 725

(1986).

9R. Allub, Phys. Rev. B 37, 7815 (1988).

10G. R. Bhat and V. A. Singh, J. Phys. C 18, 5731 (1985); J. A.
Vergés, E. Louis, F. Flores, and E. V. Anda, Phys. Rev. B 35,
7146 (1987).

1Syrajit Sen, J. Phys. Condens. Matter 3, 437 (1991).

12A. A. Aligia and M. Avignon, Mod. Phys. Lett. B (to be pub-
lished); B. L. Gyorffy et al., Phys. Rev. B 44, 5190 (1991).

13D. Dominguez and C. Wiecko, Phys. Rev. B 41, 9101 (1990).

14H. Yokoyama and H. Shiba, J. Phys. Soc. Jpn. 56, 1490 (1987).



