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We present a theoretical study of the optical response of a thin film with arbitrary, deterministic
roughness of the interfaces (in one dimension). The three layers of the film are characterized each by a
spatially nondispersive dielectric constant and magnetic permeability. The incident light may have
TE(s) or TM(p) polarization. Using the Rayleigh hypothesis, we derive an integral matrix equation
which relates the reflected fields, the transmitted fields, and the fields inside the thin film to the incident
wave. This equation is applied to the special case of periodic corrugation, leading to a solution in terms
of an infinite set of linear equations for the amplitudes of the diffracted partial waves in the three media.
For aperiodic roughness the numerical solution is still given by a similar set of equations. For periodic
(aperiodic) films the solution involves Fourier coefficients (Fourier integrals) of functions related to the
roughness profiles. We also derive the secular equations for the polariton eigenmodes of periodic and

aperiodic films.

I. INTRODUCTION

The first studies of wave propagation in periodically
corrugated waveguides involved optically transparent
dielectrics. Dabby, Kesteubaum, and Pack! calculated
the normal modes assuming identical bounding media
(symmetric configuration) and corrugation at both inter-
faces. On the other hand, Yariv and co-workers®? did
the calculation for dissimilar bounding media (asym-
metric configuration) with only one interface being corru-
gated. In these works,! 3 numerical solutions were de-
rived for specific profiles of the corrugation. Rigorous
calculations of propagation modes for arbitrary profiles
have been developed by Neviere and co-workers.* ¢
Two reviews by Maystre”® are available on this subject.
It should be noted that waveguide modes in corrugated,
semiconductor thin-film structures found important ap-
plications such as distributed-feedback lasers. > 1°

The waves that propagate in the above-mentioned
waveguides are essentially volume (bulk) modes inside the
plate or thin film; usually, they decay exponentially away
from the interfaces in the bounding media. In metallic
thin films, propagation of surface modes is also possible.
By definition, these decay exponentially away from the
interfaces inside the thin film, as well as outside. The first
experiments on surface-plasmon polaritons in periodical-
ly corrugated (silver) films were performed by Pockrand
and co-workers.!'”13 It was observed!! that, with in-
creased height of the corrugation, the phase velocity of
the polariton decreases and its damping increases. In
Ref. 12, attenuated total-reflection (ATR) spectroscopy
was used to excite the two modes each associated with
one of the interfaces. These become coupled as a conse-
quence of the periodic corrugation, resulting in mode
repulsion'? in the vicinity of points of interaction of the
dispersion curves in the empty-lattice approximation. A
convincing confirmation of this effect was provided by an
experiment due to Gruhlke, Holland, and Hall.'* Here,
molecules on one side of the film decay by exciting the
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surface-plasmon mode corresponding to the nearby inter-
face. This mode, via the mode cross-coupling, excites the
surface plasmon associated with the other interface,
which then radiates by the usual grating-coupling mecha-
nism. In other situations, however, the cross-coupling
may be too weak to be observable, as pointed out by
Weber and Mills.!> These authors discard the possibility
that cross-coupling played a role in an experiment by
Brueck et al.,'® whose purpose actually was to enhance
the quantum efficiency of an internal photoemission
detector.

The dispersion of polaritons in the immediate neigh-
borhood of the coupling region was investigated analyti-
cally by Halevi and Mata-Méndez.!” The outcome de-
pends on the sign of a coupling constant B, given by a
complicated formula. For B >0, the interaction results
in mode repulsion or in an energy gap (“minigap”) de-
pending on whether the unperturbed modes, at their
point of intersection, have slopes of the same sign or of
different signs, respectively. The possibility B <0 leads
to a momentum gap or to a simultaneous energy and
momentum gap. Unfortunately, a negative value of B has
not been found by numerical calculations.

Further experiments, on free-standing silver films cor-
rugated on both sides, were performed by Inagaki
et al.'®'® Using a photoacoustic technique, they mea-
sured the propagation constant and the resonance half-
width as a function of film thickness (at a given frequen-
cy). It was found!® that a considerable discrepancy exists
between the experimental values and those calculated
from the dispersion relation of the planar (smooth) film.
The differences were an order of magnitude greater than
the estimated contribution of the corrugation. The au-
thors!® tentatively attributed the discrepancy to imperfec-
tions in the corrugation profile. However, recently,
Brudny and Depine20 calculated the scattering, due to
surface plasmons, of a sinusoidal grating on which there
was superimposed a statistically varying roughness
(which represented the defects of a real grating). These
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authors found that the dominant peaks of the scattered
light were largely unaffected by the random component
of the roughness, that is, the corresponding scattering an-
gles were still given by the surface-plasmon polariton
dispersion relation for the smooth (plane) surface. Mata-
Méndez and Halevi?! showed, on the basis of a perturba-
tional calculation, that the propagation constant and the
attenuation constant for a thin film are both proportional
to the corrugation height squared, just as in the case of
surfaces. However, the proportionality constants were
not evaluated numerically. It seems that the discrepancy
reported in Ref. 19 is still open to interpretation.

Recently, Chen and Simon?? studied the ATR line
shape for a silver film, with sawtooth form of corrugation
on both sides, in the symmetric configuration (quartz on
both sides). The measured and calculated reflectance, as
a function of the angle of incidence, were found to be in
very good agreement, with the exception of the thinnest
film (140 A thick). Using the same grating structure,
Simon and Chen?® studied optical second-harmonic gen-
eration.

A series of papers employed the Rayleigh hy-
pothesis in order to investigate the effects of corrugation
on the coupled surface plasmons of a thin film. Farias,
Maradudin, and Celli assumed identical profiles at the
two interfaces, as well as identical boundary media, and
took the retardationless limit. On the other hand, Auto,
Farias, and Maradudin®’ allowed for retardation and con-
sidered the asymmetric configuration with only one inter-
face being corrugated. The dispersion curves, plotted in
the first Brillouin zone, include parts that have been
“folded in” from other Brillouin zones. In the same
geometry, Cavalcante, Farias, and Maradudin?® calculat-
ed the (specular) reflectance, which was dominated by
first-order diffraction. It should be mentioned that Chen
and Simon?? noticed disagreement with some of these re-
sults.

Up to this point the discussion was limited to periodi-
cally corrugated thin films. On the other hand, in optics
aperiodic scatterers (‘“‘obstacles’) are of considerable in-
terest. This topic is related to the inverse scattering
problem, namely, the determination of roughness profiles
on the basis of the scaitering pattern. Another applica-
tion, in the field of integrated optics, concerns coupling
devices.  Aperiodic, but deterministically rough,
waveguides and stratified media were studied numerically
by Hugonin and Petit.?”»?® However, the obstacles are
assumed to be localized, and of heights smaller than one
wavelength. A more recent work, experimental as well as
theoretical, is that of Greffet and Ladan.? Good agree-
ment was found for a system of two “‘ribs” on a germani-
um substrate.

As far as we are aware, ours is the first calculation of
optical response of a thin film with arbitrary, determinis-
tic roughness of both interfaces (in one direction parallel
to the film). Thus, the roughness profile may be periodic
or aperiodic (obstacle), identical or different at the two in-
terfaces. Our method of calculation resembles that of
Toigo et al.*® for a deterministically rough surface; this
was extended to a spatially dispersive medium by Wang,
Barrera, and Mochan.3! The three layers are each
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characterized by their dielectric constant and magnetic
permeability. The incident light may have TE(s) or
TM(p) polarization.

In Sec. II we use the Rayleigh hypothesis—our only
approximation, in principle—in order to derive the “cen-
tral equation,” Eq. (21). This is an integral matrix equa-
tion that relates the reflected fields, the transmitted fields,
and the fields inside the thin film to the incident wave.
The general formalism is applied to the special case of
periodic corrugations in Sec. III. A numerical method of
solution for aperiodic roughness profiles is given in Sec.
IV. In Secs. III and IV we also derive the secular equa-
tions for the eigenmodes of the periodic and aperiodic
films, respectively.

In a future publication, we shall present a perturbative
(in the corrugation height), analytic solution for the opti-
cal response of rough films.** Preliminary numerical re-
sults compare favorably with experimental and calculated
reflectivity curves in Ref. 22.

II. BASIC FORMALISM

Let us consider a thin film of thickness D and dielectric
constant €, sandwiched between a substrate of dielectric
constant €; and a superstrate of dielectric constant €;.
The corresponding magnetic permeabilities are wu;, U,,
and p;. The two interfaces have arbitrary, deterministic
roughness in one dimension (x); the z axis is chosen to be
perpendicular to the thin film, and therefore, the y axis is
parallel to the grooves of the roughness. The upper and
lower interfaces are defined by the profile functions f (x)
and g (x), namely,

z=D +hf(x), (1)
and
z=hg(x), (2)

where /4 is a measure of the height of the surface rough-
ness. Clearly, the “teeth” of the two interfaces should
not run into each other, the condition for which is

D +hf(x)>hg(x).

It may be convenient to choose the direction of the x
axis, the point z =0, and the thickness D in such a way
that f(x) and g (x), integrated from — o to o, give van-
ishing results. Other choices, however, are possible. All
three media comprising the thin film are taken to be iso-
tropic, homogeneous, linear, and local. (See Fig. 1.)

z=D + hf(x)

€3. U3 z=hg(x)

FIG. 1. Geometry considered in this work. f(x) and g(x)
are arbitrary deterministic functions.



47 OPTICAL RESPONSE OF A THIN FILM WITH ARBITRARY . ..

We assume that a monochromatic plane wave is in-
cident from medium 1 at the interface given by Eq. (1).
The plane of incidence is chosen to be the xz plane, and
the angle of incidence is 8. The wave vector of the in-
cident wave may be written as

2Q0+2By=(w/c)(e ) /X% sinf+2 cosh) ,

where o is the circular frequency. We treat simultane-
ously the cases of TE or s polarization and TM or p po-
larization of the incident wave. Its amplitude I
represents the electric field E, in the case of s polariza-
tion and it is the magnetic field H, for p polarization.
That is, I is the amplitude of the y component of the elec-
tromagnetic field for both polarizations. Then the in-
cident wave (y component) is

i(Qgx +Byz)
b

U;(x,z)=Ie zZ2D+hf(x). (3)

Because of the surface roughness, the parallel com-
ponent Q, of the wave vector is not conserved. Then the
reflected and transmitted fields and the field inside the
thin film all suffer diffraction. They are a superposition
of plane waves with all values, in general, of the wave-
vector component Q parallel to the surface. Correspond-
ingly, the perpendicular components of the wave vectors
in the three media are

ﬁj:

5 172
[9) .
6]:“‘]7——Q2] ’ ]=172,3 .

The y component of the reflected field, the field in the
thin film, and the transmitted field are postulated to be
given, respectively, by the following expressions for their
Fourier integrals:

i(Qx —pB,2)
b

U,(x,2)= [ © dQ R(Q)e’ z=D+hf(x), ()

Upix,2)= [~ dQ[4(Q)e™ +B(Qle e,
hg(x)<z=<D+hf(x), (5)

Ux2)=[ " do T(Qe"* ™, z<hg(x). 6)

Equations (4)—(6) are exact solutions of the Helmholtz
equation only outside the selvedge region. We assume,
however, that they may be ““‘continued” into the selvedge
region, presumably with an acceptably small error. This,
indeed, is the essence of the Rayleigh hypothesis. The
quantities that are assumed to be given are the €;, u;, D,

|

[ Qo TiBof (h +iBoD

lIFgLe
V1

iQ0x+iﬁ0f(x)h+iBOD+vaoo dQR(Q)Ffei
1 -

=1 r= +
" [7 aora(QF;e
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h, f(x), g(x), o, 6, and I. Our task is to determine the
field amplitudes R (Q), 4 (Q), B(Q), and T(Q).

At every point of the interfaces 1/2 and 2/3 the paral-
lel components of E and H must be continuous. Because
U(x,z) is chosen to be the electric (magnetic) field for
transverse-electric (magnetic) polarization, then, clearly,
U(x,z) is continuous for both polarizations. There is a
simple device for handling the continuity of the other
parallel component. Namely, one uses the fact that
(1/v;)(dU /0n) is also continuous; here, U /dn is the
normal derivative and v; =1 for s polarization and v; =¢;
for p polarization. Then, the boundary conditions at the
two interfaces read

(U;+ U, =g+ 0 =Uslz =40 @)
1 0 1 0
;rgn_(Ui+Ur”z=hf(x)+D=;;EUf|z:hf(x)+D , (8
Url,=hg 0= Uil s =ng(x) » ©
1 o 1 9
v_za_nUf|z=hg(x)—v_36—nUt|z=hg(x) ) (10)
where

a A

—y=n-Vy , 11

n n-vy (11)

and 1 is a unit vector perpendicular to the interfaces at
an arbitrary point. Thus,

9 itexBzlra) :FjieiiQxiBjZ[f(x)]l ’
on

where

(12)

i i[—Qf (x)h+B;]
ooy 2 1)

and similarly,

3 ilQxtBzlgx)]}
e

i HOxEBz[g(0])
an Gje , (14)
where
i[—Qg(x)hxpB;
G [—0g B;] (15)

TR

It is understood that, for j =0, Q =Q,, and the overdots
on f(x) and g (x) denote derivatives.

Using Egs. (3)-(6), (12), and (14), Egs. (7)-(10) can be
written as

+foo 4O R (Q)eiQx——iBIf(x)h~i61D= fcc dO[ A (Q)eiBZf(x)h +iB2D+B(Q)efiﬁ2f(x)h—iBzD]eiQx

(16)

Ox —iBf(x)h —iB D

i Yh +i —i —i ;
PSCRTIBD | g (Q)Fye PO TIBP iox - (19)
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f_eo dQ[A (Q)eiﬁzg(x)h_'_B(Q)e—iﬂzg(x)h]eigx: f_oc dQ T(Q)eiQx +iB3g(x)h , (18)
Vif"" d0[4(Q)GTe ™ 1 B(Q)Gye P M= L [ 40 T(Q)G 7T T (19)
2 - V3 —
Now we can write the continuity conditions [(16)—(19)] in a matrix form
o TiBIHD) B ED) _TiBHD) 0
—1—F1_e —iB(fh+D) LF;_eiBZ(fh +D) —-I—F{e —iB,(fh +D) 0
- Vi Va V2
f_ mdQ 0 eiﬁlgh e —iB,gh __e133gh
0 —I—G;eiﬁzgh LG{eViBZgh —LG;eiﬁJgh
\#) V2 V3
[ PR D)
R((g)) _LIFgeiBO(fh+D)
A i$! ;
iQOx — Qg%
B(Q) |¢ 0 e , (20)
T(Q) 0

where f = f(x) and g =g (x). If we multiply the second row by —i times the denominator of F ji, and the fourth row by
—i times the denominator of G ji, then we can write the above equation in a simple form:

[ dom(Q,x)R(Q)e’®*=3(Qy,x)e"*" , (21)
where
o T IBIn D) Bt D) _ T iBUmED) 0
—Qfh—B, o IR Qfh *f?’zeiﬁzuh +p) Qfh +Bze—ib’2(fh +D) o
Vi V2 V2
‘/M‘(Q’x): 0 eiﬁ’zgh e*iﬁzgh _eiﬁsgh ’ 22)
0 —Qgh +p5, o B8 —Q0gh—p, o i Qgh —pB; o B8
V2 V2 V3
R (Q)
A(Q)
T(Q)
l
and film. These calculations are valid for light of either TE or
TM polarization and for arbitrary roughness profiles. In
—1 fact, the Rayleigh hypothesis is the only limitation on the
0o/t —B, generality of Eqgs. (21)-(24). We shall refer to Eq. (21) as
- the central equation.
_ 1 iBy( fh +D)
J(Qo,x)= 0 Ie ’ (24) III. PERIODIC ROUGHNESS

0

The last four equations summarize our results. In prin-
ciple, it is necessary to invert the integral equation (21)
and express A(Q) in terms of the known matrices
M(Q,x), Eq. (22), and J(Qy,x), Eq. (24). The vector
R(Q) gives the Fourier transforms of the four relevant
field amplitudes [see Eq. (23)] and, through Egs. (4)-(6),
determines the complete optical response of our rough

In this section we assume that the profile functions
f(x) and g(x) are both periodic with the same period d.
These functions are not necessarily the same, although
this is an important special case, corresponding to
numerous experimental configurations. Another particu-
lar geometry that conserves the overall periodicity is the
case where one of the interfaces is plane; then either f(x)
or g (x) vanishes identically.
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For a periodic system, the Bloch theorem must be
satisfied, that is, apart from the wave factor exp(iQyx),
the electromagnetic fields have the same periodicity as
the corrugations of the thin film (for every value of the
coordinate z). This periodic part may be expanded in a
Fourier series. Then, the transverse (y) component of the
reflected field is written as

Uln= 3 R,e' @ R0 25)

Q,=Qo+2mwn/d, n=...,—1,0,1,..., (26)
2 1/2

BAQ)= |eu; 5 —02| , i=123. 27)
C

On comparing Egs. (25) and (4), we see that R (Q) must
be given by the expression

R(Q)= S R,(0,)8(0—0Q,) . (28)

Analogous formulas hold for the fields inside the film and
for the transmitted fields. In our matrix formalism we
write

RQ)= T R,(Q,)8(Q0—Q,) . (29)

The column matrix 2(Q) has been defined in Eq. (23) and
R, (Q,)
A,(Q,)
B,(Q,)
T,(Q,)

R (Q,)=

Equation (29) indicates that now only discrete values of
the wave vector Q are permitted; these Q, are given by
Eq. (26). The thin film reflects light only at angles 6,
such that

sine,,szzsinanL 2Ty (31)
(C()/C)(el,lll) Cl)(fllul) / d
]
M(Q_1,0) Qg —1) M(Q,,—2)
MQ_, 1) M(Qy0) J(Q,,—1)
MQ_,2) M(Qp1)  M(Q,,0)

The three infinite matrices in this equation are parti-
tioned matrices, with the elements defined by the subma-
trices (A1), (A2), and (30). We may also rewrite Eq. (33)
in the explicit form
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For n =0 specular reflection is obtained. For a given
value of n(70) the reflection corresponds to order n of
diffraction.

Let us substitute Eq. (29) in our central equation, Eq.
(21). We get

S M(Q,,x)R,(Q,)e % =F(Qg,x)e" % . (32)

Here we are summing an infinite number of column ma-
trices. If we multiply every one of the four rows of Eq.
(32) by exp(—iQ,,x) and integrate over the period d, the
result is

S MQ,,m —n)R,(Q,)=T(Qo,m) ,

(33)

m=...,—1,0,1,....

Every element of the matrices M and 7 is the Fourier

coefficient of the corresponding matrix element of M and
J:

./?Lij(Qn’m)zéfoddx Jn[j(Qn’x)e—ﬂm‘nx/d ,

ij=1,2,3,4, (34

i __1_ d —i2mmx/d

j,.(Qo,m)~df0dx T (Q,x)e ,
i=1,2,3,4. (35)

A glance at Eqgs. (22) and (24) reveals that the right-hand
sides of Egs. (34) and (35) involve only the integrals

1 pd i hf(x)—i d
JpEBmy=— [ fax ¢TI (36)
~ 1 pd, LiB;hf (x)—i2wmx /d
Jf(iB,-,m)EEfodxf(x)e Bihf )= izmmxsd 3y
and similar integrals with g(x) replacing f(x). Using

Egs. (22), (24), and (34)-(37), we get the formulas in the
Appendix. If f(x) is composed entirely of linear seg-
ments, then the integration in Eq. (36) is immediate.

If m is allowed to take all values, then the complete set
of Egs. (33) may be written as

9(Qp,—1)
= | 9(Q,,0) (38)
9(Qg,1)
-
o 4 ~ ~
2 2 ./I/l,-j(Q,,,m —n)ﬁ,,j(Q,,)=.7i(Q0,m) )
n=—o j=1
m=...,—10,1,..., i=1,2,3,4. (39
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By Eq. B0) R,;=R,, Rpn=A4,,R,;=B,,and R,,=T,.
Of course, in practice the number of equations (39)
must be finite, as must be the number of terms in the
summation over n. If we choose |m|,|n| <N, where N is
a sufficiently large positive integer, then there are
4(2N +1) equations for the 4(2N +1) unknowns 7 ,;:

R_yyA_yB_3,T_y, ...y RoyAgBosTos- .- s

Ry, Ay, By, Ty .

Thus, we see that the solution of Eq. (39) yields the com-
plete optical response of the corrugated film: not just the
reflected-field amplitudes, but also the amplitudes of the
fields inside the film and those of the transmitted field.
Note that R, is the amplitude of the transverse field
reflected (or diffracted) at the angle 8, given by Eq. (31).

In the special case €, =¢€3, u; =1 (nonmagnetic media),
f(x)=g(x), and v;=¢; (p-polarized light), our results
should be equivalent to those of Ref. 22. Also, if u; =1,
f(x)=0, and v; =¢; then our formulas should reduce to
those in Ref. 26. Unfortunately, in both cases the proofs
do not seem to be straightforward.

The condition for self-sustained electromagnetic oscil-
lations is that the amplitude of the incident field vanishes.
By Eq. (A2), if I =0 then the column matrix J also van-
ishes. On the other hand, the reflectivity amplitudes 72, y
should not be all equal to zero, that is, the response ma-
trix 2 must not be a null matrix. Then Eq. (38) gives the
secular equation for the eigenmodes of the thin film,

~ B By B | ip,—
g, 0= | Pty P | (B By imspn | By
Vi WV, vy, Vs vy
Setting this equal to zero, we have
BIQ.) . BAQ) ] BAQ)) | ByQ.) | e
V1 V2 V2 V3

For n =0, this is just the well-known dispersion relation
of polaritons in a smooth (planar) thin film, for either TE
(v;=1) or TM (v;=g¢;) polarization. If n70, then the
dispersion curves for » =0 are displaced along the Q,
axis by all the reciprocal-lattice vectors (277 /d)n.'” This
corresponds to the “empty-lattice approximation” in the
band structure of periodic solids. The effect of the
periodicity is kept, although the limit # —O0 for the height
of the corrugation is taken.

Intersection of polariton dispersion branches may
occur outside of Brillouin-zone boundaries as well as at
these boundaries (see Fig. 1 of Ref. 17). If f(x) and/or
g (x) is permitted to be finite, then Eq. (40) will lead to
mode repulsion or to gaps in the w(Q,) spectrum.

SHU WANG AND P. HALEVI

M(Q_,,0) J(Qy,—1) M(Q,,—2)
MQ_1,1)  M(Q,,0) JJMQ,,—1) ---|=0.
M

(Q_1,2) JM(Qy1)  JM(Q,,0)

(40)

An equivalent result has been derived previously.>
There, however, the elements of the determinant are 2 X2
submatrices, rather than the 4 X4 submatrices in Eq. (40).
Also, for g(x)=0 and pu;=1, Eq. (40) should reduce to
Eq. (13) of Ref. 21, and to Eq. (2.11) of Ref. 25 if, in addi-
tion, v; =¢;.

It is instructive to consider the case of a smooth film,
f(x)=g(x)=0. Then Eq. (36) gives J(£B;,m)=8, ,
and J,(£B;,m)=0. We see that the determinant of Eq.
(40) becomes diagonal in the submatrices JM(Q,,0). The
determinant of such a matrix is simply equal to the prod-
uct of the determinants of the submatrices, that is, Eq.
(40) becomes

c XAUQ L, 0] X |A(Q4,0)| X |AUQ,,0)| X - =0,
or
(Q,,0)|=0, n=...,—1,0,1,... .

If we substitute m =0 in Eq. (A1), this matrix greatly
simplifies. Its determinant is readily found to be

B

\&)

A_B

\) V3

—i(B,+B,)D
e LR

BAQ.)  BxQ,)

o TBAQP_

0,

Y1 V2 V2 V3

Bi(Q,)  ByQy) ]

n=...,—1,0,1,.... (41)

IV. APERIODIC ROUGHNESS

Returning to our central equation, we multiply both
sides of Eq. (21) by exp(—iQ'x) and integrate over the x
axis. We get

7 doQ,0'—@R(Q)=7(05,0'—Q,), 42)

where M and 7 are now the inverse Fourier integrals of
M and J:

MU, 0= [ dx M@ x)e~0 43)

9(Q0,0"= [ dx 7(Qg,x)e "0 . (44)
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In analogy to Egs. (36) and (37), the independent integrals
on the right-hand sides of Egs. (43) and (44) are

, o +if;hf(x)—iQ'x
Jf<J_rB,»,Q>=f_wdxe MU
i hf (x)—iQ'x

Tr(+8,0)= [ dx f(x)e : (46)

, (45)

and a similar one for g(x). The matrices ./I//\l(Q,Q’) and
J(Qy,Q’) are quite similar to Egs. (Al) and (A2). It is
not difficult to see that they are obtained from these equa-
tions by the replacements

Q,—0Q, 2mrm/d—Q’,
Jpg(£Bism)—J,  (£B,,07) (47)
T o (£Bi,m)—T; (£B,Q7) .

As in the case of periodic roughness, the integral (45)
may be solved analytically if f(x) is constituted from
linear segments. Assuming that JU(Q,Q’) and J(Q,Q’)
have been calculated—analytically or numerically —we
proceed to solve Eq. (42).

We divide the Q axis into a set of convenient intervals
AQ_y,...,AQq,...,AQy, which are not necessarily
equal. [The choice of the AQ, in practice would depend
on the profiles f(x) and g(x).] The wave vectors Q and
Q' in Eq. (42) are allowed to assume only discrete values
Q_n>-3Qgs--.,Qx, where Q, is chosen to be the mid-
point of the interval AQ,. Then we rewrite Eq. (42) for
Q'=Q _n,...,Q0,-..,0p, and replace the integration
by summation over the intervals AQ,:

S 20,(Q,,0, =) R(Q,)=7(Q5,0, —Q0) »

m=—N,...,0,...,N. (48)

These matrix equations are similar to Eqgs. (33) for the
periodic film. We also write down the explicit form [see
Eq. (39)]

J
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N 4 A
_2 AQn E-M[j(Qn’Qmp—Qn)ﬁj(Qn)

-N j=1
zﬁi(QO’Qm_QO) ,

m=—N,...,0,...,N; i=12,3,4. (49)

Here we have 4(2N +1) equations to calculate the
4(2N +1) amplitudes R;(Q,). We remind the reader
that 72,(Q,)=R(Q,) is the amplitude of the y com-
ponent of the electromagnetic field that is reflected
(diffracted) at an angle 6, given by the first equality of
Eq. (31). Similarly, 52,(Q,)=T(Q,) is the corresponding
transmitted field. If all the intervals AQ, are chosen to
be equal to some AQ, then

0,=Q,+nAQ, n=—N,...,0,...,N . (50)

This is similar to Eq. (26); however, 27 /d is replaced by
AQ. Of course, Eq. (26) gives all the possible directions of
diffraction (for a periodic film), while Eq. (50) specifies
certain chosen directions of diffraction (for the aperiodic
film). Now Eq. (49) simplifies to read

4

S S 0, (m —nAQIR(Q,)

n=—N j=1
=7.(Q0,mAQ)/AQ ,
m=—N,...,0,...,N; i=1,2,3,4. (51)

The matrix elements .fl/lij(Qn,mAQ) and gi(QO,mAQ)
are obtained from Egs. (Al) and (A2) by replacing
Jf,e(£B;;m) and jf,g(ib’,-,m) with J, (£B;,,mAQ) and
Jr o (£B;;mAQ), the latter quantities being defined by
Egs. (45) and (46). We see that by choosing equal inter-
vals AQ, the solution equation (51) becomes very similar
to Eq. (39) for a periodic film. The major difference lies
in the replacement of the Fourier coefficients of
exp[tifB3;hf(x)], Egs. (36) and (37), by the inverse
Fourier integral, Eqgs. (45) and (46), of the same function.

In practice, the light is diffracted in all directions in a
continuous fashion. The method described here serves as
an algorithm for numerical calculations of the optical
response of thin films with aperiodic roughness and it be-
comes exact in the limit AQ, —0and N — oo.

From Eq. (48) the secular equation for the electromagnetic modes of the system is

AQ_Q _,,0)
AQ M(Q_1,0,—Q ;) AQ(M(Q,,0)

AQuM(Qy, 0 1 — Qo) AQM(Q1,0_,—Q))

AQI‘/i/\l(Ql’QO_Ql) s |=0. (52)
AQ,41(Q,,0)

AQfx-/,’/\l(Qfx,Q1 —Q_) AQo~/’,;l(Q0’Q1 _Qo)

If one chogses AQ, =AQ, then Eq. (52) assumes the same form as Eq. (40), except that the elements ./%(Q,,,m) are re-
placed by M(Q,,m AQ).
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APPENDIX
The matrices ./l and J which appear in Eq. (33) are
e*iﬁ]DJf(_ma) —eiﬁZDJf(‘f—Bz,m) _e_[ﬁzDJf(_Bz’m) 0
. —e PPk (—Bm) PR (+Bym) e UK (= Bym) 0
Qo m)= 0 Jo(+Bym) J(—Bym) I (+Bym) |’ ab
0 —K o (+B5,m) —Kgo(—By,m) K 3(+B5,m)
-1
Qoh B
T Boym) =~ By m)
A 1 1 i
7(Qg,m)= o "™, (A2)
0
where B, =8B;(Q,),
0,h +B; 0,h +B;
K (£B;,m)= , Jf(iﬁj,m—v—ijf(i jom) s Kyy(2Bj,m)=="—J (+p;,m)— vj’Jg(_ ., m)
J
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