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Continuum and random-walk models of magnetic relaxation in porous media
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Nuclear magnetic relaxation in porous media can be treated by a continuum model, involving the
solution of an initial boundary-value problem, or by a random-walk model, involving a random walk
on a lattice with a partially absorbing boundary. Three formulations of the random-walk model have
appeared in the literature. These have different step probabilities and different relations between
the parameters of the random walk and continuum models. This paper reexamines the formulation
presented previously by the author. That formulation is revised to improve the approximation to
the continuum model and to simplify comparison with the other formulations. It is shown that the
three formulations are largely the same but represent two different orders of approximation to the
continuum model and retain some differences that are difBcult to understand.

Two models, a continuum and a random-walk model,
have been used to investigate nuclear magnetic relaxation
in porous media. There has been some disagreement in
the literature 3 about the correct way to formulate the
random-walk model and the relation of its parameters to
those of the continuum model. In this paper I reexamine
the random-walk formulation that I presented earlier. 2

That formulation is revised to improve the approxima-
tion to the continuum model and to simplify comparison
with the other formulations. The three random-walk for-
mulations are largely the same. However, they represent
two different orders of approximation to the continuum
model. And they retain some differences that are difficult
to understand.

The discussion in this paper will be limited to a one-
dimensional pore of length a. In the continuum model,
the magnetization M of the pore fluid satisfies the diffu-
sion equation

clM BzM
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where D is the bulk self-diffusion coefficient of the pore
fluid. In Eq. (1) I have neglected bulk relaxation. This
could easily be included if desired, but is not important
for the present discussion. At the boundary x = 0, M
satisfies the condition

The number of walkers is normalized to g(x, 0) = 1.
Let us begin by reviewing the formulation of the ran-

dom walk presented in Ref. 2. We divide the pore into
cells of length e and place a lattice site at the center of
each cell. The lattice sites are spaced a distance e apart.
The lattice sites in the boundary cells are located at the
positions x = e/2 and x = a —e/2.

A random walker is placed on the lattice with equal
probability to be placed on any lattice site. The walker
takes steps at equal intervals of time w, . At each step
the walker chooses a direction with probability 1/2. If
the walker is at an interior site of the lattice it steps to
the neighboring site in that direction with probability
p, remaining at its initial site with probability 1 —p.
If the walker is at a boundary site and it has chosen
the direction to the interior, it steps to the neighboring
site with probability p. If it has chosen the direction
to the wall, it steps there and is killed with probability
p. And it remains at the boundary site with probability
1 —(u + ~)/2.

We evaluate the change of the number g(x, t) at each
step by considering all transitions to and from the site x.
This yields for an interior point

g(x, t + ~,) —g(x, t)
+S

+pM =0, (2)

where p is a surface relaxation velocity. There is a similar
boundary condition at x = a. Finally, M satisfies the
initial condition

M(x, 0) = Mo

In the random-walk model, walkers start with equal
probability from any point in the pore space. When a
walker attempts to step out of the pore space into the
matrix it has a probability of being killed. The magneti-
zation is related to g(x, t), the average number of walkers
still alive at point x at time t, by

pE' g(x + t, t) —2g(x, t) + g(x —6, t)
27S Q2

For the boundary site x = e/2 it yields

g(e /2, t + 7;) —g(e/2, t)

p g(3 /2 t) —g( /2 t) p
( / ) ( )

27s E

There is a similar equation for the site x = a —e/2. If we
now make the association

M(x, t) = Mpg(x, t). D=ps /2~,
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are given by

p = pe/2~„ (8) (15)
then Eqs. (5) and (6) reduce to Eqs. (1) and (2) in the
limit e —+ 0, r, —+ 0, p —+ 0.

Dividing Eq. (8) by Eq. (7) gives
and

~ —= a~/D = V/S. (9) ~ = p~, ) (n+ l)(l —p)" = —'.
n=O p

(16)

Clearly values of p and p, each between 0 and 1, can be
chosen to satisfy this equation for any value of 6. Once
p and p, have been chosen, r, can always be chosen to
satisfy Eqs. (7) and (8). Thus, contrary to a comment
of Wilkinson, Johnson, and Schwartz (Ref. 22 in Ref. 3),
this formulation can be applied for any values of p and
D.

The discussion above is the formulation of the ran-
dom walk given in Ref. 2. In this formulation, Eq. (5),
with Eq. (7), approximates Eq. (1) to O(e2) (Ref. 7) but
Eq. (6), with Eqs. (7) and (8), approximates Eq. (2) only
to O(e). To get a better approximation to the boundary
condition we introduce7 the fictitious site 2: = —e/2. A
Taylor's series expansion around the point x = 0 yields

~+ ~'I~

) v+v (17)

From symmetry the probability and average time for a
move to the left are the same.

For a walker on a boundary site, directions to the right
and left are not symmetric. We must calculate the prob-
ability Pp that the walker first moves to the wall and is
killed, the average time Ltd for this to occur, the prob-
ability P, that the walker first moves to the neighboring
interior site, and the average time At, for this to occur.
The quantities Pd, and Std, are given by

g(+e/2, t) = g(0, t) 6—
x=o

E 8 g+ ~ 2 + ') (n+1) I1-
2P~ g 2 ) p+

(18)

and

g(~/2 t) - g(-~/2 t) + O,~

From Eq. (10) we have immediately

g(e/2, t) + g( —e/2, t)

(12)

The quantities P, and At, are given by similar expres-
sions but with p and Pd, , in the factors to the left of the
summation signs, replaced respectively by p and P, . This
gives P, = 1 —Pd and At, = At~. Substituting Eq. (9)
into Eqs. (17) and (18) gives

(19)

Substituting Eqs. (11) and (12) into Eq. (2) then gives
the boundary condition

g(e/2, t) —g( —e/2, t) g(e/2, t) + g( —c/2, t)+p =0
2

and

2r
Std, = 1+6 (20)

correct to O(e ).
Keeping Eq. (7), we now apply Eq. (5) to the point

x = e/2 and eliminate g( —c/2, t) between this equation
and Eq. (13). This yields Eq. (6) but, instead of Eqs. (8)
or (9), we now have

26

p 2+6 (14)

which gives the boundary condition correct to O(e2).
This formulation of the random-walk problem is con-

ceptually straightforward and convenient to program for
computing. However, for small p the walker spends most
of the time standing still so this formulation can be very
uneconomical of computer time. We can reformulate the
random walk in a way that is equivalent but more eco-
nomical. For a walker at an interior lattice site we cal-
culate the probability p that its Grst move is to the right
and the average time r before it moves. These quantities

for the O(c) approximation. Substituting Eq. (14) into
Eqs. (17) and (18) gives

and

26
2+36

2~(2+ 6)
2+ 3b

(21)

(22)

for the O(e2) approximation.
To complete the reformulation of the problem we sub-

stitute w from Eq. (16) into Eq. (7) to obtain

D = e /2~. (23)

In the reformulated walk, a walker at an interior lattice
site steps to the right or left with probability 1/2. At each
step the clock is advanced by an amount r. A walker at a
boundary site steps to the neighboring interior site with
probability P, . In this case the clock is advanced by an
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amount At, . The walker steps to the wall and is killed
with probability Pd and the clock is then advanced by an
amount Ltd.

The reformulated random walk can be set up directly
without using the argument based on the original form of
the random walk discussed here. To see this we determine
the rate of change of g(2:, t) by considering the rates of
jumps to and away from the site x. Then for the interior
sites that are not neighbors to boundary sites we obtain

Bg(z, t) 1
8t '2'r= —[g(x + e, t) —2g(z, t) + g(x —e, t)]. (24)

(26)

with similar equations for the sites near x = a. These
equations reduce to Eqs. (1) and (2) in the limit e —+ 0
provided

and

P, e
lim

2
= —=D

2v
(27)

Pg P, 1
lim e + ——= p

Gad, Et, 2~
(28)

These conditions are satisfied by the values obtained
above for both the O(e) and O(e ) approximations.

We can now compare the reformulated random-
walk problem with the formulations of Banavar and
Schwartz (pp. 284—287) and of Wilkinson, Johnson, and
Schwartz. 3 For a walker on an interior site of the lattice
the three formulations are identical. The walker steps to
the right or left with probability 1/2. At each step the
clock is advanced by an amount r (denoted At in Ref. 3)
given by Eq. (23).

For a walker at a boundary site, Banavar and Schwartz
state, in the paragraph before their Eq. (3.3), that
".. .magnetization decays with probability p (per unit
time step ~)." They relate p to p by their Eq. (3.4),
which can be written

For the sites near 2: = 0 we obtain

Bg(3e/2, f) 1 P,
2r
—[g(5e/2, f) —2g(3e/2, t)] + '

g(e/2, t)

(25)

and

Bg(e/2, t) 1 P, Pg= —g(3e/2) t) — '
g(e/2) t) — g(e/2, t)

& = ~/(1-~) (29)
Now, if we choose p = 1 —p, Eq. (9) becomes the same
as Eq. (29). Substituting this equation into Eq. (19)
then gives Pg = p which appears to be the sense of the
statement quoted above.

To this extent, the formulation of Banavar and
Schwartz is the same as the O(e) formulation of this pa-
per. However, substituting Eq. (29) into Eq. (20) gives
Aid = 2&(l —p) which does not appear in Ref. 1. Rather,
from the statement quoted above, it appears that Ba-
navar and Schwartz used b, fg = ~, but this does not
satisfy Eq. (28) so the random-walk equations do not
reduce to the continuum equations in the limit e ~ 0.
Furthermore, Banavar and Schwartz do not specify P,
and Dt, . More information is needed in order to clarify
their analysis.

For the walker on a boundary site, Wilkinson, Johnson,
and Schwartz solve Eq. (1) with the boundary condition
(2), the additional boundary condition g(3 /e2, t) = 0,
and the initial condition g(x, 0) = 6(x —e/2). They cal-
culate Pg, Pe, Atg, and At, from this solution. From their
Eq. (B4a), Pd = 26/(2+36) and P, = 1 —Pg, the same as
in the O(e2) formulation of this paper. Equation (B4b)
of Wilkinson, Johnson, and Schwartz is

12+ lib+36' e 46+ 156
Lt, =

3D (2+6)(2+ 36') ' 24D 2+ 36

These satisfy Eq. (27), but not Eq. (28).
This failure to satisfy Eq. (28) raises a very difficult

question. Suppose one specifies a random walk by choos-
ing a set of parameters r, Pg, P„Atg, and At, In the.
limit e —+ 0 does this random walk reduce to the con-
tinuum diffusion problem specified by Eqs. (1) and (2)?
Equations (23), (27), and (28) are sufficient conditions
to ensure that this occurs. But, are they necessary con-
ditions? If they are, then there must be an error in the
formulation of Wilkinson, Johnson, and Schwartz. But
it is very diKcult to see where such an error might be
located. If the conditions are not necessary, it should
be possible to show that the formulation of Wilkinson,
Johnson, and Schwartz reduces to the continuum prob-
lem in the limit. But, it is not at all clear how this might
be done. It is beyond the scope of this paper to resolve
this question.

I am very grateful to David Wilkinson, David Johnson,
and Lawrence Schwartz for their discussion of this work.
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