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It is argued that, contrary to assertions in the literature, absorption does not provide a cutoff length
analogous to an inelastic scattering length for the renormalization of wave transport in a multiply
scattering medium. The argument is supported with numerical experiments. A reconciliation between
this evidence and the conventional understanding is effected. The error in the latter is identified.

Anomalously weak and slow diffusion has been ob-
served in some interesting recent work on the diffuse
transport of microwaves in a multiply scattering medi-
um.>? In the most recent of the Letters' reporting this
work, it is claimed that a narrow window of localization
has been found. As had long been anticipated,>* the
presence of dissipation has complicated the analysis of
the experimental results. It appears to be widely con-
ceived that the effect of dissipation on the Anderson tran-
sition for classical waves is analogous to that of inelastic
scattering on the transition for electrons. This concep-
tion was employed in the interpretation of the recent mi-
crowave results. It is the intention of the present paper
to establish that that conception is in fact in error. It will
be shown that the transport of wave energy in a disor-
dered medium remains nondiffusive even in the presence
of dissipation, and that a diffusion process, whether with
a renormalized diffusion constant or not, does not
correctly describe that transport. It is further shown that
the conventional understanding for the effect of dissipa-
tion upon conductance (as opposed to diffusivity) is not
inconsistent with the present argument.

Throughout much of the literature on the Anderson lo-
calization of classical waves it has been asserted that dis-
sipation provides a classical wave analog to the process of
inelastic electron scattering.">*-® That the thermal
scattering of an electron on a length scale L; is responsi-
ble for many of the temperature-dependent properties of
the metal-insulator transition is well appreciated. The
classical wave analog for this kind of inelastic electron
scattering, however, is provided by random time varia-
tions in the propagation medium and not by dissipation.
Perhaps because of confusions engendered by the multi-
ple meanings of the word ““inelastic” it is widely thought
that it is dissipation on a time scale 7, which provides the
analog, and therefore acts to cut off the renormalization
group flow. Such reasoning is reflected by a formula
describing the scaling of wave diffusion in the critical re-
gime [1,2]

D(L)=(1/3wI*[1/&+1/L+1/L,], (1)
where [ is the transport mean free path, v is the transport
wave speed, &, is the correlation length (divergent at criti-

cality), L is the length scale of the experiment (often the

4

system size), and L, is defined as (D 7,)!/%

The conventional understanding implicit in (1)
represents that in the presence of dissipation, and on
length scales greater than L,, the dynamics is classical
with a diffusion constant D less than, but if dissipation is
great, comparable to, the bare diffusion constant. There
is additionally implicit in some of the literature around
(1), a demonstrably erroneous conception that, even in
the absence of dissipation, the behavior at large distances
is classical with a small renormalized D which vanishes
exponentially at large distances. That the conception is
incorrect may be proven as follows.

Any assertion in regard to the scaling of the temporal
aspects of diffusion in a closed, undissipative, time-
invariant (L; = o0 ) system is necessarily incorrect in one
or two dimensions if it requires that this D vanish as L
goes to infinity and w goes to zero. It is incorrect in three
dimensions if it requires this D to vanish exponentially
with system size. This is because no process can take
place on a time scale longer than provided by the density
of states p. (Significant numbers of near degeneracies of
eigenfrequencies which could result in longer time scales
can be ruled out in a random medium, especially in the
presence of level repulsion.) The slowest available time
scales therefore vary with system size like pLd. The
time-scale constraint is inconsistent in one or two dimen-
sions with a diffusion time scale like ~L?/D with vanish-
ing D. It is inconsistent in three dimensions with any as-
sertion that the time scales of diffusion should scale like
L?/D with a D which vanishes faster than 1/L. One
therefore concludes that transport time scales do not
scale to infinity in the way that conductances are expect-
ed to scale to zero. The concept of “break time” pL < has
also been discussed elsewhere, e.g., [Refs. 7 and 8].

That absorption need not reestablish diffusive behavior
by destroying the localization of the eigenfunctions can
be seen from a counterexample:® An absorption which is
diagonal'® in the natural basis provided by the frequency
eigenstates of the undissipative system will affect the
eigenmodes only trivially: the eigenfunctions will be un-
changed, thereby preserving any condition of localiza-
tion; their eigenfrequencies will gain small imaginary
parts. In consequence all time-domain responses are
identical to those of the undissipative system except for a
trivial additional time-dependent factor exp(—t/7,).
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While diagonal damping is surely improbable in a real
system, it does provide a proof of the error in what ap-
pears to be a common conception.

Whether nondiagonal damping could act to cut off the
scaling flow as indicated by (1) is less clear. A small arbi-
trary dissipation, while it may introduce a change in
phase and will certainly introduce an amplitude diminish-
ment, will do so equally for both a path and its reversed
image. In other language, dissipation does not induce the
random phases which are introduced by inelastic scatter-
ing of electrons off phonons; paths and time-reversed
paths have identical phase and amplitude in the presence
of dissipation, and remain capable of coherent interfer-
ence. Weak localization arguments involving the con-
structive interference of paths and their reversed images
therefore remain unaffected by the presence of dissipa-
tion. )

It is thus apparent that there is a substantial theoreti-
cal basis for rejecting the literal interpretation of (1). In
order to experimentally investigate the possibility of an
absorption related cutoff we now consider the dynamics
of a damped two-dimensional ¥ =1 Anderson model of
the form

%, /3t%+c, 09, /3t + K Y — S, Y =Fp(2) )

where the bold index n runs over the sites of a 25X25
square lattice. The sum is over the four nearest-neighbor
sites m of site n, and K, is five plus a random number
taken from the uniform distribution [0, W]. ¢, is a uni-
form random number taken from the interval [0,2/7,].
The frequency domain version of (2) is, neglecting F and
¢, precisely equivalent to the tight-binding Anderson
model. It has identical eigenfunctions. The eigenfre-
quencies differ, but in a smooth fashion. The difference
in eigenfrequencies is an inevitable consequence of going
to a classical model. For a narrow-band disturbance the
difference should be irrelevant. In the time-domain equa-
tion (2) therefore represents the classical dynamics of a
forced Anderson model with damping. It also exactly de-
scribes the transverse dynamics of a planar array of
masses, random springs, and dashpots coupled solely by
in-plane inertialess strings with uniform tension and
driven by an external force F. Alternatively, (2) may be
thought of as a spatially discrete version of a classical
wave equation for a tensioned membrane on a random
viscoelastic foundation. The damping coefficients ¢ are
chosen randomly in order to ensure that the damping is
not diagonal in the natural basis. The damping has, how-
ever, been taken as diagonal in the configuration-space
representation in order to allow the algorithm to employ
an explicit scheme. F(t) was taken to be a ten cycle
cosine bell tone burst centered on a frequency near the
center of the band (2.81 at W /¥V =5). 1 was fixed along
the perimeter. Similar time-domain dynamics, but
without dissipation, have been studied by Scher,” Weaver
and Loewenherz,'! and Prelovsek.'?

Equation (2) is solved by central differences with a time
step chosen short enough to ensure numerical stability.
Inasmuch as the eigenfunctions of the system are in-
dependent of the temporal differencing, the precise choice
of time step size is expected to be unimportant; such was
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indeed found to be the case. The forcing was distributed
uniformly along one side of the square array, on row
number one, next to an edge. The evolving energy densi-
ty was monitored in three strips parallel to the line force,
in the strip near the line force including rows five
through seven, in a strip near the center of the array,
from rows ten through twelve, and in a strip near the side
opposite the force, from rows 19 through 21.

Figure 1 shows the resulting 20 configuration ensemble
and spatial average energy densities for an undissipative
system, 7,=c. In accord with expectations, the
nondiffusive character of the transport is found to in-
crease with increasing values for W/V. At W/V =5.0
the asymptotic energy density in row 20 is about half that
in row six. One ascribes this difference to appreciable re-
normalization of the conductance on length scales of or-
der 20. Such an estimate is consistent with the predic-
tions of the theory of weak localization which suggests
that renormalization is significant on length scales of or-
der Lgexp[27°Dyp] where p is the modal density and D,
is the bare diffusion constant, on a bare length scale L.
p was independently found by eigenvalue counting in a
10X 10 lattice to be about 0.7 at the frequency of the tone
burst. D,~0.25 was independently estimated from the
early time slope of R %(¢)=4Dt, the square of the radius of
gyration of the energy distribution resulting from a point
excitation, in a manner like that of Prelovsek.'? MacKin-
non and Kramer!® quote for this degree of disorder in a
strip with width 25 a localization length A=17 at a
neighboring frequency, and are therefore in agreement
with this assessment.

If absorption provides a cutoff to the scaling on a
length scale L, =(D7,)'/?, then the dynamics seen here
should look very different if L, is taken to be substantial-
ly shorter than the system size and localization length.
The choice 7,=100 results in L, <5, depending on
whether one uses D, or, as in Refs. 1 and 2, a renormal-
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FIG. 1. The transient dynamics of an undamped Anderson
model of size L =25 at W/V =5.0. The upper curve corre-
sponds to the energy density (in arbitrary units) adjacent to the
tone burst source; the lower curve to the energy density on a
row near the opposite side. The insets show the behavior at oth-
er degrees of disorder. The time units are those of Eq. (2).

2000



47 BRIEF REPORTS

ized D. The dynamics at W/V =5.0 and 7,=100 are
shown in Fig. 2. Except for the trivial ~exp(—t/7,) de-
cay, the evolution shown in Fig. 2 is unchanged. Most
importantly, the nonclassical effect, whereby the energy
density at late time shows a spatial variation, is
preserved. The ratio of adjacent and opposite energy
densities is unaffected by the introduction of dissipation.

The same behavior is observed at different values of the
disorder parameter W /V, system size, and absorption
time. It is also observed when the form of the damping is
modified to the form ¥ C . [3v, /3¢t — 0y, /3t ] where the
sum is over nearest neighbors m, and C is symmetric.
Such terms correspond to resistance elements coupling
nearest neighbors. One concludes that numerical studies
of the transient dynamics of an Anderson model two-
dimensional lattice show precisely no evidence of an ab-
sorption cutoff. Wave energy transport is seen to remain
nondiffusive even in the presence of absorption. The re-
sults of the experiments are in accord with the effect of
dissipation on diffuse wave energy transport being fully
comprehended by a simple temporal decay in the energy
transport propagator.

Having argued theoretically and established experi-
mentally that dissipation has effects which are only trivial
and does not affect the renormalization of the energy
transport, it becomes appropriate to attempt a reconcilia-
tion with the widespread conventional understanding. It
is the present contention that the error in assertions such
as (1) lies in a too facile identification of conductance o
with a coefficient D in a diffusion equation. Indeed, as ar-
gued following Eq. (1) and demonstrated in the numerical
results above, the very concept of a diffusion constant is
often inappropriate. In those places where it is cleanly
defined (see, e.g., McKane and Stone!*) D does not lend
itself to an identification with a coefficient in a diffusion
equation. The common identification of o and D follows
from an appeal'* to an Einstein relation which in turn de-
pends on a circular logic assumption (as argued above
necessarily incorrect in a localizing medium without in-
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FIG. 2. The transient dynamics of a damped Anderson mod-
el are compared at W/V=5.0 with dissipation, 7,=100
(dashed line), and without dissipation (solid line) using the same
units used in Fig. 1.
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elastic processes) that the energy flow is in fact governed
by a diffusion equation. If equations such as (1) are de-
rived by an appeal to similar, and well accepted, scaling
formulas for conductance, followed by an appeal to this
identification of D and o, then this misidentification may
be the source of the error.

In order to explore the apparent discrepancy between
scaling formulas like (1) applied to conductance and the
present results it is necessary to make use of a relation-
ship between o and some concept more robust than D.
The appropriate concept is the multiply scattered wave
energy propagator G(L,t). G represents the energy den-
sity at time ¢ resulting on the far side (L) of a slab of
disordered media excited on the near side by a transient
addition of wave energy at time zero. This propagator is
not known in general, though it may be noted that
Vollhardt and Wolfle!®> have suggested a possible form for
G for an unbounded medium.

The effect of dissipation on G is, according to the evi-
dence presented above, merely the insertion of a factor
exp(—st), where s=1/7,. The effect of dissipation ac-
cording to the conventional wisdom appears to be (see,
e.g., Refs. 1 and 2 for a clear example of this conception)
a G which on long length scales L >>L, is exp(—st)
times a classical diffusion propagator corresponding to a
renormalized diffusion constant D <D, renormalized ac-
cording to a formula like (1).

Conductance is given by total transmission, which is
essentially the integral of G (L,t) over all time. Hence we
write, for o,

o(L,s)= [ exp(—st)G (L,0)dt , 3)

where G is the actual nonclassical propagator for wave
energy in an undissipative disordered medium attached to
leads and the integral is over all time ¢ >0. On the other
hand, the conventional understanding would have us set
(for L>L,)

o(L,s)= [ exp(—st)GD,L,0dt , )

where G is a classical diffusion propagator correspond-
ing to diffusion at a renormalized rate D. It is the solu-
tion of a diffusion equation.

While the integrands clearly differ, the factor exp( —st)
renders points corresponding to late times unimportant
for the integration. At large s, therefore, the integrals are
virtually equal if the short time behavior of the actual
propagator is identical to the short time behavior of G o,
That identity is a well accepted consequence of simple
weak Anderson localization enhanced backscatter argu-
ments. We therefore see that, in the limit of very large s
such that Eq. (1) would predict D ~=D,, o becomes in-
sensitive to the nonclassical aspects of the energy propa-
gator; and, as is predicted by scaling equations like (1)
when applied to conductance, dissipation has effectively
cut off the scaling.

At slightly smaller s (larger L,), where Eq. (1) would
predict classical diffusion at large L but with a renormal-
ized D <D, there will be points of the integrands that
differ significantly; it is nevertheless plausible that the in-
tegrations will continue to agree and equations like (1)
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continue to correctly describe the scaling of conductance.
It is plausible because G will be less than the actual G at
early times but greater than the actual G at later times.

Therefore in spite of the very different consequences of
dissipation upon the multiply scattered wave energy
propagator in the two conceptions, there is apparently no
consequent difference in their predictions for the effect of
s on o. Hence the present understanding is not incon-
sistent with the conventional understanding for the dissi-
pation dependence of the scaling of conductances. It
does refute more problematic formulas like (1).

Recent microwave experiments? which appear to
have observed the Anderson transition have employed
Eq. (1) for their data analysis. Inasmuch as the analysis
relied on Eq. (1)’s implications for transport time scales
as well as transmission coefficients (which are equivalent
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to conductances), that work must now be regarded as re-
quiring new scrutiny. Such a reanalysis, though, requires
a trustworthy expression for the as yet unknown G and
cannot be carried out without further theoretical and nu-
merical work. Work toward a correct description of the
diffuse wave energy propagator is indicated. Further lab-
oratory work is indicated also, with, perhaps, transient
excitations and time resolved measurements like those in
Weaver’s demonstration® of the Anderson localization of
ultrasound in a two-dimensional disordered medium.
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