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Microscopic theory of epitaxial growth on vicinal surfaces
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We formulate a microscopic theory to describe epitaxial growth on vicinal surfaces in the regime
where the step velocity can be considered slow and the only island-formation processes involve adatoms
and dimers. A solution for the nonlinear equations describing the adatom and dimer concentrations and
currents is obtained based on the assumption that Fick's law holds for the adatoms. Our general solu-
tion closely resembles that recently obtained from a macroscopic description based on the surface activi-
ty with the notable difference that our result includes a dependence on the dimer binding energy. We are
also able to more accurately describe the absorbing boundary condition at the steps than is possible with
a macroscopic theory.

I. INTRODUCTION

A theoretical understanding of crystal growth by
molecular-beam epitaxy requires significant modifications
of the basic near-equilibrium step-Aow model of Burton,
Cabrera, and Frank (BCF).' The most dramatic of these
results from the incorporation of effects due to the forma-
tion and dissolution of islands created on the terraces by
adatom interactions. This introduces terms in the kinetic
equation describing the adatom concentration including a
nonlinear term that makes analytical solution a formid-
able undertaking. Understandably, existing studies of
this equation have until recently employed numerical
solutions ' and no analytical solutions of any kind had
been reported for the adatom concentration. Thus the
exact analytical solution obtained by Luse et al.
(LZVW) is of very particular interest.

LZVW replace the adatom concentration by a quantity
they identify as the surface activity that satisfies a BCF-
type kinetic equation. For the case that dimer formation
dominates all other island-formation effects, this equa-
tion, which is nonlinear in the adatom concentration but
linear in the activity, together with the kinetic equation
for the dimer concentration allow an exact solution to be
obtained for the adatom concentration. Some restrictions
apply in addition to the neglect of n-mer effects for n ) 3;
the dimers are assumed to be stationary, a restriction
present in earlier work also, ' and the velocity of the ad-
vancing steps is considered sufficiently slow that the step
can be considered as fixed in solving the boundary value
problem as is done in the original BCF theory. ' These
restrictions do not alter the nonlinear aspect of the prob-
lem and are not expected to affect qualitative conclusions
based on the solution obtained.

The underlying theoretical framework used by LZVW,
in common with that used in the earlier work cited, is
macroscopic and therefore subject to additional restric-
tions which we have discussed in detail elsewhere.
Briefly, the absorbing boundary condition at the steps
and the assumption of Fick's law relating adatom concen-
tration and Aux are in general problematic and an exact

theory would, in our opinion, dispense with the latter and
make use of a more physical boundary condition. This
requires a microscopic description, which we formulate
here. At this time our emphasis will be to complement
the result of LZVW and to provide a theoretical platform
from which it will be possible to subsequently consider
further refinement. Since corrections to Fick's law are
expected to be small when adatom desorption is negligi-
ble, as is true here, "we focus our attention on the case
where this relationship holds but the dimers can also be
mobile. The main result of this paper is an exact solution
for the adatom concentration for this case. Our result is
quite similar qualitatively to that obtained by LZVW
with the notable exception that our general expression for
the adatom concentration includes a dependence on the
dimer binding energy E„, while their result is indepen-
dent of this quantity. In the appropriate limit this depen-
dence vanishes and our result, like theirs, reduces to the
BCF result.

We describe the microscopic formulation and obtain
the related equations, which include the nonlinear dimer
formation term, in Sec. II. The solution of these equa-
tions is discussed in Sec. III at a level of approximation
for the microscopic theory that is consistent with the
macroscopic theories but also more general than these.
In Sec. IV we comment on the case where the adatom
concentration and current are independent variables and
the dirners are immobile. We then consider the case
where Fick's law relates the adatom concentration and
current and the dimers are mobile. A discussion of our
results follows in Sec. V. In concluding this Introduction
we want to emphasize that our primary purpose here is to
establish the microscopic formulation as a theoretical
framework that complements that used by LZVW and
that may also offer advantages relative to treatment of
the step boundary condition for absorption and possibly
also non-Fickian effects. Both formulations lead to exact
solutions for the nonlinear equations describing the ada-
tom concentration when effects due to dimers dominate
and appear to be promising candidates for the analytical
study of regimes where trimer and larger clusters become
significant.
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II. THE MICROSCOPIC FORMULATION

We consider the identical situation studied by LZVW;
a Aux F is incident on a terrace of length 21; the step ve-
locity is assumed sufficiently slow that the steps terminat-
ing the terrace at +l can be considered stationary. The
range of temperature and deposition rates allowable is
such that only adatoms and dimers need to be taken into
account. Then if f (x, u) and V(x, V) are the distribution
functions in position-velocity space for adatoms and di-
mers on the terrace, —l ~ x ~ l, in the steady state these
quantities satisfy kinetic equations of the form

"df Fe —(u /2kT)
u =co(f)+ru'(f, V)+

BX (2m.kT)'i

V =Q(9)+II'(f, 9) .
a
BX

(la)

Here U and V are velocities of adatoms and dimers mov-
ing on the terrace, co(f) and II(V) describe the changes in

f and V due to the random forces acting on them, and co'

and 0, ' the changes due to coalescence, dissolution and,
in the case of ~', reduction of the beam Aux due to im-
pingement of a beam adatom adjacent to an occupied
site. The surface parameters are the number of nearest
neighbors, m =4, and site density, a; also, o. is the cap-
ture number, 7 and 7p are characteristic times describing
the deposition rate and adatom surface diffusion, and the
mass units are taken so that the adatom mass is unity.
Then we have

a2 aa)(f)=g kT +1+u f,
BU BU

(2a)

02
A(V) =(* kT +1+V 7,av' av

(3b)

where the factor 2 in the first term occurs since either
colliding partner could be lost. The first term accounts
for losses due to coalescence while the second accounts
for losses due to a beam particle occupying one of the
m =4 adjacent sites. Similarly,

where the friction coefficients g and g* are related to the
surface diffusivities by Einstein s relation, e.g. ,
gikT =D '. Note that g=ro ", we will not need to esti-
mate g* in what follows.

The terms m' and 0' can be determined in much the
same way related terms are for the macroscopic
theory. ' Consider first co', which contains a beam
reduction term

co~ = 4r ' f du f (x,—v)

that has no counterpart in O'. The remaining part of co',
accounting for gain (or loss) of adatoms, has a counter-
part in II' accounting for the corresponding loss (or gain)
due to dissolution (or coalescence). In an obvious nota-
tion,

toe= 2cra ro 'f (x, u) J du'f (—x, u') —4r 'Ff (x, v),

—E /kT
QD=ro 'e " V(x, V) .

To complete our specifications we need to identify cuD

and O~, i.e., the gain terms in each equation. This is nei-
ther simple nor, fortunately, necessary as will be ex-
plained in the next section. Consider, e.g. , coD, which is
the counterpart of AD. Dissolution of a dimer may or
may not produce an adatom with velocity U leading to a
contribution to cuD. Similarly, the coalescence events in-
cluded in toe, Eq. (3), may or may not produce a dimer
with velocity V, i.e., at the microscopic level of descrip-
tion we need to specify the velocity of the product species
requiring terms involving integrals containing 6 functions
ensuring conservation of momentum and energy. We will
not need to solve Eqs. (1) directly since our interest is in
determining the concentrations and currents, n(x), j(x)
and X(x), J(x), which are defined as

n(x)= f du f(x, u), j(x)=f dv u f(x, u),

N(x) = f d V 9'(x, V), J(x)= f d V V V(x, V),

III. MOMENT EQUATIONS

The moments off and V are defined as

m, (x)= f dv v'f (x, u), M, (x)= f dV V'9'(x, V) (7)

so that, e.g. , mp=n, m, =j. Equations for the moments
can be obtained from Eq. (la) [and Eq. (1b)] by multiply-
ing by v' (and V') and integrating over u (V). For i =0
we then obtain

dpi i

dX

8mp 20 a 2

mo+ f dvcvD1

7p
(8a)

dM, = fdVOC—
—E /kT

e

7p
(8b)

Equations (8) are the steady-state concentration conserva-
tion equations. Since two adatoms are created by each
dissolution event, and conversely one dimer is created by
each coalescence event that reduces the adatom popula-
tion by two, the integral term in Eqs. (8) can be deter-
mined by comparison with their counterpart terms which
are explicit, and we have

and, as will be shown in the next section, Eqs. (1)—(4) al-
ready contain all the ingredients necessary to obtain these
quantities by standard methods. In concluding this sec-
tion we note that in writing the first term in Eq. (3) using
the single relaxation time 7p we have made an aPProxima-
tion. The actual relaxation time would be a function of
the relative velocity of the coalescing adatoms and appear
inside the integral. Replacing this by an average as we
have done should not result in qualitative differences in
the equations satisfied by the concentrations and currents
based on comparison with extensive experience from the
kinetic theory of gases where a similar procedure is used
in obtaining the single relaxation time Bhatnager, Gross,
and Krook (BGK) equation.
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dPI i =F—
d

Smp 20 a
7Q 70

a half-range expansion is most convenient and according-
ly we require

dMi

dx

4mp
+C7

7p

MQ
mp — e

70
(9b)

—v /2kTf (x, v)=f;(x, v)=n, (x)
(2~kT)'~

i = 1, u )0; i =2, u & 0, (1 la)
The right-hand sides of Eqs. (9) are identical with the cor-
responding terms appearing in the conservation equations
used in previous work ' and, if Fick's law were assumed
Eq. (9a) would reduce to the generalized BCF equation
studied in Ref. 2(a) [Eq. (10) there]; note that our equa-
tion has no convective term resulting from fast step
motion and in Ref. 2(a) no dissolution effects are con-
sidered. Similarly, if M& is set equal to zero, i.e., the di-
mers are assumed to be immobile, then Eq. (9b) is identi-
cal in the steady state to the equation used by LZVW
(Ref. 5) [their Eq. (14)] and also in Ref. 2(a) [Eq. (18)
there] without the coalescence term. At this point our
equations are more general with the concentrations and
currents being independent variables. However, we also
have more unknowns than equations.

Another set of equations can be obtained by multiply-
ing Eq. (la) by v, Eq. (lb) by 2V, and integrating over the
appropriate velocity. These equations describe the
steady-state changes in momentum current (hence the 2 V
instead of V). We only require the first of these here,

—V /kT
V(x, V) = V;(x, V)=N;(x)

( rrkT)'~

i =1, V)0; i =2, V(0. (1 lb)

This allows us to eliminate mz in Eq. (10),

m2= Jdv v f (x, u)=amo, a=kT .

We also note for future reference that
1/2

(12)

CXmo= —,'(ni+n2), mi =
7T

(n, —n2) . (13)

IV. SOLUTIONS

With Eqs. (9), (10), (12), and (13) with the related expres-
sions for MQ, M, we can dispense with further considera-
tion of f and V and focus our attention on determining
the moments which are the quantities of interest.

m2
+pm, =

dx

—4m) 20 a —F. /kTmom+ —Pe " M, ,
7Q 70

A. BCI limit

(10)

where the last term on the right-hand side is again deter-
mined by comparison with its counterpart term from Eq.
(lb). The factor p~ 1 is included here for completeness
but in what follows we set it equal to 1. This allows for
the possibility that as a result of dissolution a dimer may
transfer some of its momentum to the substrate lattice;
since we are unable to assess this effect here we assume
that P= 1 and all such interaction is included in the II
term.

In principle additional moment equations involving
higher-order moments, i ~ 2, could be written. The num-
ber of such equations necessary to consider will depend
on the level of approximation used to determine the dis-
tribution functions f and X Here we consider the level
of approximation consistent with the conventional mac-
roscopic description. It should be emphasized though
that consistency is not necessarily equivalence since at
any level of approximation we retain the ability to more
precisely prescribe boundary conditions and to describe
possible effects due to non-Fickian diffusion.

In the next section we consider Eqs. (9) and (10) for
two cases in which I

&
or M& are made dependent vari-

ables. This will still leave us with three equations and
four unknowns (e.g. , m 0, m i, m z, Mo with M, specified);
there is thus a closure problem that additional moment
equations cannot remedy. The standard procedure for
effecting closure is to expand f (and V) in terms of its
moments and retain a finite number of terms; a two-term
expansion here is consistent with the macroscopic
description. Because of the geometry we are considering

x
n (x)=B—,j(x)= Dn'(x) =F—x,

2D ' (14)

where the symmetry condition has been used to reduce
the number of constants determined by the boundary
conditions to just B. Note that as we discussed earlier,
the approximation embodied by Eqs. (11) is consistent
with the macroscopic description and Fick's law holds.
To show that this description is not necessarily
equivalent to the macroscopic description we consider
the case of an absorbing step as treated in Refs. 2(a) and
5. In the macroscopic description this condition is
specified by the unphysical requirement that
n ( —l) =n (l) =0. The macroscopic description does not
allow discrimination between incident and exiting ada-
toms at the step but in the microscopic theory this is pos-
sible and we can specify ni( l)=n2(l—)=0 resulting in a
different value for the constant B and a nonvanishing step
concentration. Specifically, for the macroscopic bound-
ary condition

/'F
mBC (15)

whereas the true absorbing boundary condition follows
from Eq. (13) as

It will prove useful for comparison with the results of
LZVW to incorporate the most general solution for the
case where there are no dimer effects into our results.
This will be referred to as the BCF solution and it
represents a limiting case for the results we obtain in Sec.
IV C. From Eqs. (9a) and (10), with Eq. (12) and the Ein-
stein relationship D =a ig we have
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B =B „—Fl
2O.'

1/2

(16)

so that a B is typically reduced by about 5 —10% since
B „~( I/a) and the correction term, 8 ~ (ro/r)(l/a).

o.a

where the constant of integration must be zero since
mi(x)=mi( —x). If we use Fick's law to replace m, in

Eq. (20) we can again integrate, obtaining
—E /l&T —E /IcT

n n

+ Fx /I —(21)
boa 2Q os

B. Immobile dimers

The equations we have derived allow for the possibility
of dimer motion on the terrace. Since a common feature
of the earlier work cited ' ' is that all islands are immo-
bile, we begin by briefiy discussing Eqs. (9) and (10) for
this special case. We naively introduce this approxima-
tion into our theoretical framework by replacing Eq.
(lib) with

V( x, V) =X(x )5( V)

1+
2

—E /kT
. 2

70 n

4 +
boa OQ

E„/kT—

a Fx +3
oa

and finally

4 E„/kT
~0 e"

m 0 2+~oa Q o.

1/2

(22)

so that Mp=X and identically M, =0. This leads to the
nonphysical conclusion m i =Fx from Eqs. (9) that results
from setting M1=0 without accounting for the role of
the dimers in mediating the transfer of momentum
current between the adatoms and substrate. An extended
formulation considering a mobile dimer precursor species
would be required to properly describe this situation.
However, as long as we can proceed with the dimer fric-
tion coefFicient unspecified we can in effect treat the case
of immobile dimers in the context of our original approx-
imation, Eq. (11b). Our primary concern and results will
therefore be for the case considered next where the di-
mers are mobile.

C. Fickian adatoms and mobile dimers

—E /kT
e

7 0

2m 1 o+ a mpm1
70

which we can differentiate and use with Eqs. (9a) and (9b)
to obtain

2 dm1 OQ+ mom
7 dx 7p Bx

—E /kT—e mi
Bx270

(19)

of

2 7Qm1+
7 Tp

mpm1=
—E /kT—e
2 Tp

[I, Fx], —(20)

We now return to our original, general formulation,
with 7 given by Eq. (11b), but impose the condition that
the adatom concentration and current are related by
Fick's law. A rigorous justification of this assumption
would require a perturbation analysis of Eqs. (9), (10),
and the counterpart equation for the latter. However,
our earlier results in the BCF limit indicate that in the
context of Eqs. (11) this assumption is well motivated.
The distinction between using Fick's law as an assurnp-
tion rather than a necessary part of the theoretical frame-
work still remains as one of the features that separates
our approach from the macroscopic description used in
previous work.

With Eq. (12) and Fick's law, Eq. (10) provides us with
the relationship

Equation (22) has a close similarity to the general result
obtained by LZVW; cf. their Eq. (18). The most striking
difference is that by allowing dimer mobility on the ter-
races we retain a dependence on the binding energy E„ in
our result. This dependence is absent in the LZVW re-
sult, and these authors comment that this "...may appear
odd. .." and is a consequence of the approximation they
used. Our result indicates that the specific cause of this is
the neglect of dimer mobility. Note that our result is in-
dependent of g*, the dimer friction coefficient, and so the
dimer current is not specified and could be vanishingly
small. Equation (22) is the main result of this paper.

V. DISCUSSION

First consider the limiting form of Eq. (22) in the BCF
limit where soir (((ro/r)(l/a ) ((1. We find

&0 ( —2E /kT
2oa2mo~2oa 8 — I'x I+0 z e

2D a

(23)
—E /kT

and since e " «1 we see that the correct general
limiting form is directly obtained. The condition on the
binding energy wi11 generally be satisfied, but this should
be formally included as part of the condition for the BCF
limit.

Our primary purpose here has been to establish a
theoretical platform to provide the basis for further study
that will include effects due to fast step velocity, n-mer is-
lands for n ~3, and a higher-order approximation than
that provided by Eqs. (11). The results we have obtained
here indicate that the model considered in Sec. IVC,
Fickian adatoms and mobile dimers, provides a descrip-
tion similar to current macroscopic theories. Including
island mobility does not appear to affect the quantitative—E„/kT
conclusions that follow from this result if e " «1 so
this may not be a critical issue for current applications
[e.g. , E„~0.25 eV for growth on vicinal GaAs (001)].

The result obtained in Sec. IV C is almost identical to
that found by LZVW. From Eq. (23) we see that in
terms of 6=(l /a )ro/r our result for the adatom con-
centration is identical to theirs for the small 6 regime for
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which both theories are valid when 5 in our equation is—2F.„/k T
replaced by 5'=e ' 5. Thus our results lead to the
same conclusions as those authors have drawn and, fur-
ther, we expect that these results will be valid for larger
values of beam Aux I' than might be expected from their
result.

In conclusion, we have formulated a microscopic
description for epitaxial growth on vicinal surfaces sub-
ject to the restriction of slow step velocity and neglect of
processes involving n-mer islands for n ~ 3. A solution
was obtained for the case where the dimers were allowed
to be mobile but the adatoms were constrained by Fick's

law that closely resembles the result obtained by LZVW
(Ref. 5) using a macroscopic theory based on the surface
activity. Our result includes a dependence on the dimer
binding energy which is not present in their results.
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