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We study a random-dimer model within the context of a tight-binding Hamiltonian in one dimension.
This model may be useful in understanding the transport properties of the polyaniline system. As a
prelude to our understanding we consider a few simple but relevant models. For these cases we investi-

gate the behavior of the phase of the transmission coefficient. From the study of these models we con-
clude that many resonances merge around the dimer energy in the random-dimer model. Our subse-

quent analysis of the random-dimer model proves this conjecture. This analysis, however, does not yield
the number of nonscattered states in the system. According to Dunlap, Wu, and Phillips [Phys. Rev.
Lett. 65, 88 (1990)] there will be &X nonscattered states around the dimer energy. To obtain the num-

ber of nonscattered states we study the transmission coefficient. We find that the averaged transmission
coefficient yields approximately a Lorentzian curve. Furthermore, there is an energy width where the
transmission coefficient is approximately unity. For a high concentration of dimers and dimer energy
well inside the host band we find &N nonscattered states. A similar number of nonscattered states is ob-
tained for a 1ow concentration of dimers and dimer energy near the band edge. In general we find a dis-

cernable discrepancy between the observed half-width and the calculated half-width. The discrepancy is
quite significant when the dimer energy is close to one of the band edges. On the basis of these results we

speculate that the averaged half-width scales as N when A, is a function of both the concentration and
the energy of the dimer.

I. INTRODUCTION

In recent years the field of conducting polymers has
been of immense interest. Generally, polymers are non-
conductors. The doped form of polymers, however, can
show high conductivity due to the degeneracy of the
ground state. ' An example in this regard is polyace-
tylene. Although polymers such as polyaniline, polypy-
rolle, etc. , lack degenerate ground states, they show high
conductivity on doping. Two parent forms of polyani-
line containing benzenoid rings and a mixture of ben-
zenoid and quinoid rings are leucoemeraldine and emeral-
dine, respectively. The electrochemical oxidation of the
leucoemeraldine or acidification of the emeraldine shows
an insulator-metal transition. Electron spin resonance
and NMR studies suggest that polyaniline is a one-
dimensional conductor. The first theoretical calculation
of the electronic structure of polyaniline containing near-
ly 200 benzenoid rings and randomly placed quinoid
rings were performed by Galvao et al. In as much as
the calculation of Galvao et a/. indicates that upon pro-
tonation of emeraldine, the Fermi level moves to a region
where the conducting states are located, Wu and Phil-
lips ' believe that the transport properties of polyaniline
can be understood from the analysis of the random dimer
model (RDM). ' '" They, in fact, mapped the polyaniline
system to a RDM. It therefore appears that the essential
features of polyaniline can be understood in terms of a
RDM. This then necessitates a thorough analysis of the
RDM. Our present work is an attempt in that direction.

To understand the interesting features of the model,
some knowledge of Anderson's localization in disordered
systems is necessary. The well-known result in the An-

derson model' for the site-energy disorder is the absence
of long-range transport in one-dimensional systems. It
has been conjectured that all solutions of the Schrodinger
equation are exponentially localized. ' This result is sup-
ported by other works. ' ' The effect of exponentially
localized eigenstates can be observed in the exponential
decay of the transmission coefficient with the length of
the system. ' ' Also, for a one-dimensional binary distri-
bution of site energies, many resonance peaks appeared in
the transmission coefficient with large localization
length. ' The basic idea of these discussions is that al-
most all the states are exponentially localized in a one-
dimensional system of randomly distributed site energies.
There are, however, examples of one-dimensional disor-
dered systems where the existence of extended states has
been observed. The one-dimensional-liquid model shows
the existence of nonlocalized states. The off-diagonal
disorder also produces extended states around the middle
of the band. The study of a one-dimensional site-energy
disorder problem with a particular distribution shows a
new band of states having localization length —&N,
where N is the length of the system. One can also in-
clude in this category one-dimensional quasiperiodic sys-
tems containing Cantor-type spectra and critical
states. Other examples will be systems having corre-
lated diagonal and off-diagonal disorders. For these sys-
tems, Flores showed the existence of critical energy
(E, ) for transport. The energy width (b,E) goes as
l /&N, and the Lyapunov exponent is —(E E, ) for E—
inside the band. Also, the mean-square displacement cal-
culation shows the superdiffusive behavior in transport
for a particle having energy inside the band. RDM can
be shown to be an example of the correlated diagonal and
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off-diagonal disordered systems. ' ' "
RDM is a one-dimensional correlated random binary

alloy with the site energies e, and eb. The energy e, is
assigned to a pair, called a dimer, distributed randomly in
the system. The constant nearest-neighbor interaction is
V which mediates transport from one site to its nearest
site. Of course, the system is assumed to be described by
Anderson's tight-binding Hamiltonian. ' Dunlap, Wu,
and Phillips [henceforth referred to as DWP (Ref. 10)]
showed that the reQection coefficient of a system contain-
ing a single dimer vanishes provided ~e, eb~ ~2—V. On
the basis of this interest they claimed that RDM has &N
states which extend over the whole sample. Here, N is
the number of sites in the system. They also numerically
calculated the mean-square displacement for excitations
localized initially on a site. They found that the mean-
square displacement grows as r if

~ e, —eb ~
(2 V. On

the other hand, if ~e, —eb ~

=2V, the motion is diffusive.
The behavior of the mean-square displacement has been
cited as supporting evidence for their claim. Also, Wu
and Phillips described some other one-dimensional sys-
tems, ' ' for example; (1) a random-n-mer model, (2) a
repulsive binary alloy, (3) a random bipolaron lattice, and
(4) a random soliton lattice. These models are closely re-
lated to the RDM. The perturbative calculation of the
density of states and the Lyapunov exponent in the vicin-
ity of the dimer energy shows the existence of nonscat-
tered states. Again, the claim is that there are &N
such states. Gangopadhyay and Sen "have studied nu-
merically a system containing randomly placed double di-
mers. For this system, they found that there are N'
ballistic states. Furthermore, according to Gango-
padhyay and Sen, the number of states having a localiza-
tion length equal to or lardier than the sample size is
roughly proportional to &N. They further claim that
the superdiffusive and diffusive behavior of the mean-
square displacement is a short-time phenomenon.

In all these discussions " ' it has been tacitly as-
sumed that the number of nonscattered states in RDM
does not depend either on the dimer energy or the con-
centration of dimers in the chain. The rationale behind it
is that the fraction of such states is infinitesimal. Fur-
thermore, all the calculations yield an order-of-
magnitude estimation of the number of conducting states.
Therefore, it can be argued that any weak variation in
this number can be accommodated in the margin of es-
timation. Note, however, that the Lyapunov exponent of
such states does show a strong dependence on the dimer
energy. We therefore expect this number to show a per-
ceptible dependence on the above two parameters. This
can be observed by careful numerical analysis of say, the
transmission coefficient. Keeping this in mind we study
here the dependence of the number of nonscattered states
on the dimer energy and its concentration in the chain
numerically. We also check our numerical results by
studying a few simple but relevant models analytically.

This paper is organized as follows. In Sec. II, we intro-
duce our simple models to understand the origin of the
nonscattered states. We also derive here the general for-
mula for the transmission amplitude. In Sec. III, we cal-
culate the transmission coefficient for these models.

Here, we also study the dependence of the phase of the
transmission coefficient on the particle energy. This
quantity evaluated at the resonance energy may yield the
width of the resonance state. This study is useful for un-
derstanding the behavior of RDM. In Sec. IV, we exam-
ine the transmission coefficient of RDM containing a
very large number of sites. From this we calculate the
width of nonscattered states for different dimer energies
and concentrations. For different dimer energies and
concentrations, the number of nonscattered states around
the dimer energy is described in Sec. V. In Sec. VI, we
summarize our essential results.

II. MQDEL

dc~
l EnCn +Cn+1+Cn —1d~

(2)

where c„(r)is the amplitude at the nth site at time r, and
c„=E'oor 0 as mentioned before. The Fourier transform
of Eq. (2) can be written as

X„+i =P„X„, (3)

where P„is a SL (2,R) (Ref. 26) matrix with the represen-
tation

E —e —1nP„=
1 0

which is usually called the transfer matrix. Here, X„is a
column vector comprised of c„(E)and c„&(E).c„(E)is
the Fourier transform of c„(~).

The Hamiltonian (H) for the models described later is
the well-known tight-binding type with nearest-neighbor
interactions,

H=ge, a; a;+ g V;~a;taj,
i (ij)

where a; is the electron creation operator in the ith local-
ized orbital, e; is the energy of the ith orbital, and V; is
the nearest-neighbor tunneling matrix element. In our
model all nearest-neighbor interactions are of equal
strength, say V. Since all the relevant energies can be
scaled by V, without loss of generality we can set V to
unity. For the dimer site, the site energy is e, with sites
coming in pairs. The energy of the perfect site is eb. In
as much as the dynamics of the system is governed by the
difference in energy of the two types of sites, we set the
dimer site energies as eo= e, —eb and zero to the perfect
sites.

We examine the dynamics of the system by studying
the behavior of the transmission coefficient. We use
analytical as well as numerical methods. We have a sys-
tem containing N sites connected from both sides to
semi-infinite chains consisting of perfect sites. Our sys-
tem may consist of (a) a continuous dimer, (b) two seg-
ments of equal length of continuous dimers separated by
a string of perfect sites, (c) a regular arrangement of
dimer-perfect sites, and (d) a random arrangement of di-
mer and perfect sites. All these models have been de-
scribed in appropriate places. The general site amplitude
equation for the system is given by
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To calculate the transmission amplitude t of a segment
containing N sites, we number the sites in the system
from the left end starting with 1. We shoot a particle
form —~ with E=2cosk towards the sample. While
the particle passes through the sample it undergoes mul-
tiple elastic scattering. Eventually, it comes out of the
sample from the right end with amplitude t. The general
process is shown in Fig. 1.

Following Liu and Chao we write the site amplitude

fi, + e +fi,
fk+ &e'""+fk &e

'"" «« ~0 '

where 0= —pa, p =&E, and p =+E+ Vo ~, taking
2m =6=1.

It can be readily seen that this system has resonance at
E„=nm. /a —

~ Vo~ )0 where n is an integer greater
than zero. Since resonance appears as a complex pole of
S(E) in the second Rieman sheet of the complex E plane,
the width of the resonance can be obtained by examining
the behavior of the phase of S (E), that is P(E), at the res-
onance energy. It can be shown from standard analysis
that

dP 2
dE E=E, I

fk+ &

fk-&
fk+ &

=Q(k, N)

where

Then Eq. (3) reduces to

(4)

Furthermore, both ~t
~

and dP/dE as functions of E will
yield Lorentzian curves. The half width of the transmis-
sion coefficient curve is I . These two quantities have
maximum values at the resonance energy.

We now analyze the transmission amplitude t for a sys-
tem containing a single dimer,

and

Q(k, N)=
e

—ikN 0
S 'gP„S

i =1
t(E)-S(E) i( —2k+m)

with

ik —ik

S=

We are considering the wave coming from the left side.
There is no backward wave on the right side. So, we set
fk & =0. Then, from Eq. (4), we readily obtain

where

fk+ &

fk+ & [Q(k, N )]~~

h=det[Q(k, N)] .

III. PHASE ANALYSIS

Since in a RDM ~t~ is always unity at E =eo, the sys-
tem has a resonance state at this energy. Therefore we
expect this state to have a well-defined width. This width
can be obtained by the phase analysis. To understand
the basic concept of phase analysis, we consider a one-
dimensional square well of a uniform depth Vo and of
width a which extends to the positive direction of the ori-
gin. The transmission amplitude of a free particle with
energy E )0 for this particular problem is

—1

l
t = cospa ———+—sin@a e '~'=S(E)e'

2 p p

ei ( —2k m')

(E—eo)+iI /2
(10)

where the resonance width I = ~2sinko~ =+4 eo. In-
this context we would like to mention one important
point about the direction of wave propagation. Since the
energy associated with the wave is E=2cosk, it has no
phase velocity. So, the direction of propagation is defined
by a group velocity which is —2sink. Hence, one needs
to choose an appropriate sign of k to determine the phase
of the transmission amplitude (t).

The resonance width indicates that there will be a peak
in dP/dE at the dimer energy with a peak value of 2/I .
But in the system with a single dimer dgldE does not
show any peak at this energy. This behavior is exactly
what is observed in the one-dimensional square-well
problem with small width and depth. Differences arise
due to the finite bandwidth effect. For example, the band
edges of the host crystal in this case correspond to the

S(E)= 2i sink

2i sink + (E —eo) e '"—2(E —eo)

Since E =2 cosk, we have a perfect resonance, i.e.,
~
t

~

= 1 at the dimer energy eo provided
~ eo~ & 2. So, in all

calculations, we define e0=2cosko. We calculate the
width of the resonance (I ) at eo by a Taylor series expan-
sion of S(E) in terms of (E—eo). In the leading-order
approximation,

1
e+ikn

k+(
+I kn

&k+& e

PERFECT SITE

k-& e ikn

SAMPLE PK RFECT SI Tf

-tkn

FIG. 1. Schematic diagram of our model.
In all cases the sample starts and ends with the
dimer.
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S(E) iP ( 2—k+ II).

and

S(E)=IS(E)le''

where

sinh(N+, 1 )g
sinhg
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B, C, and D where

sinh(p+ 1)g—(E—eo)sinhpg

sinhg

[E(E—eo) —1]sinhp gB=
sinhg

[I—(E—eo) ]sinhpgC=
sinhg

—sinh(p —1)g+ (E—eo)sinhpg

sinh

and 2 cosh/ =E+2(E —eo ) E(E——eo ) .
Also for this case, ~t~ =1 at the dimer energy. Since

two dimers here are separated by a perfect site, the in-
teraction between the interfaces should be large. This
will, in turn, cause the resonance peaks to merge around
the dimer energy. This is observed both in the transmis-
sion coefficient and in dgldE as shown in Figs. 4(a) and
4(b). The important difference here is that we always ob-
tain an energy width (b.E) where the transmission
coefficient is approximately unity. Furthermore, this is a
periodic system with a periodicity of three. So, when the
length of the segment goes to infinity we must obtain
three bands. This is also obtained in our calculations.

D. Random-dimer model

This system contains randomly placed dimer and per-
fect sites. Since the RDM is an intermediate case of the

1.00000 -
(

0,99994 '

second and third model, we also expect the merging of
resonances here. In our numerical results we see the
transmission resonance peaks merging around the dimer
energy. To subtract the proper phase at the energy we
use the following numerical method. We know that for a
single dimer case, the phase is 0= —2k+~. If there are p
number of dimers, the phase is 8=( —2k+tr)p at the di-
mer energy. Second, we can change the position of the
resonance energy by changing the dimer energy. If we
define the transmission amplitude for a particle with en-
ergy E in the ROM with dimer energy eo and E as
t(E, eo) and t(E,E), respectively, then the ratio of
t(E, Eo) and t(E, E) cancels the extra phase of the
transmission amplitude at that energy. dP/dE around eo
has been calculated for diff'erent realizations of a sample
as well as for diA'erent chain lengths. In all cases our nu-
merical analysis shows the absence of a maximum in
dP/dE at eo. A typical result is shown in Fig. 5. Note
also that dP/dE at eo goes as N, where N is the number
of sites. This is the maximum possible value of this quan-
tity. Note also for the continuous-dimer case that the
value of dP/dE at Eo goes as N. This has been men-
tioned before. Therefore, if the system shows a sharp res-
onance at eo after some value of N, the width of the reso-
nance cannot be less than 1/N. Hence, this system must
contain at least one extended state. Furthermore, the ab-
sence of a maximum in dP/dE at eo is a strong indication
of the merging of resonance states around the dimer ener-
gy. The merging of resonance states around eo can be un-
derstood by noting that the transfer matrix of a dimer
around the dimer energy is almost a unit matrix. Hence,
in the small neighborhood of energy, the full system will
behave as like an infinite system of perfect sites. Conse-
quently, there should be more than one extended state in
the vicinity of the dimer energy. Of course, from this
analysis, we do not obtain the width of such states. In
the next section we therefore focus our attention on the
numerical calculation of the transmission coefficient of
RDM.

Q99992 I
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FICx. 4. (a) (t~ as a function of E for model (c) containing
1000 units of dimer-perfect sites with dimer energy 0.8. (b) Plot
of dgldE vs E for the system described in (a).

FIG. 5. Plot of dgldE vs E for RDM with sites 9000. The
dimer energy is 0.8 and the dimer concentration is p=0. 33.
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IV. TRANSMISSION COEFFICIENT ANALYSIS

The behavior of dP/dE around ep in RDM clearly in-
dicates the presence of more than one nonscattered state
in the vicinity of interest. We cannot, however, say from
phase analysis whether or not there are )/N nonscattered
states in the sample. Here, N is the number of sites in the
sample. Of course, the above number is obtained by an
analytical method. " ' ' We should mention that cer-
tain assumptions are made to obtain the result. These as-
sumptions may not hold true for this type of system.
Furthermore, the system may have other important
features which may not be obtained by analytical
methods. For example, the system may contain many
other resonance states. The number of nonscattered
states may depend on the dimer energy and the concen-
tration of the dimers in the sample. Hence, this problem
should be thoroughly investigated by numerical tech-
niques.

To have a better understanding of the problem, we first
analyze the transmission coefFicient of a system of ran-
dom dimers containing N sites along the line of Dunlap,
Wu, and Phillips. ' The reffection coefficient Irl for a
single dimer is

ep(&p 2 cosk )

4sin k+ep(ep —2cosk)
(12)

The reAection coefficient vanishes at so= 2 cosk, i.e.,
when the dimer energy is equal to the particle energy.
Expanding Irl around kp=cos '(ep/2), which is well
inside the host of the perfect-site band, and keeping the
lowest-order term we can write

(13)

where P(kp) is a coefficient of (b,k) in the expansion of
Ir I

. We consider now a sample of length N containing a
randomly placed p number of dimers and a N —2p num-
ber of perfect sites. Around the dimer energy, as the
reQection coefficient is small, we neglect the backscatter-
ing effect due to each dimer. Then, within this approxi-
mation, we can write

I
t

I

"=exp —p g I
r

I /q
q=1

(15)

As Irl «1, keeping only the first term in the summa-
tion, we obtain

where p is the concentration of the dimers =p/N. We
now consider a region of Ak =c /N, with 0 & a & 1

around 6O. Thus,
—pt)(ko)C /XT e

(14)

Here, Tl is the total transmission coefficient of the seg-
ment under consideration and Itl is the transmission
coefficient for the single dim er problem. Since
I tl = 1

I
r I, it can be shown that

We consider now different cases for the large N limit,

(1) for a& —,', ITI ~0 as N~co
—P(k )c(2) for a= —,', ITI -e

which is independent of N

(3) for a) —,', ITI ~1 as N~ ~ .

Since the unperturbed state is k =2~7 /N,
l =0,+1,+2, . . . , the integer values of a & 1 need not be
considered and the physically relevant range of a is
( —,

' &a&1). So, from this simple proof, we see that if
there are states at k=kp+c/N ( —,

' &a&1) where c is
0(1), these states are totally transmitting. Let us assume
now that b,k=2~6,N/N, where the parameter 5 can
take a value between —,

' and 1. When 6=1, we get a
Bloch wave vector. Furthermore, in this situation„
—,
' ~ a &5. After equating two expressions for hk, we ob-

tain lb,NI-N' . The maximum number of nonscat-
tered states is obtained if cx= —,'. So, within our approxi-
mation, we obtain the maximum number of nonscattered
states if all states in the width are Bloch-type extended
states. The result of Ref. 10 is a special case of our
analysis. We next analyze the Lyapunov exponent of
these nonscat tered states.

The transmission coefficient for a single dimer around
ep in b,E ( = IE —

epl ) can be obtained from Eq. (10) and it
is

1

(E—ep)'
1+

I /4

If we employ the same analysis here as we did before to
obtain the number of nonscattered states we get

—(4/I )pIV(E —eo)
(19)

Equation (19) can be equivalently written as

(20)

where the Lyapunov exponent; which is the inverse of the
localization length (Np ), is obtained as
y =p(4/I )(E—ep) .3 We also obtain the effective reso-
nance width (I,)r) at ep for RDM given by I /&pN.
This is true if eo is well inside the parent band, where I
for the single dimer case is finite. Note that the
Lyapunov exponent vanishes at the dimer energy. How-
ever, the vanishing Lyapunov exponent does not neces-
sarily imply that it is a Bloch-type extended state. It can
very well be a critical state. If it is a Bloch-type state it
cannot appear as a single state. Otherwise, it will be a
point spectrum and the state will be localized. The
behavior of dgldE around ep also supports this argu-
ment. Furthermore, if eo is close to one of the band
edges, a careful analysis of our expression for the
Lyapunov exponent yields y=pIE —epl. This result is
also consistent with the result of Ref. 32. It should also
be noted that if eo is at the band edge, y will be zero there
and infinity in the vicinity. Also, in this case, I,~ is zero.



10 734 P. K. DATTA, D. GIRI, AND K. KUNDU 47

This implies that when eo is at one of the band edges
there will be only one state with a localization length
larger than the sample size. Since y =0 for this state, it is
a critical state. In the subsequent section we check the
validity of our analysis by numerical calculation of the
transmission coe%cient for very large segments.

In Figs. 6(a) —6(d) we have plotted the transmission
coe%cient as a function of the incident particle energy for
different concentrations and dimer energies for a large,
but finite, size of the sample ( —10'). The smooth curve
corresponds to !t!". We also show the sample-averaged
behavior of the transmission coefficient [Figs. 7(a) —7(d)]
as a function of particle energy for different concentra-
tions and dimer energies for samples of length —10 .
The dotted curve represents (!t! ~) and the smooth solid
curve represents

~~

1

i+4iE , )'rr' )—
Here, the average has been taken because of the Auctua-
tion, albeit small, in the number of dimers in the sample.
We performed arithmetic averaging with ten samples.
%'e consider erst the case of low concentration and dimer
energy well within the parent band, for example, p=0. 33
and to=0. 8. Note that the sample contains an energy
width (b,E) where the transmission coefficient is of the

order of unity. Furthermore, this width is of the order of
1/&N. It is independent of the configuration of the sam-
ple. The presence of this width can be understood by
noting that at E=eo, the dimer transfer matrix is unity.
Since both the connecting blocks and the disordered seg-
ments contain the same elements, at E =so, the sample
will be a perfect crystal of infinite length. As long as E is
not very different from eo, the perfectness of the system is
approximately preserved. This is precisely the origin of
the configuration-independent width AE. It is also equal-
ly noteworthy that there is a lot of sharp resonances
beyond this region in every sample. But the averaged
transmission coefricient shows almost a Lorentzian shape
with a half-width of I„.This width, however, is larger
than I,a. Furthermore, the actual half-width (I ss) is
roughly an order of magnitude larger than the width of
the regime (b,E).

Although the extra resonances averaged out, these
states may contribute significantly to the mean-square
displacement. Furthermore, we should also mention that
transmission peaks become sharper and closer to each
other around the dimer energy, if we increase the size of
the sample. The number of such peaks also increases.
This interesting feature is exactly same as whatever we
obtained for the continuous-dimer case, as well as the
dimer-perfect case. We can say that the system shows a
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res onds to t ~ The diresponds to!t! The dimer energy . is eo —0.8 and the concentration ts p=0. 33. {b) Same as in (a) but co=0.8 and p=0.47. (c) Same
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tendency of forming a band around the dimer energy.
This feature can be understood properly by studying the
length dependence of the transmission coefficient around
the dimer energy. When we consider the case of a parti-
cle energy (E) sufficiently away from the dimer energy,
the transmission coefficient after a certain length, de-
pending on the energy, rapidly decreases. As we proceed
towards the dimer energy, the oscillatory behavior
[shown in Figs. 8(a)—8(b)] of the transmission coefficient
as a function of the sample size becomes more pro-
nounced. This behavior of the transmission coefficient is
an indication of the states having a localization length
larger than the sample size. The region in this case lies
within the energy range 0.79S—0.80S and is roughly pro-
portional to I,ff.

We next consider the case for large dimer concentra-
tion (p=0.47) and low energy (eo=o. 8). Here also the
averaged transmission coefficient yields a Lorentzian
curve. The half-width I z in this case is approximatelyr„.We also obtain a configuration-independent width
(b,E), where the transmission coefficient is approximately

unity. This width is again an order of magnitude smaller
than I,z. We also consider the case when eo is very close
to one of the band edges (eo= 1.98). When the concen-
tration is low (p=0. 33), the averaged transmission
coefficient again yields a Lorentzian curve with a half-
width roughly equal to I,z. On the other hand, for a
high concentration, p=0.47, the half-width is substan-
tially smaller than I,~. Here again we find a
configuration-independent width (b,E). Note that the
resonance width (I

„

) for the average transmission
coefficient decreases with increasing dimer energy as well
as dimer concentration. The configuration-independent
width also decreases as I z . It is noticed that the number
of resonance peaks significantly decreases around AE.
We also examine the case when t O=1.9999 and the con-
centration is p =0.33 ~ Here we find that the
configuration-independent width reduces significantly
(see Fig. 9). It is actually proportional to I/N In g.en-
eral, we find a discernable asymmetry in the
configuration-independent width. It is noticed that the
width is less in the side that is closer to the band edge.
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VI. SUMMARY

To have an in depth understanding of RDM we first
studied the phase and transmission coefticients of three
simple models in the vicinity of the dimer energy (eo).
These models predicted the merging of resonances in
RDM around the dimer energy. This prediction was fur-
ther substantiated by numerical analysis of phase and
transmission coefficients of RDM for large samples. This
observation can be understood by noting that at ep our
RDM reduces to a perfect crystal of infinite length.
Hence, in the vicinity of ep, the appearance of nonscat-
tered states must be observed. Of course, the width of
these states must be determined by the extent of scatter-
ing. This, in turn, is determined by the energy and con-
centration of the dimer. In fact, we found that the aver-
aged transmission coefFicient yields a Lorentzian curve
with a half width which depends on both the dimer ener-

gy and concentration of dimer in the sample. When the
dimer energy is well inside the band and the concentra-
tion of dimers in the sample is high, the numerically ob-
served value of the half width agrees nicely with theoreti-
cal prediction. The same kind of agreement is obtained
when ep is close to the band edge and the concentration is
low. In these two situations we find that the number of
nonscattered states is proportional to +N. Here, N is
the number of sites in the sample. This result is in agree-
ment with the result of DWP. ' However, our numerical
results indicate that the actual half-width, in general,

may not be proportional to 1/+N .Given the approxi-
mate nature of the derivation this discrepancy is not at all
unlikely. Furthermore, when ep is infinitesimally away
from the band, we find that the average width is propor-
tional to 1/N. Since the disorder should start localizing
states from the band edge, this finding is consistent with
the physics of the problem. This also supports our con-
jecture regarding the number of nonscattered states. This
aspect, however, will require further study.

It should also be noted that apart from a set of con-
ducting states the system also contains a host of reso-
nance states outside the configuration-independent width
(b,E ). The number of such states increases significantly if
either ep or the concentration is decreased. This is
definitely due to the reduction of scattering of the incom-
ing waves by the sample. These resonance peaks will
contribute to the mean-square displacement. They
definitely play a prominent role in the mean-square dis-
placement when ep is very close to or at the band edge.
Therefore, it is necessary to examine the behavior of the
mean-square displacement for a low concentration of di-
mer with E'p 2 and the other extreme case when ep-0
and the concentration is large. This work is in progress.
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