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Calculation of the electronic properties of Ni-P amorphous alloys
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We have simulated the atomic structure of Ni-P amorphous alloys for several concentrations (Ni75P~5,

Ni8OP2O and Ni»Pl5), and have calculated their electronic properties. The atoms are spread randomly in

a periodically repeated cell and then relaxed using Weber-Stillinger pair potentials to a local minimum

potential energy, We have constructed eight such cells for each concentration. Because the unit cell (80
or 160 atoms) is larger than the electronic mean free path, we can assume the electronic properties are
independent of boundary conditions. We impose periodic boundary conditions, which is equivalent to
calculating the band structure at k=0 of the periodically extended unit cell. Using linearized Korringa-
Kohn-Rostoker (KKR) band theory, we have calculated the total density of states„component- and
angular-momentum-decomposed densities of states, degree of localization, and current matrix elements
for the electrons. We find very little localization of the electrons near the Fermi energy. We also have
calculated the electrical resistivity and reAectivity as a function of frequency and concentration using the
Kubo formula. Finally we have compared our calculated results with experiment and with results ob-
tained from the effective-medium approximation and from the KKR coherent-potential approximation.

I. INTRODUCTION

Ni-P amorphous alloys are readily formed by rapid
cooling of the liquid. In this state, long-range order is ab-
sent; i.e., the system does not have a lattice structure, and
the quenched state is a local minimum in energy. The
only structural information available from experiment is
the pair correlation (distribution) functions. This lack of
information about the structure and the absence of a
standard band theory requires the construction of ap-
proximate models that represent the amorphous struc-
ture. We model the system by a supercell, which allows
us to apply band theory. If the supercell is large enough
(for example, much larger than a mean free path), it
seems reasonable to expect that our model will have the
same electronic properties as the amorphous metal in-
dependent of the boundary conditions we impose on the
supercell. Thus, we apply periodic boundary conditions,
which for the electronic properties is equivalent to carry-
ing out a band-structure calculation confined to the one k
point at k=0.

It is known that the mean free path for the Ni-P amor-
phous alloys is of the order of the interparticle separa-
tion. For 160 atoms in a cubic unit cell, the mean free
path is a little less than —,

' the length of a cell edge.
Therefore, periodic boundary conditions should not seri-
ously affect the calculated electronic properties of the
Ni-P amorphous alloy system when the supercell is this
large.

We have simulated eight Ni-P amorphous alloy sam-
ples at each concentration: Ni75P25 NisoPzo and Ni8sP&5 ~

We picked these concentrations, since amorphous Ni-P
alloys can be formed in the range of 15—26 at. % phos-
phorus. ' The atomic concentration of phosphorus at the
eutectic point is 19%%uo.

The general goal of this work is to calculate electronic
properties of the Ni-P amorphous alloy system, which is
representative of transition metal-metalloid glasses.
Structural, electronic, magnetic, optical, and trans-
port properties of the Ni-P system have been measured.
Various theoretical models have been proposed and
several theoretical calculations " have been done.
However, to our knowledge there are no calculations of
the electrical resistivity as a function of concentration for
the Ni-P met glasses. Experiments show a rather large
change in resistivity with concentration. One of the goals
of the present work is to study this resistivity change
theoretically.

In Sec. II, we describe the construction of the supercell
model of the amorphous alloy. In Sec. III, we discuss the
band-structure calculations for the electronic structure.
In Sec. IV, we present results for the electronic structure
as well as the electrical resistivity and reAectivity at zero
temperature as a function of concentration. In addition
to comparing our results with experiment, we compare
also with the results for Ni8oP2o obtained from the
effective-medium approximation (EMA) and from the
Korringa-Kohn-Rostoker coherent-potential approxima-
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tion (KKR-CPA) using the same potentials as those used
in our simulated supercell calculations. In the KKR-
CPA calculations, one assumes the material is a random
substitutional alloy with the atoms on a lattice rather
than an amorphous alloy.

II. COMPUTER SIMULATION
OF AMORPHOUS Ni-P ALLOYS

We construct our computer-simulated unit cell with
periodic boundary conditions for 80 or 160 atoms. We
have constructed four such samples at each of the three
concentrations and at each of the total numbers of 80 and
160.

In the first stage of our simulation, we use a random
number generator to distribute the atoms randomly in
the periodically repeated supercell ~ We use a hard-sphere
interatomic potential, so that the atoms do not overlap.

In the second stage, we use effective pair potentials
(Ni-Ni, Ni-P, and P-P) (Ref. 12) in place of the hard-
sphere potential used in the first stage. At the beginning
of this stage, we determine randomly which atoms are Ni
and which atoms are P. But in Ni-P amorphous alloys,
experiment shows that metalloid atoms do not contact
each other. ' In our simulation, close contact between
metalloid atoms is avoided by interchanging a Ni and a P
when two P atoms are too close. We now rearrange the
positions of the atoms and adjust the density to obtain a
local minimum in the total potential energy. '

The partial pair distribution functions averaged over
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FIG. 1. Comparison of the experimentally measured partial
pair distribution functions for Ni8oP2o (Ref. 13) (dotted line)
with the calculated results (solid line), which are the average of
four computer generated samples with 160 atoms each, as a
function of radial separation. Note that although the calculated
P-P curve is noisy, it does show, in agreement with experiment,
that for our model the phosphorus atoms are not close to each
other.

the four 160 atom samples of Ni8OPpo are compared with
experiment' in Fig. 1. The unphysical oscillations in the
experimental data at small r have been suppressed. There
is excellent agreement between the calculated and experi-
mental results for the Ni-Ni pair distribution. For the
Ni-P, there are fewer pairs than for Ni-Ni. Hence, al-
though there is good agreement between our calculation
and experiment for this case, as would be expected, the
agreement is not quite as good as with the Ni-Ni distribu-
tion function. Because of the small number of P-P pairs
in our model samples, the calculated P-P distribution
function is noisy. However it agrees with experiment in
that the P-P pairs are farther apart than the Ni-P and
Ni-Ni pairs. This is seen by the fact that the first peak in
the P-P distribution occurs at larger r than does the first
peak for the other two distributions.

III. BAND THEORY FOR THE SUPERCELL

In calculating the electronic properties, we use the
one-electron model with spherical muffin-tin potentials in
which exchange and correlation are treated in the local-
density approximation (LDA). We scale the dimensions
of the supercell so that we have an atomic voluine of
75.87 a.u. in each case. This corresponds to densities of
8.06, 7.85, and 7.65gm/cm' for Ni85P~5 Ni8oP2o and

Ni75P25 respectively. These values are close to the exper-
imental densities. In constructing our supercell and set-
ting its density equal to experimental values, we are
proceeding in the same way as for doing a band-structure
calculation on a perfect crystal in which the crystal struc-
ture and lattice constants are set to agree with experi-
ment.

With 160 atoms in a unit cell, the band-structure calcu-
lation is a large numerical calculation even when restrict-
ed to k =0. We use linearized Korringa-Kohn-Rostoker
(LKKR) band theory, ' with the angular-momentum
decomposition of the spherical muffin-tin potentials cut
off at l „=2. The potentials are ones that were deter-
mined self-consistently at each concentration in a KKR-
CPA calculation. In the KKR-CPA calculation, the
atoms were assumed to be distributed at random on an
fcc lattice with the experimental density of the amor-
phous alloy. Thus the potentials are not determined self-
consistently for the amorphous-alloy calculation. How-
ever, we expect these potentials to be reasonable approxi-
mations to the self-consistent potentials of the amorphous
system.

A major advantage of the LKKR approach is that all
the eigenvalues and eigenvectors (for a range of energies)
for a given k vector are obtained from one matrix diago-
nalization. Using LKKR code reduces the computer
time by the order of 100 compared to full KKR calcula-
tions.

Further simplification is possible for the supercell cal-
culation because, with periodic boundary conditions, the
band structure needs only be calculated at k=0. The one
k point calculation reduces again the computation time
by the order of 100. Our one k point LKKR band calcu-
lation is, therefore, of the order of 10000 times faster
than calculating the full KKR band structure. In spite of
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its rapid convergence, the CPU time to complete the
LKKR calculation for one sample at k=O is about 3600
CPU seconds using the CRAY-2 when we have 160
atoms in the unit cell and include angular-momentum-
decomposed eigenfunctions up to l =2.

IV. RESUI.TS OF ELECTRONIC PROPERTY
CALCULATIONS

We have calculated a number of the electronic proper-
ties including the total density of states, constituent and
angular-momentum-decomposed density of states, degree
of localization of eigenstates, and average number of elec-
trons at the Ni and P sites. We have also calculated the
electrical resistivity and reAectivity as a function of fre-
quency for each of the three concentrations. We find that
we obtain nearly the same results for the electronic densi-
ties of states (DOS) and for the location of the Fermi en-
ergy Ef for the 80 atom samples and for the 160 atom
samples. The value of Ef differs by only a few tenths of a
percent between the two sizes of cell, while the DOS at
Ef differs by about 10%%uo. The shape of the DOS with en-

ergy is almost identical for the 80 and 160 atom cases. '

Our calculated (DOS) (averaged over four
configurations of 160 atoms each for each concentration)
for NigoPpo and for Ni75P25 are compared with experi-
mentally measured photoemission spectra' ' in Figs.
2(a) and 2(b). In Fig. 2(a), the experimental data' are for
amorphous Ni79P2, taken at 300 K. In Fig. 2(b), the ex-
periment' is for crystalline Ni3P. The photoemission
spectral data are in arbitrary units. Therefore, in Figs. 2
we have adjusted the height of the peaks in the experi-
mental data to coincide approximately with the peaks in
our DOS calculations. In these figures, we have set our
calculated Fermi energy equal to the experimental Fermi
energy as given in the experimental papers. ' ' The en-
ergy scale is then fixed for both the experimental and cal-
culated curves. One may question whether comparing
with data on a crystalline sample in Fig. 2(b) is reason-
able. However in Ref. 18, data is also given for an amor-
phous sample of Ni7gP, &Bg, and the curve is nearly identi-
cal to the Ni3P data, at least in the neighborhood of the
large peak from the Ni d band. Thus one sees that the
spectrum is dominated by the Ni d electrons, and the
shape near the peak is nearly independent of whether the
sample is in the amorphous or crystalline state. The
spectrum near the peak also seems to be relatively insens-
itive to the substitution of a small amount of boron for
some of the phosphorus.

The location of the Fermi energy for Ni3P in Ref. 18 at
about the midpoint of the steeply falling spectrum just
above the major peak seems reasonable. However, the lo-
cation of EF in Ni79P2& as indicated by Thube et al. '

[and as shown in Fig. 2(a)] seems to us to be too near the
peak. In fact, in their Fig. 2, they show EF for Nig9P» as
being below the photoemission peak. This does not make
any sense to us for x-ray photoemission spectroscopy
data at 300 K.

We see that the location and shape of the peak is near-
ly the same for experiment and calculation at both con-
centrations. If we would shift the Fermi energy 0.08 Ry

higher for the Ni79P2, experimental data [i.e., shift the ex-
perimental curve to the left 0.08 Ry in Fig. 2(a)], then EF
would be at the midpoint of the rapidly falling part of the
DOS, and there would be better agreement between our
calculated curve and the experimental curve. There is
some deviation between the two curves at lower energies,
which remains even with a shift in EF, but such a devia-
tion is not unexpected, since the photoemission data de-
pend on matrix elements as well as on the DOS.
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FICx. 2. Comparison of experimentally measured photoemis-
sion spectra with our calculated total DOS. (a) amorphous
Ni»P2, data of Thube et al. (Ref. 17). (b) crystalline Ni3P data
of Amamou et al. (Ref. 18). The calculated results are the aver-
age from four computer-generated samples with 160 atoms each
at each of the two concentrations. The energy is with respect to
the muftin-tin zero. The Fermi energies of the experiments and
the calculations have been lined up. The dashed lines are for ex-
periment and the solid lines are for our calculations.
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In Fig. 3 we compare our calculated DOS for Ni8pPpp
with an EMA calculation' and with a KKR-CPA calcu-
lation. (In the latter, it is assumed the atoms form a ran-
dom alloy on a lattice. ) Here the vertical scale as well as
the energy scale (and location of the Fermi energy) are all
determined by the respective calculations. Thus there are
no adjustments in the scales of these curves. We see that
there is good agreement among the three curves. There
is more structure in the KKR-CPA DOS than in the oth-
er two calculations as one might expect, since the first is
carried out on a lattice. However, it should be pointed
out that, since our supercell is of finite size, the energy
levels are discrete for this model. In order to simulate
the results we would expect from a supercell of infinite
size, we have broadened the discrete levels from the finite
cell by a Gaussian broadening of width 0.01 Ry for our
plots of the calculated DOS. Thus, our calculated results
would not show any structure on the order of 0.01 Ry
even if it were present in a model with an infinite super-
cell.

The total DOS as a function of energy near the Fermi
energy is dominated by the Ni d-band density of states, as
can be seen in the lower curves of Fig. 4 for Ni8pPpp. The
Ni d-band DOS (the dashed curve) accounts for almost
all of the total density of states (the solid curve) up to
about 0.1 Ry above EF. The contributions of the Ni s
and p bands and the P s, p, and d bands are each less than
one Ry 'atom 'spin ' over this range. These calculat-
ed results are averaged over the four samples of 160
atoms each; however the DOS graph for each individual
sample is almost identical to the ensemble average at that
concentration. The results for Ni85P» and Ni75PQ5 are
very similar.

Figure 5 shows our calculated total DOS in the vicinity
of FF for all three concentrations. We note that the Fer-
mi energy increases both with respect to the muon-tin
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FIG. 4. Degree of localization (participation ratio) of each
eigenstate (upper graph), total density of states for one spin
(solid line), and Ni d-band density of states (dashed line) for our
simulated NigpPzp as a function of energy in Ry. The DOS re-
sults are the average of four samples with 160 atoms each. The
participation ratio is given for only one of the four samples (one
dot on the graph for each eigenstate). The vertical line indicates
the Fermi energy. Note that the total DOS curve is displaced
up 4 (Ry-atom-spin) ' units for clarity.
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FIG. 3. Comparison of KKR-CPA and EMA density of
states (for one spin) with our DOS calculation for NgpP2p. EMA
spectra (Ref. 19) are based on Monte Carlo annealed pair distri-
bution functions. The energy is relative to the muKn-tin zero.
The dashed line is for the KKR-CPA calculation, the points are
for the EMA calculation, and the solid line is for our present
calculation. The EMA points on the upper edge of the d band
are not fully converged.

FIG. 5. The total density of states (for one spin) for the en-
semble average over four samples of 160 atoms each of Ni»P»
(long dashes), NigpP2p (solid curve), and Ni75P25 (short dashes) as
a function of energy in Ry. The larger the concentration of Ni,
the higher the peak. The vertical lines indicate the Ferrni-
energy level for each concentration. The left vertical line is EF
for Nig~Pl&, the rniddle vertical line is EF for NgpP2p while the
right vertical line is EF for Ni75P2, .
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zero and with respect to the peak in the DOS as phos-
phorus is added. Furthermore the DOS at the Fermi en-
ergy decreases with increasing P concentration.

These results are consistent with Knight-shift measure-
ments ' ' where it was found that the DOS at EI; de-
creases with increasing P concentration. Kuentzler,
Bakonyi, and Lovas have extracted the electronic DOS
at EF from their specific-heat measurements on
Nis, 5P, 8 5, and they find 7.0 states per Ry per spin per
atom. This compares with a DOS from our supercell cal-
culation of 7.7 states per Ry per spin per atom at EI; for
Ni8OP2O. According to our calculated results, the DOS at
EF is increasing rapidly with Ni concentration in this re-
gion. Thus we would expect a calculated DOS at EF
about 6% higher for 81.5% Ni than for 80.0% Ni. As
discussed in Ref. 22, in extracting the electronic density
of states from the specific-heat measurement, it was as-
sumed that the contributions from the electron-electron
interaction and the electron-phonon interaction are negli-
gible. However, if these contributions are not negligible,
then the part from the specific heat that should be com-
pared with our calculated DOS would be smaller than 7.0
states per Ry per spin per atom. That is, in that case the
divergence between the experimental and calculated DOS
would be still larger.

According to Nagel and Tauc's nearly-free-electron
model, the relative stability of an amorphous metallic
alloy against crystallization is related to the fact that the
Fermi level EF is located at a local minimum of the DOS.
Our calculations do not support the free-electron model
in that our calculated EF lies at the steep edge of the Ni d
band for all three concentrations.

According to Mott's s-d scattering model, the dom-
inant contribution to the resistivity of a metallic glass
comes from the scattering of s,p electrons into d holes.
Therefore, the resistivity should be proportional to the d
electron DOS at EF according to this model. But our
calculated DOS at EF is drastically decreased, and the ex-
perimental resistivity is increased as the P concentration
increases. Hence our calculations, as well as the Knight-
shift measurements ' ' combined with resistivity mea-
surements, ' are not consistent with Mott's s-d scattering
model.

An intuitive theoretical model for the electronic struc-
ture of metal-metalloid glasses is the rigid-band model.
This model predicts that the addition of P atoms leads to
electron-charge transfer from the P atoms to the Ni
atoms that fill the Ni d band holes. Since EI; in amor-
phous Ni&~Pi5 (as well as in pure Ni) lies near the top of
the Ni d band, such a filling would lead to an increase in
EF with a resulting decrease in the DOS at Ez. This de-
crease of the DOS at Ez with increasing P concentration
is in qualitative agreement with our calculations and with
the Knight-shift experiments.

Since we have calculated the total number of electrons
on each constituent atom and the angular-momentum-
decomposed DOS, we can check the validity of the rigid-
band model. The calculated average number of electrons
on each Ni atom is almost the same for all three concen-
trations (and consequently is also nearly constant for P)
as is the average number of d electrons on each Ni atom.

In fact, contrary to the rigid-band model, a few Ni elec-
trons are transferred to P atom sites as P is added in our
calculations, and the number of d holes per Ni atom is
nearly constant. This comes about because of a change io
shape of the Ni d-band DOS with change of P concentra-
tion. One can see this in Fig. 5 where the total DOS is
plotted. As already stated, these curves represent essen-
tially the Ni d DOS. We see that the height of the peak
decreases with increasing P, since the number of Ni
atoms is decreasing. However above the Fermi level, the
DOS increases (because the Ni d DOS in this region in-
creases faster than the number of Ni atoms decreases)
with increasing P. This increase in the Ni d DOS above
the Fermi level compensates for the increase in the Fermi
level so that the number of d holes per Ni atom is nearly
constant. Therefore our calculations, as in earlier
theoretical work " and experimental DOS studies by
soft x-ray spectroscopy, do not support the rigid-band
model with charge transfer.

A question of interest is whether there is localization of
the electronic states near the Fermi energy for materials
with very strong disorder scattering such as in amor-
phous Ni-P alloys. Thus, we have determined the degree
of localization of the eigenstates by calculating the parti-
cipation ratio of each eigenstate. The participation ratio
P, for eigenstate ~i ) is defined to be

n =1

where X is the number of atoms in the supercell and ~n )
is the sum of the basis states centered on atom n. P;
takes values between zero and one, with zero (actually
1/N) for a completely localized state and one for a com-
pletely extended state. Each mark in the top portion of
Fig. 4 gives the participation ratio for a particular eigen-
state of one of our 160 atom samples of Ni8oPzo. The oth-
er three samples at this concentration as well as those for
the other concentrations give very similar results.

We see from this figure that the states in the middle of
the Ni 3-d band are relatively more localized, while the
Ni 3-d edge states are relatively delocalized because these
latter states are strongly mixed with s and p states. Also,
a few eigenstates at very low energy are localized. How-
ever, none of the states in the vicinity of the Fermi energy
are localized in that the participation ratio is greater than
0.4 for all of these states and is greater than 0.5 for most
of them. Localization due to the strong disorder scatter-
ing, would be evident in this model.

Because our model is of finite size, the eigenvalues are
discrete, and one cannot obtain the zero-temperature dc
resistivity directly. One way of getting around this prob-
lem is to calculate the resistivity at various nonzero fre-
quencies and then extrapolate to zero frequency. We
have done this using the one-electron approximation of
the Kubo-Greenwood formula. ' If ooe has a supercell
that is periodically extended in space, theo one has a per-
fect crystal (no matter what the disorder in the cell is)
and hence one has an infinite conductivity. However, we
use periodic boundary conditions only in determining the
eigenvalues and eigenvectors of the electronic system in
the finite-sized cell. For the Kubo conductivity we carry
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out the integrals only over this finite space. For this cal-
culation the conductivity is finite.

We take a configurational average (over four samples
of 160 atoms each) of the resistivity as a function of fre-
quency for a given atomic concentration, and these re-
sults with the standard deviations are plotted in Figs. 6.
The standard deviations increase with decreasing fre-
quency because with lower frequencies there are fewer of
the discrete energy levels that can participate in the pro-

cess. The resistivity data is fit to a Drude-type function
p(co)=p(0)+I'co using least-squares-fitting methods.
This is the lower solid curve in each of Figs. 6. We see in
Fig. 6(c) for Ni75Pz5 that our least-squares fit has a de-
creasing resistivity with frequency, which is in the oppo-
site direction from what is usually expected. This pecu-
liar behavior has the same origin as the Mooij correla-
tion. In fact the experimental temperature coefficient of
resistivity is negative for Ni75P25 The zero-frequency ex-
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FIG. 6. Calculated resistivity (error bars) and reflectivity (upper solid curve) as a function of frequency in Ry for Ni»Pl5 (a),
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FIG. 7. Experimentally measured dc resistivity at room tem-
perature (Ref. 4, solid circles and Ref. 7, open circles and solid
line) and our calculated resistivity (open squares). The calculat-
ed resistivity is converted to room temperature using the experi-
mentally measured temperature dependence of the resistivity
(Ref. 7).

trapolations of the least-squares fits determine the dc
resistivities.

We found large standard deviations in the resistivity
calculations for 80 atoms per unit cell indicating that a
cell size of 80 atoms is not large enough to calculate reli-
able resistivities. '

The dc data are plotted in Fig. 7. We see that the cal-
culated dc resistivity values agree within statistical fluc-
tuations and experimental error with the experimentally
measured values ' except for Ni85P» in which case the
calculated resistivity is slightly higher than experiment,
lying somewhat outside the combined statistical fluctua-
tion and experimental error range.

There may be a trend in our calculations to give some-
what too small a change in resistivity with change in con-
centration. However this is right at the edge of the accu-
racy of the calculations and of the experiments. Our cal-
culated resistivities are at zero temperature. We have
then used the experimental values of the temperature
dependence of the resistivities to convert our zero-
temperature results to room-temperature numbers for
Fig. 7. However, the disorder scattering is such a large
part of the total resistivity that the resistivity changes at
most 5% in going from zero temperature to room tem-
perature.

Using the Drude least-squares fit to the resistivities as a
function of frequency (the lower curves in Fig. 6), we
have calculated the reflectivity as a function of frequency
for the three concentrations. In these calculations we
have assumed that the imaginary part of the resistivity is
negligible. The calculated reflectivities as a function of
frequency are plotted as the upper solid curve in each of
Figs. 6. The differences between the calculated and mea-
sured reflectivities are less than 5% for Ni75P25 and
N180P2O. However, the differences between our calcula-
tion and experiment for Nis~P, 5 as a function of frequen-
cy are as large as 9%. In the experiments, the
reflectivities for 21.1 at. % P and for 26.2 at. % P are al-
most identical over the frequency range from zero to 0.5
eV (0.0367 Ry —the frequency range we are interested in,

in our work), whereas there are relatively large
differences between the measured reflectivities for 21.1

at. % P and 26.2 at. % P on the one hand and 15.2 at. %
P on the other. However the measured dc resistivities '

indicate that the difference between 15 at. % P and 20
at. %%uo Pshoul db ecomparabl e tooreve nsmalle r tha n th e
difference between 20 at. %%uo Pan d2 5at. %oP . Because
reflectivity is closely related to the resistivity, we do not
believe the relatively large difference in the experimental
reflectivity of 15.2 at. % P and the other two concentra-
tions is a real effect. Thus we are not concerned with the
larger deviation of our calculated results from the experi-
ments for the 15 at. % P sample compared to the devia-
tions for 20% and 25 at. % P.

V. CONCLUSIONS

We have simulated the Ni-P amorphous alloy system
for three concentrations, and have calculated the total
density of states, component- and angular-momentum-
decomposed density of states, degree of localization (par-
ticipation ratio), and current matrix elements for the elec-
trons. We also have calculated the electrical resistivity
and reflectivity as a function of frequency and concentra-
tion using the Kubo formula, and have compared our cal-
culated results with experiment. In the DOS calcula-
tions, the calculated results for both the 80 and 160 atom
cases agree with photoemission data as to the location
and shape of the main peak. We find good agreement be-
tween our calculated DOS and results obtained from the
effective medium approximation and KKR-CPA.

In these supercell calculations for the electronic prop-
erties for the Ni-P amorphous alloys, we have included
angular-momentum-decomposed eigenfunctions up to
l =2. To check on the contribution of higher l values, we
have carried out KKR-CPA resistivity calculations for
Ni-P random substitutional alloys (assuming the atoms
reside at random on an fcc lattice) at the same three con-
centrations both for l,„=2 and for l „=3.The results
of these calculations show that the resistivity change on
increasing the maximum angular momentum to l = 3 is of
the order of 8%—20%%uo, depending on the concentration.
Thus we believe that our amorphous-alloy model is
reasonably well converged at l,„=2. Therefore, we be-
lieve our LKKR-supercell calculation of the resistivity
with l,„=2 for Ni-P amorphous alloy system is valid to
about 10%.

Taking into account the standard deviations due to the
fluctuations in our calculated resistivities over the four
samples together with the experimental error, our calcu-
lated resistivities for the 160 atom cases agree with exper-
iment. However the 80 atom supercells are too small to
have the statistical fluctuations as low as the experimen-
tal errors. ' The change in our calculated resistivity with
concentration may be slightly smaller than that found ex-
perimentally, but the combination of the standard devia-
tions in the calculations and the experimental errors in
the measurements make it impossible to determine this
for certain. On the other hand, our KKR-CPA resistivi-
ties for Ni-P for the same three concentrations are
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21 —48% lower than the resistivities from our supercell
calculations and from experiment. For these calculations
we find that for I „=2, the KKR-CPA resistivity goes
from 79 pA cm at 15%%uo P to 89 pO, cm at 25% P. In ad-
dition to giving resistivities that are much too low at each
concentration, the KKR-CPA results do not give the re-
quired large variation of resistivity with concentration.
Thus, to get reasonable agreement with experiment, it is
necessary for the model to have structural disorder. It is
not enough to have only chemical disorder on a lattice.

There are other calculations that should be done in the
future. We think it would be useful to calculate the resis-
tivity as a function of temperature and the thermopower
as a function of concentration, since the experimental
temperature coefficient of resistivity becomes negative
(Mooij correlation ) for P concentrations higher than
23%, while the experimental thermopower changes sign
and becomes positive, also for P concentrations greater
than 18%.
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