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Resonant reAection and transmission in a conducting channel with a single impurity
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We consider a narrow conducting channel in a two-dimensional electron gas with a single impurity in
the bottleneck part of the channel. In contrast with previous works no specific assumptions concerning
the shape of the channel and the impurity potential are made. It is shown that any attractive impurity
potential generates sharp Breit-Wigner-type resonances —dips and peaks —in the graph of conductance
versus Fermi energy. These correspond to resonant reflection and transmission due to quasibound states
in the impurity potential. A simple formula for the conductance in terms of resonance energies and par-
tial widths is found. The widths are directly related to the impurity and channel potentials. It is demon-
strated that in the case of a uniform conducting channel any attractive impurity, no matter how weak,
always produces zero in the conductance at a certain Fermi energy.

I. INTRODUCTION

The discovery of the quantized conductance steps in
two-dimensional electron gas (2DEG) microconstrictions
based on GaAs/Al Ga, „As heterostructures (see re-
view papers' ) followed an increase of interest in the
study of quantum ballistic transport through narrow
channels in 2DEG (see review ). In particular, the
inAuence of impurities on the conductance attracted a
great deal of attention since impurities inside or near the
conducting channel may destroy the conductance quanti-
zation. ' The effect of the impurities is especially
strong near the steps, i.e., the thresholds where propaga-
ting modes are opened.

It is known from experiments as well as from theory
that near the steps even a single impurity may strongly
affect the conductance. For instance, measurements
show that when moving the position of the impurity
with respect to the conducting channel, defined by a split
gate, the conductance of the channel is changed drastical-
ly. Single impurity assisted resonant tunneling was ob-
served in split-gate structures' and in quantum-well con-
strictions.

The infIuence of a single impurity on the conductance
of a 2DEG channel was studied theoretically in Refs.
12—14, 19, and 20. The theoretical treatment of this
problem was based on two model potentials, of the chan-
nel and of the impurity. The simplest channel confining
potential, which is an infinite uniform 2D wire
(waveguide) with hard walls, was considered in papers
12—14. Actually, realistic narrow channels in split-gate
devices cannot be taken as uniform wires, but rather as
bottleneck constructions with expanding contact pads.
The appropriate models for bottleneck constrictions are
the saddle-point potential, considered in Refs. 19 and 20,
and the finite wire opened to two infinite 2DEG's as in
Ref. 14. As to the impurity potential, the short-range 5-

type potential was used in almost all papers. There are
only a few exceptions: a finite-range rectangular-shaped
scatterer' and the scatterer of a finite range in the direc-
tion across the wire and 6 type along the wire. '

It was shown that a single impurity produces fine-
structure effects in the dependence of the conductance G
on the Fermi energy E near the thresholds. For instance,
an attractive impurity in an infinite uniform wire gen-
erates dips below the conductance steps. ' ' These dips
appear as a result of resonant refIection by quasibound
states in the impurity potential. In some cases the value
of the conductance at the threshold points is not
inAuenced by the impurity. In a saddle-point potential
and in a finite length wire attractive impurities may pro-
duce not only resonant reAection, but also resonant
transmission. As a result, the conductance would show
resonance peaks, as well as dips. ' ' ' (Notice that a
cavity inside the channel could also generate similar reso-
nance dips and peaks. ) These sharp features in the en-
ergy dependence of the conductance near the thresholds
are due to Breit-Wigner resonances.

It is not clear from calculations with model potentials
which features of the impurity-induced structure (dips,
peaks, perfect transmission) are potential dependent and
which are not. ' Hence it is desirable to perform a gen-
eral analysis of the resonant refIection and transmission
due to a single impurity in a narrow channel making
fewer assumptions about the confining and impurity po-
tentials. Such general analysis which can illuminate the
main physical features of the problem is the topic of the
present work. We do not make any specific assumptions
concerning the shape of impurity and channel potentials.
Only the separation of the channel potential variables is
assumed, so that the motions in the transverse direction
and along the channel are factorized. We also assume
that the quasibound states in the impurity potential are
near the thresholds. For the sake of simplicity we consid-
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V + U(x, y )+ V(x,y ) %'(x,y ) =E+(x,y ) .
m

(2.1)

Here U is the confinement potential and Vis the impurity
potential. We assume that the channel potential allows
separation of the variables,

U(x,y)= U(x)+8'(y) . (2.2)

The potential W(y ) provides confinement of the electron
motion along the y direction. It would give rise to the
channel modes n = 1,2. . . ,

FICx. 1. Conductance steps and threshold energies. d
, + 8'(y ) C „(y ) =E„@„(y) .

2m dy
(2.3)

er the region of the Fermi energies E near E2, where the
second mode is opened, Fig. 1. In this case one can take
into account only the first evanescent mode, n =2, which
is near the threshold. The higher evanescent modes,
n =3,4, . . . , give exponentially small contribution to the
conductance, and can be neglected. (Their infiuence ca,n
be taken into account perturbatively. ) This essentially
simplifies the theory and makes the physics more trans-
parent.

For a description of the quasibound (tunneling) states,
generated by the impurity, we are following the approach
developed in Ref. 24 for treatment of tunneling problems.
It allows us to find a simple general formula for the con-
ductance in terms of energy levels and partial widths of
the quasibound state produced by the impurity, the levels
and widths being directly connected to the impurity and
channel potentials.

The outline of the paper is as follows. In Sec. II we set
up the problem of a conducting channel with a single im-
purity in terms of a (2X2) transmission matrix. In Sec.
III we consider a uniform conducting channel, and
demonstrate explicitly how an arbitrarily small attractive
impurity potential generates full reAection of the Aux at
some value of the energy. Next we discuss the case of a
bottleneck confining potential. Section IV deals with a
general description of quasibound (tunneling) states and
the Green's functions near the resonances. The results
obtained in this section are applied in Sec. V for the cal-
culation of the transmission matrix of a bottleneck chan-
nel. Using this matrix we calculate in Sec. VI the con-
ductance of such a channel with impurity. Some useful
relations for wave and Green's functions of the one-
dimensional Schrodinger equation are derived in Appen-
dices A and B. Appendix C deals with the inhuence of
neglected higher evanescent modes on the conductance.

Here E, is the threshold energy for the mode n and N„ is
the corresponding eigenfunction. One can expand the
wave function 4, Eq. (2.1), in terms of the channel-mode
wave functions

%(x,y)= g 1tj„(x)@„(y). (2.4)

Consider the case of E, (E &Ez. Then only the first
mode can propagate along the channel, where the others
are not. However, if the electron energy E approaches
E2, the second (evanescent) mode can also contribute to
the electron propagation due to coupling with the first
mode by the impurity potential V and also due to tunnel-
ing, as will be seen from the following. We therefore
keep only the first two terms in Eq. (2.4), n =1,2, and
neglect all higher modes with n ) 2. Then substituting
Eq. (2.4) into Eq. (2.1) one obtains

(K+ U+ V„)f,+ V, 21(2=(E E, )Q, , —

(K+ U+ V22 W2+ V2141 ( E2 ) P2 &

where K:——(A' /2m )(d /dx ), and

V„„.(x)= J dy C&„(y)@„(y)V(x,y) .

(2.5)

(2.6)

Since the impurity potential is localized, V„„(+~)=0.
Let us consider only attractive impurities, so that
V»(x ), V22(x ) &0. Then V22 always generates quasi-
bound states near E2 [since V22(x ) is one-dimensional at-
tractive potential]. We thus denote V22(x ) = Vb(x ).
Also we denote V,2= V2, —= V (x ) (since this potential is
responsible for the mode mixing), and
U'(x) —= U(x )+ V11(x ). Equations (2.5) in the new nota-
tions read

(E—K —U')Q1= V

(e —K —U —Vb)1t2= V

(2.7a)

(2.7b)

II. FORMULATION OF THE PROBLEM

Consider a quasi-one-dimensional channel having the
electron confined along the y direction but free to move
along the x direction. Consider also an impurity inside
the channel. The Schrodinger equation describing the
electron motion in the (x,y ) plane is

G, =(E—K —U')

G2=(c.—K —U —Vb)
(2.8)

where E =E —E
&

and c.=E —E2. Since we consider
E-E2, then E=E2 E, )) ~c. ~. Let us introd—uce the
Green's functions
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t)'i=Gi V tt'z

A=G2V 4i .

(2.9a)

(2.9b)

Substituting gi z from Eqs. (2.9) into the right-hand side
of Eqs. (2.7) one obtains equations for each of the modes,

(E—K —U')Q, = V G~ V

(E—K —U —Vb)$2= V G, V

(2.108)

(2.10b)

We also define wave functions y —, 2(x ) for the first and the
second modes in the case of no mode mixing, V =0, and
for Vb =0

(E—K —U')y —, =0,
(E—K —U)yz =0 .

(2.11a)

(2.11b)

(General properties of these wave functions are described
in Appendix A. ) Since the potential U(x ) is a constant at
infinity (

—U„) the wave vectors k, 2 which correspond
toy, , are

A k, /2m =E+ U A k 2 /2m =E+ U (2.12)

which describe one-dimensional motion in the potentials
U'(x) and U(x)+ Vb(x), shown in Fig. 2. It is assumed
that U(+Do )= —U„. Notice that the Green's function
Gz(E) is taken in the threshold region, and therefore it
strongly depends on E. On the other hand, E is far away
from the threshold and therefore the energy dependence
of G, on E is weak. Using these Green's functions one
finds from Eqs. (2.7)

(in units of 2e2/h ). Here t
& 2 are the transmission

coefficients of the waves g&+2, defined in Appendix A.
The impurity results in the mode mixing and in the ap-
pearance of the nondiagonal transmission coefficients,
which are defined in the following way. Consider the
solution of Eqs. (2.10) which contain only transmitted
waves at x ~+ ~,

g(x ) =B,e ', Pz(x ) =Bze

The same solution at x ~—~ is obviously given by

(2.14)

g(x)=A, e ' +C, e

$2(x)= Aze ' +C2e
(2.15)

The amplitudes of the scattered waves, B
& 2 and C, 2, are

linear combinations of the amplitudes of the incoming
waves, 2& 2. In particular

B) T» T)2

B2 T2i T22
(2.16)

The transmission matrix T allows us to obtain the con-
ductance according to the Landauer formula

In order to obtain the conductance G of a microcon-
striction one needs to solve the problem of wave penetra-
tion through such a structure. Consider, for instance, a
wave which is arriving from x = —~. In the absence of
impurities g, z=y,+z (for U'= U), and the conductance is
expressed through the transmission coefficients t, 2 ac-
cording to the Landauer formula

(2.13)

(a) G= ITig I'+ IT22I'+
k

IT&PI'+ ITzil'.
1 2

(2.17)

The factor k
& /k2 takes into account that the cruxes in the

modes 1 and 2 are proportional to k& and k2. Notice
that the absence of impurities corresponds to T» =t„
T22=t2, and T&2= T2& =0.

III. UNIFORM CONDUCTING CHANNEL

(b)

We start our analysis with the case of a uniform
(nonexpanding) conducting channel, U(x ) =0, in Eq.
(2.5). [The motion is free along the x direction, while the
confinement along the y direction is provided by the po-
tential W(y), Eq. (2.2).] For the sake of simplicity we
neglect the potential V&i(x) [i.e., U'(x ) = U(x ) =0 in
Eqs. (2.10)], since E —E, )) I V» I. Then the Green's
functions G

&
can be written as

G (E i) m tk X —X'

l
(3.1)

FIG. 2. (a) Effective one-dimensional potential for the propa-
gating (above threshold) mode, n = 1 [see Eq. (2.10a)]. (b)
Effective one-dimensional potential for the threshold (tunneling)
mode, n =2 [see Eq. (2.10b)].

I

G(E;x,x';y, y')= g e " @„(y)+„*(y'),
n ~ n

(3.2)

where haik —=A'k, =+2m E . Note that the total 2D
Green's function of a nonexpanding channel in the ab-
sence of impurities, G = (E—K —W), can be written as
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I:&+Vi, «)]uo=somo . (3.3)

Then using the spectral representation of the Green's
function G2 =(c,—K —

Vb )
' for E —+co,

G2(E) = ~mo& &~o~
(3.4)

one reduces Eq. (2.10a) to

(E —K)l(, = Vtt, , (3.5)

where the nonlocal potential IP' is energy dependent and
has a separable form

(xiV g, )(q, iV ix')
V(E,x,x') = (3.6)

where A'k„= [2m (E E—„)]'~ . It is clear from this equa-
tion that only the first mode propagates at infinity, and
therefore only the transition amplitude Ti i contributes to
the total conductance, Eq. (2.17), i.e., G =

~ T& i ~

.
Consider Eq. (2.10a) describing the first mode in the

energy region c.-cp(0, where cp is the bound-state ener-

gy of the state yp in the potential Vb, i.e.,

fi(x ) =e'"" 1— iI
8 Fp 6 +iI (3.12)

where 6 = Re(po~ V G, V ~po), b, and I being the
shift and the width which acquire the bound state due to
mode mixing. It follows from Eq. (3.12) that for
E=Eo+6 the wave function i', (x)=0 for x~+ ~,
which corresponds to the total reAection of the incoming
fiux. Since Vb(x) in Eq. (3.3) is the one-dimensional po-
tential, generated by an attractive impurity, it always
contains at least one bound state. Therefore any attrac-
tive impurity in a uniform conducting channel would
produce total (resonant) refiection at certain Fermi ener-
gies, irrespective of how small the attractive impurity po-
tential is. It is only the width of the corresponding dip,
Eq. (3.11), which decreases with the impurity potential
strength. In the following we demonstrate that the po-
tential V»(x ) and the higher evanescent modes, which
were neglected in this section, do not a8'ect the exact van-
ishing of the conductance, but only the position of the
dip.

I @i &
= lk &+ .k

Ik & & k
I
V lk &

+ . Ik & & k
I vG, P/ k &+

ik
(3.8)

Since the potential V is a separable one, the Born expan-
sion (3.8) becomes a geometrical series and can be easily
summed over. Indeed

&kl~lk&=(klV lqo&, , &qo V Ik&,
Fp

&kl&Git lk&=(klV Iqo&
(ipoIV G, V igloo)

E Eo

x&q, ~v ~k&, (3.9)

and so on. Therefore the wave function it, (x ) for
~ ~+ (x) is

The solution of Eq. (3.5) can be written straightforwardly
in the form of the Born series

Ifi &
= Ik &+Gi ~1k &+Gi VG) Vlk &+, (3.7)

where ( x
~
k ) = exp( ikx ). Using Eq. (3.1) for G, one

finds that in the asymptotic region, x~+ ~, Eq. (3.7)
becomes

IV. QUASIBOUND STATES

Going to the general case of a nonuniform bottleneck-
type conducting channel we first consider the states
which are responsible for the singularities in the Green's
function in the complex energy plane. When U(x)%0
there are no bound states in the potential Vb+ U [see Fig.
2(b)]. However, if the potential barriers separating the
well Vi, (x ) from x =+ ~ and —~ are wide enough, the
bound state defined by Eq. (3.3) is transformed to a quasi-
bound state (resonance) near Eo, which acquires small
width and shift, cp —+E—iI „due to tunneling through
the barriers to the continuum. Similar to the previous
case, Eq. (3.4), we expect that near the resonance,
s~E i I „th—e Green's function Gz(s) can be written as

G
E,
—6+ii t

(4.1)

where the bound-state wave function ~yo) is replaced by
the resonance wave function ~y).

For a description of the Green's function in the reso-
nance region we use with some modification a method
developed in Ref. 24. Following this method we build up
the quasibound state from the corresponding stationary
state, by considering the potential U as a perturbation.
To do this we rewrite the Green's function G2, Eq. (2.8),
in the form of a Born series

q ( ) ikx+ ikx (3 10)
l&klv lq, &l'

s Eo &idol v G) V lyo&

Using Eq. (3.1) one easily obtains that

Im(gaol V G, V lpo&
= —

k I & gaol V lk &
I'=——r

(3.1 1)

G2 =Gp+ Gp UGp+ Gp UGp UGp+

with

Go(e) =(c IC —
Vb)—

From this series the equation for G2 follows:

G2 = Gp +Gp UG2

(4.2)

(4.3)

(4.4)

Therefore Eq. (3.10) can be rewritten in the form It is convenient to introduce the energy shift operator
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R = U+ UG2U,

which satisfies the Lippmann-Schwinger equation

R=U+UGoR .

In terms of this operator G2 can be represented as

(4.5)

(4.6)

G2 =Go +GoRGo (4.7)

G2 Go+ Go UG2, (4.8)

Now we introduce the Green's function Gp=AGp,
where A= 1 —

lqo&&qol is the projection operator which
excludes the bound state lq&o & from the spectral represen-
tation of Go. Replacing Go in Eqs. (4.2) —(4.7) by Go we
define a projected Green's function G2 and energy shift
operator R, which obey the following equations:

Go =A(eo —K —
Vb ) '=—(so —K ) (4.17)

Here we replaced c. by cp neglecting the terms of second
order in the tunneling probability. Substituting this re-
sult into Eq. (4.8) we get

(4.16) would be exponentially suppressed with respect to
the first one in the region of small x (inside the impurity
potential). On the other hand, the second term of Eq.
(4.16) dominates at x —++ oo, since the bound-state wave
function yo(x ) decreases exponentially outside the range
of Vb(x). Consider therefore the second term in Eq.
(4.16) at large x. Since small values of x' are suppressed
in the integral by U(x') ~0 when x'~0 [Fig. 2(b)], both
arguments of G2(x, x ') are effectively outside the range of
Vb(x ). Then one can approximate

G2 —= (so —K —U) (4.18)
R = U+ UGoR,

with

(4.9)

R = U+ UG2 U . (4.10)

lqo&&qol
R —R =R(Go —Go)R = —R R

Cp

Multiplying this equation by l qo & we easily obtain

(s —s )R lpo&
Rlq, &=

(4.1 1)

(4.12)

Consider the energy shift operator R. Substituting Eq.
(4.1) into Eq. (4.5) one obtains for s~E—il,

Notice that due to projection operator A, the resonance
corresponding to the bound state lgo & is excluded from
G2 and R (see Ref. 24).

Multiplying Eq. (4.9) by (1+RGo) and using Eq. (4.6)
with UGoR =RGp U we obtain that the operators R and
R are related through the formula

[The full perturbative expansion of the exact Green's
function Gz, Eq. (4.8), in terms of the approximate one,
Eq. (4.18), and evaluation of the correction terms can be
found in Ref. 24.] Let us express the Green's function
Gz(x, x') in terms of yz, Eq. (2.11b), by use of Eqs. (A2),
(A3), and (B2). Then substituting G2 into Eq. (4.16) one
finds

q(x + )= . e
' "&q,lUly,+& .

ik2
(4.19)

I,= —
Im& gaol UG, U q, & =r,++r;, (4.21)

Notice that by using the Schrodinger equation (2.11b) one
can rewrite the matrix elements in Eq. (4.19) as

&qolUlx+ &= —&qol& —sold+ &=&qo vblx+ & .

(4.20)

The matrix elements in Eq. (4.19) are directly connected
to the width I, of the quasistationary state. Indeed, us-
ing Eqs. (4.14) and (B12) we get

U q &&qlU
(4 1 3) wltll

Substituting Eq. (4.13) into Eq. (4.12) and using Eq. (4.10)
for the shift operator R one finds in the limit
s~so+&qolR lqo&

2

(4.22)

where I,+—are the partial widths due to tunneling to the
right and to the left.

and

r —lr, =e,+ &q, lUlq, &+&q, l UG, Ulq, &

V =Vo+G2UVp .

(4.14)

(4.15)

V. TRANSMISSION MATRIX
FOR A BOTTLENECK CONDUCTING CHANNEL

Let us rewrite Eq. (4.15) explicitly as

y(x)=qo(x)+ f d Gx( 2,xx)U( )xq) ( o)x. (4.16)

Notice that Gz(x, x') decreases exponentially whenever
one of the arguments is inside the potential barrier U.
One can get it by using the spectral representation of the
Green's function, and taking into account that the reso-
nance functions are excluded by the projection operator
A (see Ref. 24). (Otherwise G2 would exponentially in-
crease inside the barrier. ) Hence, the second term in Eq.

Using the properties of the quasibound states from the
preceding section we can extend our treatment of a uni-
form conducting channel to a nonuniform (bottleneck)
channel. Again, for calculation of the total conductance
we use the Landauer formula, Eq. (2.17). However, in
contrast with the case of uniform channel, the second
mode is propagating through the barrier by a tunneling,
Fig. 2(b), and therefore all the elements of the transition
matrix T contribute to the conductance G. Since the
problem is linear we can consider propagation of each of
the modes separately.
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A. Propagating (above threshold) mode

We begin with the case A, =1 and 32=0 in Eqs.
(2.15), which correspond to the first mode (n =1) coming
from x = —~. Since c-co, we can retain only the pole
term, Eq. (4.1) in the Green's function G2, (2.8). Substi-
tuting Eq. (4.1) into Eq. (2.10a) we can rewrite it as

v Iq)(qlv
(E—K —U')Q, = (5.1)

~+
Similar to the previous case of the uniform channel, the
solution can be written as the Born series [cf. Eq. (3.7)]

l@, &=lx~+&+G, v lg & . &wlv. x~+&
+~r

&, I v. G, v. ,&

+G, v lv & ', &qlv Ix,'&+
(E—E+i r, )

(5.2)

where y&+ is the solution of Eq. (2.11a) and G& is given by
Eq. (2.8). This expansion is a geometrical series and
therefore can be summed over to

&qolV x&'&
ly, &=lx&'&+G, V. leo&

c, —5+iI, —(gaol V G) V Iqo&

(5.3)

Here we replaced y by yo in all matrix elements of Eq.
(5.3), since inside the range of the impurity potential
V (x ) the wave function y(x ) =—po(x ).

Consider the wave function li &(x ) in the asymptotic re-
gion. Using Eq. (B2) for the Green's function G&(x,x'),
we obtain for x ~+ ao

g, (x ) =y,+(x )+y,+(x )
ik1t1

(5.8)

The diagonal transmission coefficient for the first
mode, T», in the presence of impurity, is therefore

T11 = t1 1+
5 —iI

E —E —s +E(r, +r )
(5.9)

In particular one obtains from this expression that for the
uniform conducting channel (I,=0 and E= Eo), the total
transmission is zero at c.=co+5 —5 . It shows that
the result of Sec. III holds even if the potential V»(x ) is
taken into account.

Let us consider the nondiagonal transmission
coefficient T,2, which is the probability of finding the
electron in the second mode at x ~+ ~. Substituting li,
given by Eq. (5.3) into Eq. (2.9b) and using Eq. (4.1) for
the Green's function 62, one easily obtains

&v ol V. I&i+ &

$2(x)= y(x) .
s —E —s +i(r, +r )

(5.10)

Going to the limit x —++ ~ and using Eqs. (4.19) and
(4.22) we get

&~.lv. lx, &&~. v, lx,-&
T12

ik2 s —r. —6 +i (I,+I )
(5.11)

B. Threshold (tunneling) mode

Consider now the case where A, =O and 32=1 in
Eqs. (2.15), which corresponds to the second mode com-
ing from x= —~. The solution of Eq. (2.10b) can be
written as the Born series [cf. Eqs. (3.7)]

I~, &=I~„&+G,V.G, v. le„&

where

&q IV Ix &&w IV Ix+&
X

s —E —s +i(r, +r )

+G~v G V G~v G)V $2t)+
where $2, (x) is given by

(E—K —U —
Vb )Q2, =0 .

(5.12)

(5.13)

a —tr =(~,lv G, v lq, & (5.5)

(5.6)

i.e., I — is the decay rates due to mode mixing to the
right (left) infinity.

It follows from Eqs. (B8) and (B10) that the numerator
of the second term in Eq. (5.4) can be represented as

[see Eq. (B12)], and t, is the transmission coefficient for
the first mode in the absence of the mode mixing poten-
tial V, Eq. (A2). b, and I are the shift and the width
of the bound state due to mode mixing. Using Eq. (B9)
we can write I =I ++I,where

It describes the resonant tunneling of the second mode
through the impurity Vb without the mode mixing. We
can write $2, (x ) in the form

At =&2++0zi (5.14)

(s —K —U —Vb)$2, = Vby2+ . (5.15)

Using Eq. (4.1) for the Green's function G2 near the reso-
nance we obtain

where y2+ is given by Eq. (2.11b), and describes the tun-
neling of the second mode through the constriction
without impurity. In order to find gz, we substitute Eq.
(5.14) into Eq. (5.13). One gets

& q, l
v l~,

-
& «, I

v l~,+ &
= fi —r

ik, t,
&~.lv, lx, &

fat =
6 —E+ll t

(5.16)

where I' is given by Eq. (5.5) and where we replaced y(x ) by yo(x ) in the matrix element.
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In the asymptotic region x~+ ~ the wave function
y(x ) is given by Eq. (4.19). Then using Eqs. (4.19), (5.14),
and (A2) one finds that for x ~+ ~, the wave function is

gz, (x ) = T~, exp(ik2x ) where

&~.lv, lx, &&~.lv, lx,-&
T~t t2+

ik2 6 —F+ l I t

(5.17)

4r, r,
(E—r)+r',

(5.18)

with t2 being the (nonresonant) transmission coefficient
through the constriction without impurity, which is of
the order of I, I, . If one neglects in Eq. (5.17) the non-
resonant contribution tz, and calculates

I T2, I
using Eqs.

(4.22) one obtains the well-known formula for resonant
tunneling transition probability,

&~.lv. lx,-&&~.lv. lx, &

T21
e —E —s +i(r, +r )

(5.23)

where the nonresonant contribution from the first term in
Eq. (5.22) is neglected.

VI. CONDUCTANCE
OF A BOTTLENECK CHANNEL

G=lr, I' 1+
c, —E—6 +ir

The full conductance of the channel can be calculated
from the Landauer formula, Eq. (2.17), introducing into
it Eqs. (5.9), (5.11), (5.21), and (5.23). If we neglect the
nonresonant contribution in (5.21), the conductance can
be expressed in terms of decay widths

25 —ir

Let us return to Eq. (5.12) for the second mode wave
function. Using Eq. (4.1) we can write

r+r-+r-r++ r+r-
+4 t t m t m t

(E—E—5 ) +I (6.1)

I 0 &
=

I 0, &+
I q & & q, I v G, v I y„&

E.
—

E, +II,

+lg& . , &q, lv Giv lq2, &+
&q, lv G, v lq, &

(E—e+il, )

where r =I,+ I . To make the result more transparent
we assume the potential U(x ) to be a smooth one, which
means that the effective width of the channel varies slow-
ly. Then we can use the following approximation:

+ik
1
x

t, =1, r, +=0, g& =e (6.2)

= ly„&+ lw&
E —E+ir, —&qolV G, V lyo&

With this assumption it follows from Eqs. (5.6) and (5.8)
that

(5.19) r+=r-=-'r 6 =o.m m 2, m~ m (6.3)

Using Eqs. (5.14) and (5.16) for $2„and Eq. (5.5) we easi-

ly obtain
In the same approximation, when there is no impurity

in the channel

&g.lv, lx, &+&~.IV. G, v. lx, &

E —E+ir, —&qolv G, V lgo&
and Go = 1. Now we have the final result

(6.4)

—= Ixz+ &+ .—E —s +i(r, +r. )

(5.20)
4r,+r, —r'

AG =6—Go=
(c,—s —b, ) +I (6.5)

where we neglected the term & gaol V G, V ly2+ & since it
is of second order in the impurity potential. Then using
Eqs. (4.19), (4.20), and (A2) for the wave functions at
x —++ ~, we find

m & gol vi, IX2+ & & go I ~t, IX2
T~2 —t2 +

s —E —s +i(r+r )
(5.21)

The last transmission matrix element which we have to
calculate is T2, . It is a probability of finding the electron
in the first mode at x —++ ~. (Notice that in general
T2, &Ti2.) Substituting gz given by Eq. (5.20) into Eq.
(2.9a) we find

i&i&=G v Ix+&+G v lq &

&~.lv, lx, &

E —E—6 +i(l, +I )

(5.22)

Then using Eq. (B2) for the Green's function Gi and con-
sidering the limit x ~+ ~ we obtain

Equations (6.1) and (6.5) are the main result of our pa-
per. It shows that the type of Breit-Wigner resonance
(dip or peak) depends on the competition between the
two decay routes of the quasibound states, (i) due to inter-
mode mixing and (ii) due to intramode tunneling. Mixing
favors dips, while tunneling favors peaks. If one neglects
tunneling, EG exhibits a dip with maxhG= —1. If one
neglects mode mixing AG exhibits a peak. In this case
maxhG=+1 only when the impurity is located in the
channel symmetrically, i.e., I,+ =I, .

It is easy to understand from our derivation why the
intermode mixing generates the resonant reAection, but
not the resonant transmission, as in the case of the in-
tramode tunneling. Let us compare Eq. (3.10) describing
the propagating mode g, in the uniform channel with Eq.
(5.17) describing the threshold mode 1(tz, in the case of the
resonant tunneling. In both cases the interaction with
the impurity generates the same (Breit-Wigner) type of
scattering amplitude. However, in the case of propaga-
ting mode the scattered wave does interfere (destructive-
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ly) with the initial plane wave, whereas in the case of the
threshold mode the initial wave is almost zero at
x ~+ ao [tz && 1 in Eq. (5.17)].

It can be easily shown that the result given by Eq. (6.5)
is valid in the vicinity of any threshold, n=1, 2, . . .
(Considering the vicinity of the threshold n = 1 one has to
set I =0, see Ref. 19.) If there is more than one impuri-
ty in the bottleneck of the conducting channel one can
consider V(x,y) in Eq. (2.1) as the total impurity poten-
tial and consider the quasibound states as due to this to-
tal potential. Equations (6.1) and (6.5) are valid in this
case too.

It follows from Eq. (2.6) that the potentials V and Vb

in Eq. (2.10) depend on the position of the impurity with
respect to the channel "walls. " For instance, these po-
tentials are strongly reduced if the impurity position in
the y coordinate falls near a knot of the mode eigenfunc-
tions @,z(y). This means that the resonance energies
and the widths in Eq. (6.5) depend on the position of the
impurity. Applying different gate voltage to the two
parts of the split gate one can "shift" the impurity and
therefore change the position and the type of the reso-
nance.

It is worthwhile to mention that the total reAection in
the case of a uniform channel (Sec. III) is a consequence
of two dimensionality of the original Schrodinger equa-
tion (2.1) (which is reduced to an effective 1D
Schrodinger equation (3.5) with a nonlocal potential).
The one-dimensional Schrodinger equation with a local
potential can never generate total resonant reAection.
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APPENDIX A: WAVE FUNCTIONS
FOR ONE-DIMENSIONAL

SCHRODINGER EQUATION

In this appendix we present for reference purposes
some properties of the solutions of the 1D Schrodinger
equation. Consider the Schrodinger equation

Here t+ and r+ are the transmission and reAection
coefficient of these waves.

The Wronskian

~IXk ~7k I Xk d Xk Xk d Xk
d

dx dx
(A4)

is independent of x. Calculating IV(x) for x =+~ by
substituting (A2) and (A3) into (A4) one obtains
8 (

—~)= 2ik—t and IV(+~)= 2ik—t+. Hence

t+ =t (A5)

Let us make use of the time-reversal symmetry. Con-
sider the function yk (x )* which is a solution of Eq. (Al)
with the boundary condition

yk (x )*= t * exp( ikx )
—for x ~+ ~ . (A6)

On the other hand, it can be written as a linear combina-
tion of two linear independent eigenfunctions yk (x ),

yk (x)*= Amok+(x)+Byk (x) . (A7}

Calculating A and B from Eq. (A9) and substituting into
Eq. (A7) we get

yk+(x }*= — r yk (x )+ t *yk (x ) . (A10)

In a similar way one Ands

gk (x )*= —
yk (x )+ t*yk (x ) . (A 1 1)

Now setting x ~—~ in Eq. (A10) and x ~+ ~ in Eq.
(Al 1) and comparing these equations with Eqs. (A2) and
(A3), one obtains the following relations for the transmis-
sion and reAection coefficients:

tr+ +t*r =0,

Setting here x~+ ~ and using Eqs. (A2) and (A3) one
obtains

yk (x)*=(At+Br )e'""+Be

From the comparison of Eqs. (A6) and (A8) one finds

At+Br =0,
(A9)B=t* .

d + U(x ) g(x ) =E7t'(x ),
2m dx

(A 1)
I
t I'+ lr (A12)

with a potential U constant at x=+~. We choose
U(+ ~ ) =0 and E )0. For each k =&2mE jA' there are
two eigenfunctions yk (x ), which correspond to the waves
incoming from +~, i.e.,

t+e' " if x~+ ~
(A2)

Notice that Eqs. (A12) represent the unitarity conditions
for the scattering matrix

and
r t (A13)

e ' "+r e' " if x —++co
Xk (x}=

t e'" ifx —+ —oo .
L

(A3)
Using Eqs. (A12) one can derive from Eqs. (A10) and

(Al 1) the expressions for gk in terms of yk and vice ver-

sa,
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Xk(x)= „Xk(»)*+ Xk(x),

r+
Xk «)= Xk «)*+ Xk (x) .

APPENDIX B: GREEN'S FUNCTIONS
OF THE ONE-DIMENSIONAL
SCHRODINGER EQUATION

(A14)

dE+ —U(x ) GE(x, x') =5(x —x') . (Bl)
2m dx

We are interested in the outgoing wave G-reen's function,
i.e., the boundary conditions are Gz(x, x') —exp(+ikx )

for x —++~. Notice that the Green's function is sym-
metric, Gz(x, x')=Gz(x', x). One can show that the
Green's function can be given in terms of the solution yk
as

Xk (x')Xk (x ) if x )x'
Gz(x, x') = '

+ikr Xk (x')Xk (x) if «x' .

In this appendix we present for reference purposes
some properties of the Green's function of the 10
Schrodinger equation. The Green's function GE of Eq.
(A 1) is defined by

We use this representation to calculate the matrix ele-
ment &yoI VGVIyo), where yo is a localized wave func-
tion, and V(x ) is a localized potential. For simplicity we
use the abbreviation yo(x ) V(x ) =—f(x ). Then we have

&yoI VGVIyo) = f f dx dx™f(x)f(x')X„(x)X„+(x')+f f dx dx' f(x)f(x')Xk (x)X„(x') .
x (x' ikt x)x ikt

(83)

We can add and subtract a term which is the same as the first integral in Eq. (83) where the integration is over the re-
gion x )x'. Then we obtain

&qol VGvlqo) = f dx f dx .„ f(x)f(x')Xk (x)Xk (x')

+ f dx f dx' f(x)f(x')[Xk (x)Xk (x') Xk (x)X—k (x')] . (84)

The first term in (84) can be written in the following form:

.k, &voIVIxk &&voIVIxk &

or equivalently as

(85)

—f dx f dx'. f(x)f(x')[Xk(x)Xk(x')+Xk(x)Xk(x')] (86)

Using Eqs. (A10) and (Al 1) the term in the brackets in this integral can be transformed to

I.Xk (x)Xk (x ) Xk (x)Xk (x )] k I.Xk (x) Xk (x )+Xk (x)Xk (x ) )+
k

1 Xk (x)xk (x)
E'kt ikt k

Substituting this representation into the integral (86) one
gets

.„&q,I vIX„+ & &q, I
vIX„- &

= —ir+s,
with

r=r++r-, r+-=
I &@,I vIX„)I'

The second integral in Eq. (84) is real. One can see it
by using (A14) and representing the expression in the
brackets as

.k I:xk «)xk (x') —xk «)xk «')l
ikt

and

5= f f dx dx'(po(x )qo(x') V(x ) V(x')

[Xk (x)Xk (x ) Xk (x) Xk (x )] .k

As a result we can write

«, I VGVI&, & =a ir, —

(811)

(812)

X Im X„(x)Xk (x )* (810) where 6 absorbs the real parts of both integrals in Eq.
(83) and 1 is given by Eq. (89).
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APPENDIX C: HIGHER-MODE CONTRIBUTION
TO CONDUCTANCE

(E E1 ——lt —V» )01—V1242 —V13A =0

(F- E2 ——K —
V22 )Q2

—V2, Q,
—V23$3 =0,

« E3 ——lt —
V33 W3

—V3141—V3242=0

(C 1a)

(C lb)

(C lc)

[since we consider the uniform channel, the potential
U(x ) =0]. From Eq. (C1c) one finds

In this appendix we demonstrate that the total
transmission of the uniform channel vanishes at certain
energies even if the higher modes are taken into account.
Let us keep, for instance, the third mode (n =3) in Eq.
(2.4). Then substituting Eq. (2.4) into Eq. (2.1) we obtain (E—K —V11)1tj1=V G2Vm, (C5)

where V =
V&z

=
V2& is the modified wave mixing poten-

tial and G2=(E —K —V22)
Since we consider the case of E& &E&E2, and the

electron energy E approaches E2, the modified potentials
V; are very close to the potentials V; . Indeed,

(C6)

Comparing Eqs. (C4) with Eqs. (2.5) one can see that tak-
ing into account the third mode corresponds effectively to
replacement of the potentials V," in Eq. (2.5) by the corre-
sponding nonlocal potentials Vj = V;. + V;3G3 V3j The
equation for the first mode is therefore [cf. with Eq.
(2.10a)]

Q3
= G3 V3, 1,+ G3 V321 2 (C2)

where the Green's function

63= 1

E—E —K —V3 33
(C3)

Substituting Eq. (C2) into Eqs. (Cla) and (Clb) we find

(++ Vll + V13G3 V31 )1 1+( V12+ V13G3 V32 W2

=(E E1%1—
(C4)

(++ V22 + V23 G3 V32 1 2+ ( V21 + V23 3 V31 W 1

= (E F2 )$2—

Also the Green's function G3, Eq. (C3), has no poles 1n
this energy region, and therefore the potentials VJ are
real. It means that the bound state yo in the potential
Vb

=—V22, Eq. (3.3), would appear also in the potential
V22, with a small energy shift so~so [where
~so

—Eo~/Eo —
~ V~~l(F3 E2)]. A—s a result, the Green's

function G2(E) has a pole for E~so and it can be written
in the form of Eq. (3.4). Afterwards all derivations in
Secs. III and V concerning the uniform channel remain
unchanged. As a result the conductance would exactly
vanish at a certain energy near the second mode thresh-
old. The inclusion of higher modes can be done in a simi-
lar way.
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