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Electrons in quantum dots: A comparison of interaction energies
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Recent studies of the effects of electron-electron interactions in quantum dots have utilized differing
forms for the particle pair-interaction energy: the Coulomb energy and an energy that varies quadrati-
cally with particle separation (harmonic interaction). These two models have fundamentally different
ground states for quantum dots in high magnetic fields. The ground state for the Coulomb case can have
large total angular momentum, while the harmonic ground state is always at the minimum angular
momentum. We bridge these two models, and show that the harmonic interaction is valid, i.e., is a good
approximation to the Coulomb interaction, in systems where the electrons are strongly confined in the
dot. We also demonstrate that while the Laughlin wave function is an exact eigenstate of the harmonic
interaction, the harmonic interaction does not exhibit the fractional quantum Hall ground state because
the relative angular momentum of the particles is not constrained to be the same for all particle pairs as
for the Laughlin picture. This fact limits the validity of the harmonic interaction to systems with strong
confinement, where the fractional quantum Hall effect is quenched.

I. INTRODUCTION

The discovery of the fractional quantum Hall effect by
Tsui, Stormer, and Gossard, ' and the subsequent ex-
planation proposed by Laughlin involving collective
electron behavior, have demonstrated the important role
of electron-electron interactions in the physics of low-
dimensional systems. Of particular current interest are
many-body effects in quantum dots in high magnetic
fields. Quantum dots may be defined as two-dimensional
electron gases (2DEG) that are laterally confined to
effectively zero dimensions by an external potential. Two
theoretical approaches to this problem have been (1) ex-
act numerical diagonalization of a two-dimensional Ham-
iltonian for a small number of electrons interacting via
the Coulomb potential, and (2) exact analytical solutions
for arbitrary numbers of electrons interacting via a har-
monic potential. The first discussion of these two ap-
proaches for an unconstrained 2DEG was given by Gir-
vin and Jach. Subsequently, the work has been extended
to quantum dots with parabolic (harmonic) confinement
potentials ' as well as to one-dimensional channels. ' In
addition, the interactions have been treated in the Har-
tree approximation, ignoring exchange and correlation
effects but modeling the full 3D quantum-dot geometry
realistically, with results similar to those obtained with a
harmonic interaction.

Comparisons of the nature of the quantum-dot many-
particle ground state predicted by the Coulomb and
harmonic interactions exhibit dramatic qualitative
differences. For the Coulomb case, the ground state of a
confined system at high magnetic field can have a large
total angular momentum. This fact was first pointed out
by Laughlin, ' who demonstrated that the ground-state
angular momentum is inversely proportional to the
confinement strength —the angular momentum for small
clusters of particles goes up in integer multiples of the
particle number. ' This point is the key to understand-
ing the results of Ref. 4 for the isolated quantum dot. On

the other hand, in the region of confining potentials
where it is physical, the harmonic interaction predicts a
ground state with the lowest total angular momentum al-
lowed by the Pauli principle to arbitrarily high magnetic
fields. The purpose of this work is to provide a bridge be-
tween these two extremes, and to quantify the usefulness
of the harmonic interaction approximation. In addition,
we will discuss the role of the Laughlin wave function in
the context of the quantum-dot problem, since it is well
known that the Laughlin wave function, which is an ap-
proximate eigenstate of the Coulomb problem, is an exact
eigenstate of the harmonic problem. We will examine
the results for small numbers of electrons in both models,
since this is the only tractable way to approach the
Coulomb problem without restrictive approximations. In
addition, we will work in the range of magnetic field such
that only the lowest Landau level is occupied —this is
reasonable for the ground-state calculations that we are
concerned about, since contributions from the other Lan-
dau levels have no effect on the results for the lowest
Landau level for these cases. The states in the higher
Landau levels and the mixed states are combinations of
the states in the lowest Landau level and their deriva-
tives, and hence the lowest Landau-level representation
may always be projected out.

II. THEORY

We begin by solving the single-particle problem, i.e.,
noninteracting electrons confined by a harmonic poten-
tial. It will be helpful to compare the results for the in-
teracting system with those of the noninteracting one.
The Hamiltonian for the one-particle problem is

where m * is the effective mass, coo is the confinement pa-
rameter, and A is the vector potential. In the symmetric
gauge with the applied magnetic field along +z and the
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electron gas in the x-y plane ( A=[ B—y/2, Bx/2, 0]),
the solutions to (1) in the lowest Landau level can be writ-
ten for l ~ 0, as"

(2)

l2
m *coo(B)

and

(4)

where co, =eB/m * is the cyclotron frequency. The cor-
responding energy eigenvalues are given by

E = iir[co o(B)[ I +1 j
—l co, /2] . (5a)

For easy comparison to the results that follow, we write
the noninteracting N-particle energy as

Here z =(x —iy), —/ is the orbital angular momentum
quantum number (positive angular momentum states are
not in the lowest Landau level), and the lengths in the
problem are in units of the modified magnetic length
given by

above, with the constant energy A'coo(B) per particle re-
moved], the interaction energies, and the sum of these
contributions as a function of total angular momentum J.
The confinement energies are given by A'coo=2. 5 meV (a),
fico0=4 meV (b), ' and fico0=6 meV (c). To aid in under-
standing the figure, we first note that without any
confinement the energy simply drops off with increasing
angular momentum, such that E—+0 as J—+ ~. The par-
ticles want to be further apart; without confinement there
is no kinetic energy cost for this, and so all particles will
simply leave the system (in real systems, there is always
some confinement, which prevents the system from as-
suming the state J= ~, i.e., all particles leaving the sys-
tem). The interaction contribution to the energy there-
fore behaves (qualitatively) like the Coulomb energy
itself —a sharp dropout for small J (small separation),
with much more shallow decline at large J (large separa-
tion). This is the reason that the minima at larger J show
up in the total energy for low and intermediate
confinement: since the kinetic-energy cost of the
confinement goes up linearly with J, it overwhelms the in-

0.02

F. =Nhcoo(B)+ JA[coo(B)—co, /2] . (5b)

Here J is the total angular momentum.
For both the Coulomb problem and the harmonic

problem, we will be interested in a harmonically confined,
three-particle system. The three-particle problem pro-
vides ease of calculation and also provides a good exam-
ple of general results for small systems. The Hamiltonian
for the (interacting) problem may be written

(p, —eA, )0 =g + ,' m *coop r—,
~

+g V(
~ r,. —r, ~

) .
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The Hamiltonian (6) will be the starting point for the cal-
culations which follow.
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III. RESULTS AND DISCUSSION

In this section we will solve Eq. (6) including two
different forms of the interaction energy. We begin by
examining the Coulomb problem, characterized by the
interaction

e 1
V(/r; —r f)=

4~«0 /r; —r, l

where E is the background dielectric constant. Following
Ref. 3, we numerically diagonalize the Hamiltonian in
the basis of eigenstates (2) for the lowest Landau level. If
we restrict ourselves to the high-field regime, the com-
plete basis for three particles is quite tractable, and the
two-particle interaction matrix elements may be easily
evaluated. ' ' In Fig. 1, we show the results of our cal-
culations for the Coulomb problem for a variety of
confining potentials, assuming a constant magnetic field
of 10 T. Pictured are the single-particle energies [Eq. (5b)
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FIG. 1. The single electron (open dots) and interaction
(closed dots) energies, together with their sum (squares), as a
function of total angular momentum (in units of A) for a quan-
tum dot in a magnetic field of 10 T. The confinement energies
are (a) 2.5 meV, (b) 4 meV, and (c) 6 meV, respectively.
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teraction energy for large relative separation —the elec-
trons are indeed confined, and the ground state is in the
regime of large angular momentum. As we will see, this
is the fractional quantum Hall regime (see below). Note
also that the minima always occur at values of J which
are integral multiples of the particle number. ' On the
other hand, large confinement energies simply prevent
the electrons from getting too far apart [Fig. 1(c)]; the ki-
netic energy cost of the high J states is too great.

Turning to the harmonic problem, we adopt the in-
teraction studied in Ref. 5, i.e.,

V([r, —r, /
) =2VO —

—,'m *&o/r; —r, /',

where Vo and Qo are parameters. This problem is quite
interesting in that one may solve for the eigenstates and
eigenvalues of (6) exactly by employing the center-of-
mass and relative-mode ladder operators defined in Ref.
5; in particular, since we are interested only in states in
the lowest Landau level (and dropping center-of-mass
motion), we need only the relative mode raising operator
to write the eigenstates of (6):

1/2
1

4m *RA t m *A(x," iy; ) i (—p—;~ .—ip;~ ~ )],a"=
1J

where A =coo(B) NQO, x; —and y; are the x and y com-
ponents of the relative position operator for the particle
pair i,j, and p; and p,j y are the x and y components of
the relative momentum operator for the pair, respective-
ly. The eigenstates in the lowest Landau level are then
given by

Im)=g(z; —z, ) exp
' —

—,'&~z;~' (12)

where m is an odd integer and z; are the complex particle
coordinates. We point out that dependence on relative
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Coulomb problem (for three particles) in the regime of
large confinement energies. Here %coo=9 meV, and the
other parameters are fit to the J=3 energy: AQ0=2. 5
meV and Vo =3.6 meV. Note that only odd J values are
shown for the harmonic interaction. The even values of J
would come from center-of-mass contributions and have
been omitted [the reason for this omission is clarity: the
eigenstates (10) above will next be compared to the
Laughlin wave functions, which do not contain center-
of-mass motion]. In Fig. 2(b) we show that for the pa-
rameters we have chosen, the interaction energies are in
good agreement over a large range of relative particle
separation.

An interesting comparison to make at this point is that
of the Laughlin trial wave function and the states (10)
above. The ground state of the 2DEG proposed by
Laughlin is

(10) 0.055-

where the state ~0) is the usual Gaussian in the relative
and center-of-mass coordinates. The a, are positive
odd integers for each pair i,j to maintain antisymmetry of
the wave function under particle exchange (assuming
spin-polarized particles). The corresponding eigenvalues
are

E =A'I ci)0(B)+(N —1)A] +N(N —1)Vo

+ ga; A'(A —co, /2) .

If we turn off the interactions, i.e., Vo ~0 and A~coo(B),
we immediately recover Eq. (5b) above, provided that
ga; =J. We note that the energy of the interacting sys-
tem is linear in J with a slope given by (A —co, /2). The
slope must remain positive for the electrons to be
confined —if the slope is negative, the system assumes the
state J= 0o, as above (the positive slope condition here
translates into the confinement condition coo)X' Qo
noted in Ref. 5). Therefore, we see that the high-field
ground state for this system, when the picture is physical-
ly reasonable, is always the state with the lowest J value,
i.e., a,"=1 for all i,j In Fig. 2(a. ) we show that the ener-

gy eigenvalues for the harmonic approximation can be
adjusted to have reasonably good overlap with the full
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FIG. 2. (a) Comparisons of the total energy vs angular
momentum for the Coulomb (closed dots) and the harmonic
(open dots) interactions. (b) Comparisons of the two interaction
energies as a function of particle separation for the parameters
which give the fit in (a) (see text). Note the agreement over a
large range of separations.
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particle position for the states (12) and the states (10) are
the same provided that the a; in Eq. (10) are the same
for each particle pair —in other words, as long as the rel-
ative angular momentum is the same for each pair. This
statement is important if we are to recover the results for
total angular momentum and filling factor v. If all a;
are the same, then the sum becomes J=ga;J
=tN(X —1)/2]m, where m is an odd integer. This is
the usual result for large systems. We note that it is the
restriction on relative angular momentum that makes the
Laughlin functions work for the fractional quantum Hall
effect; when the confinement is lowered, the system is not
allowed to lower its energy by rearranging the relative
angular momenta. The system remains in the m =1 state
until the transition from m = 1 to m =3, where it
remains until the transition to m =5, etc. The Coulomb
interaction has this feature "built in, " i.e., the cusps in
the ground-state energy at higher angular momentum in
Fig. 1 are a reAection of this effect. Without an
artificially imposed constraint, the exact solutions for
harmonic interactions have only the a; = 1 ground state
or else the confinement is released to the point where all
the particles leave the dot.

Regarding the filling factor, it can be shown for the
states (12) that the filling factor is given by v= 1/m;
therefore, the ground state of the quantum dot for large
confinement (recall that for the ground state, a; = 1 for
all pairs, which corresponds to the m =1 Laughlin state)
occurs at v=1, and the fractional quantum Hall effect

will not occur. On the other hand, the results for the
Coulomb interaction indicate a ground-state crossover
from high angular momentum states at lower con-
finement (larger quantum dots) to the minimum J at high
confinement (smaller quantum dots). For the large J
ground states, the arguments just presented give v & 1,
and the fractional quantum Hall effect should occur. ' '

In summary, we have examined the effect of
confinement potentials on the ground state of a gas of in-
teracting 2D electrons in a high magnetic field, utilizing
two different forms of pair interactions. We find that the
Coulomb interaction has ground states at angular mo-
menta that are 1arger than the minimum value satisfying
the Pauli exclusion principle, a feature not seen for har-
monic interactions. The harmonic and Coulomb interac-
tions are in good agreement for strongly confined sys-
tems. Comparing the quantum-dot eigenstates with the
fractional quantum Hall ground state indicates that if the
ground-state angular momentum is a minimum, then the
filling fraction is v= 1, and if J)J;„then v & 1. There-
fore, at a fixed magnetic fie1d, the fractional quantum
Hall effect will be quenched by confinement, and it is in
this regime that the harmonic interaction is a reasonable
approximation.
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