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We report high-resolution ac heat-capacity measurements on YBa,Cu307 z crystals near the critical
temperature, several of which display untwinned regions comprising at least 50% of the sample volume.
A A,-like anomaly is observed, indicative of an exceptionally short T =0 Ginzburg-Landau coherence
length in this material. If the fluctuations are assumed to be Gaussian corrections to mean-field behav-

ior, the data are best described by three-dimensional fluctuations of a two-component order parameter,
with the underlying BCS step indicating strong-coupling behavior. However, a more complicated order

parameter or a logarithmic (critical) divergence cannot be ruled out on statistical grounds. Application
of a magnetic field B broadens the transition and reduces the amplitude of the anomaly with little or no

apparent shift in the onset of superconductivity; the effects are more pronounced for B parallel to the c
axis than for B in the ab plane. These results are not consistent with mean-field theory, but may be un-

derstood in the context of critical finite-size scaling. This approach exploits the well-known dimensional

reduction for superconductors in a magnetic field.

INTRODUCTION

It is by now well established that fluctuation effects
play an important role near the critical temperature of
YBa2Cu307 &, most clearly manifested in a k-like heat-
capacity transition. ' Estimates ' of the critical
region —where fluctuations dominate —use the Ginzburg
criterion to predict a width of order T =0. 1 K above
and below T, . The crossover regime between classical
and critical behavior may therefore lie in the experimen-
tally accessible range. The Ginzburg criterion is based on
the assumption that the crossover occurs when the lead-
ing correction to the mean-field (MF) heat capacity is on
the order of the MF step itself. This first-order estimate
can be expressed in the form

where go is the low-temperature Ginzburg-Landau coher-
ence length and b, C( T, ) is the MF specific-heat discon-
tinuity at T, . More recently, Fisher, Fisher and Huse
considered the effect of higher-order corrections and find
these to become significant while the leading-order
correction is still quite small relative to the MF jump.
From this they conclude that the Ginzburg criterion ac-
tually underestimates Tg by a factor as large as 25. If so,
Tg is actually of order 1 K, and true critical fluctuations
may be observable within a few degrees of T, .

Classic superconductors with short coherence lengths
show a steplike transition that broadens slightly with in-
creasing field, accompanied by the usual reduction of
T, . ' However, application of a magnetic field has been
shown to broaden and suppress the heat-capacity transi-
tion of YBa2Cu3O7 , with little or no change in the on-

set temperature. " The (MF) analyses of Thouless, ' of
Lee and Shenoy, ' and others'"' are based on the obser-
vation that the applied field forces the superconducting
electrons to move in Landau orbitals perpendicular to the
field. As a result, the field decreases the effective dimen-
sionality of the fluctuations from three to one, leading to
behavior similar to the Ginzburg-Landau model in one
dimension. ' We will demonstrate that the C(H, T) data
for YBa2Cu307 &

are inconsistent with these MF ap-
proaches.

According to the conventional picture, the phase tran-
sition of a superconductor is not preserved in an applied
field; only in zero field does the coherence length diverge
at T„ limited only by sample size or inhomogeneities. In
an applied field, g( T, (H )) perpendicular to the applied
field is limited by the lowest-order Landau radius
ao = (Qol2~H )';—it is electrons in this level that are the
first to reach T, (H). Because the long-range order is des-
troyed, a superconductor in an applied field is similar' to
other systems where the coherence length is constrained,
for example, thin films of He near T&,

' to which the
finite-size scaling' (FSS) formalism has been successfully
applied.

In this paper, we present results of high-resolution
heat-capacity measurements of YBa2Cu307 & near T, in
fields up to 7 T applied both parallel and perpendicular to
the crystalline c axis. Least-squares analysis of the zero-
field data shows that, if the fIuctuations are assumed to be
Gaussian, the data are best described in terms of three-
dimensional fluctuations of a two-component order pa-
rameter. However, the zero-field data may also be fit sat-
isfactorily with a logarithmic (critical) divergence. In a
separate paper' we will describe a crossover procedure
that combines the features of mean-field and critical be-
havior to fit the entire range of data, and confirms that
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critical eA'ects are important very close to T, . However,
we find that the in-field data cannot be explained in terms
of MFT. Rather, we find that the data are better de-
scribed in terms of critical finite-size scaling, and are con-
sistent with a limiting length scale L ~ H

EXPERIMENT
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Single-crystal samples were produced at the University
of Illinois. The ingredients are first ground into a uni-
form powder, placed in an yttria-stabilized zirconia cruci-
ble, and heated to 980'C in air in a box furnace for
several hours. During a very slow cooling to 830'C, crys-
tal growth takes place. The samples are then reannealed
under flowing oxygen. The majority of crystals are
twinned platelets of dimension roughly 1 X 1 X0.05 mm .
This growth method also produces a small percentage of
crystals with large untwinned regions which were used
for the specific-heat measurements reported here. Table I
lists the characteristics of the three samples used in this
study. Sample YC104 displays a single-domain region ac-
counting for approximately 80% of the sample's volume.
For further screening of the samples, the magnetic sus-
ceptibility was measured as a function of temperature in a
commercial SQUID-based susceptometer. Figure 1

shows a typical low-field scan. In the zero-field-cooled
scan, the data approach y= —I /4', indicating complete
or near-complete Aux expulsion.

In the ac calorimetry technique, ' modulated light in-
cident on the front face of the sample induces minute os-
cillations T„of the sample temperature, measured by a
thermocouple junction attached to the back face. Within
an appropriate range of frequencies T„ is inversely pro-
portional to the heat capacity of the sample. The contrib-
uting addenda are reduced to a minimum when light
pulses, rather than a heater attached directly to the sam-
ple, are used.

A schematic of the ac calorimeter is shown in Fig. 2.
The sample is attached with a thin veneer of GE7031 var-
nish to a flattened, crossed thermocouple junction (made
of 12.5-pm-diam Chromel and Constantan wires) which
has been varnished to a Mylar frame that provides rigid
support. The ends of the thermocouple wires are then at-
tached to copper connecting pins in thermal contact with
the heat sink that serve as reference junctions for the
thermocouple. A light shield is placed over these pins to
prevent heating by the light pulses. The front face of the
sample is coated with a colloidal graphite suspension
(DACi) to avoid spurious effects from changes in absorp-
tivity at T, . Helium gas surrounds the sample and pro-
vides the main thermal contact between the sample and
heat sink. The light from an external quartz-iodide lamp
passes through a mechanical light chopper and optical

TABLE I. Characteristics of YBa2Cu307 q samples.
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FIG. 1. Zero-field and field-cooled (H = 10.5 Oe) diamagnet-
ic susceptibility of sample YC267.

windows in the cryostat, resulting in a square wave heat
flux
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The modulation period r&=2vr /co must be chosen to be
long relative to the relaxation time r, of the sample (in
the z direction) but short compared with the sample-bath
relaxation time rz (r, && ro ((rz). Here we have

Sample Mass (pg) Size {mm ) Twinning
Thermocouple

YC180
YC187
YC267

80
40
40

0.6 X 1.1 X0.02 Moderate
0.5 X0.7X0.02 50% single domain
0.7X0.5X0.02 80% single domain

Tdc

FIG. 2. Schematic of the ac calorimetry method.
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r, =C,d, /g, and r2=C, d, d /g, where d, is the sample
thickness, d is the sample-heat sink separation, g, and

are the sample and gas thermal conductivities, and C,
is the sample specific heat. Under these conditions ' the
specific heat is given by

Po

7TCOd~ T~~

Because po is not precisely known, the data are calibrated

to match the value from a standard adiabatic heat-
capacity measurement on a polycrystalline sample at 77
K; we obtain C, (77 K) = 147 mJ/gK. The periodic
heating also produces a constant temperature ofFset

(Td, =pod /2g ) of the sample from the heat sink, mea-
sured by the second arm of the thermocouple. A plati-
num temperature sensor embedded in the heat sink mea-
sures the absolute temperature; corrections for magne-
toresistance were taken into account for the field mea-
surements.
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FIG. 3. C/T vs T for samples (a) YC180, (b) YC187, and (c) YC267.
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For these samples (d, =0.02 mm), r, is estimated from
published values ' of C, and g, to be on the order of 2
msec between 80 and 100 K; r2 was set (by controlling
the He gas pressure at approximately 100 pm of Hg, with
d =2 mm) to be greater than 3 sec; ro was chosen to be
167 msec (6 Hz). T„(generally less than 20 mK) was
detected by a low-noise transformer and lock-in combina-
tion. The temperature sweep and data acquisition were
computer controlled to a scan rate of about 0.2 K/min.
No systematic difference was observed between data ac-
quired while heating and cooling, nor for scan rates be-
tween 0.04 and 0.2 K/min. For measurements in mag-
netic fields, a thin quartz fiber was varnished to one side
of the sample to decrease vibrations and prevent the sam-
ple from rotating in the field. Zero-field data taken be-
fore and after this fiber was attached showed no substan-
tial difference. This can be understood as follows: if the
sample were an infinite plane, the T„measured by the
thermocouple would not be affected by an addition of
mass to the sample far from the thermocouple. The por-
tion of the sample that is in thermal equilibrium with the
thermocouple is a cylinder of thickness d, and a radius of
a few frequency-dependent thermal lengths ( A,

=2', /AC, &0.25 mm for 80& T(100 K). In this case,
the quartz fiber was attached at least 0.4 mm from the
junction and did not appreciably affect the measured T„
over the temperature range of interest.

ZERO-FIELD DATA

Zero-field data for three samples are plotted as C/T
versus T in Fig. 3. Because the data for sample YC187
display the narrowest transition ( (0.5 K), we concen-
trate on this sample; results for the other two samples are
similar but with larger uncertainties (due to the larger
transition widths) and are reported in tabular form. Note
that there is no strong correlation between the degree of
twinning and the sharpness of the transition. There is
some sample-to-sample variation in the background con-
tribution. This variation is at least partially attributable
to differing addenda contributions, but may also indicate
slight variations in oxygen content between the samples.
Comparison of the size of the discontinuities to those of
well-oxygenated samples will be made below.

We analyze the zero-field data by assuming a function-
al dependence for the total heat capacity and applying a
Marquardt least-squares-fitting routine. The contribu-
tions to the specific heat in the vicinity of T, consist of a
large phonon plus addendum background CB&o(T) (in-
cluding the normal electronic component), an underlying
mean-field step b C(T) for T & T„and finally the fluctua-
tion contribution Cs(T). In an earlier paper, ' we
modeled CBKo(T) by a function linear in t =T/T, —l.
To fit a wider range of data well above and below T, and
to account for the slight negative curvature of CBK~ near
T„we add a quadratic term, writing CBKo(T)=ai
+a2t+a3t . Values of a3 plotted in Fig. 4 are obtained
fitting data within +5 K of temperatures far from T, . In-
terpolation gives a3 = —40+20 mJ/gK in the vicinity of
T'

The mean-field (BCS) electronic term below T, is given
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FIG. 4. Curvature a3 of total heat capacity, determined by
fitting data to a quadratic function.

by

b C(r ) =ay, T, (1+br ), (4)

where yo is the renormalized Sommerfeld constant. The
constants take on the values a =1.43 and b =2.62 in the
weak-coupling limit, but have been observed to be as
large as a =2.6 and b =4.8 in a strong-coupling super-
conductor such as lead. As in our previous analysis, we
allow these to vary. The leading fluctuation correction to
the BCS expression arises from quadratic terms in the
Ginzburg-Landau free-energy functional, the so-called
Gaussian terms. They are predicted to have the form
Cs =Cs ~

t, where a =d v —2, d is the effective dimen-
sionality of the superconducting electronic system, v
takes the MF value —,', and the coefficients satisfy

n,~k~C+
16vrpgo

(5)

2d /2 C + /Ii (6)

Here p is the sample density (6.4 g/cm ) and n, s. is the
effective number of components of the Ginzburg-Landau
order parameter. For anisotropic materials n,~ gives the
dimensionality of an irreducible representation of the
crystal space group, and not the order-parameter symme-
try. In the true critical regime, where

~
T T,~—«

~
T —T, ~, fluctuations dominate the behavior.

In fitting the above contributions to the data, we fix a 3
and permit the remaining seven parameters (ai, az, ayo,
b, C„+, Cs, and T, ) to vary. The parameter a3 is adjust-
ed manually while its effect on the variance o. and on the
other fitting parameters is noted. "Rounded" points
within

~
T T, ~

(0.3 K are —not included in the fitting
process. We first explore the effect of variation of a on
the variance of the fit, as shown in Fig. 5, for several
values of a3. The best fit is obtained for o.=0.45+0. 5
and a 3

= —40 m J/gK. When we set a =0.5 (three-
dimensional Gaussian fluctuations), the resultant best fit
is as shown in Fig. 6, with the values given in Table II.
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TABLE II. Fitting parameters and extrapolated mean-field
parameters assuming 3D Gaussian fluctuations. (Top) Fitting
parameters for the lattice plus normal electronic contributions
CBKG=a&+a2t+a3t . The a; parameters are of dimension
mJ/gK. (Middle) Fitting parameters for electronic contribu-
tions. AC and C+ are in mJ/gK; b and n are dimensionless.
(Bottom) Mean-field electronic contribution obtained by
entropy-conserving extrapolation.
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FIG. 5. Dependence of the variance of the fit on the pwoer
law of the divergence a, for various estimates of the background
curvature a3. The minimum is 0. =0.043. YC180

YC187
YC267

5.1

5.1

45

7.4
6.0
6.5

Sample AC( T, ) b C

0.175
0.137
0.119

n, a

1.9
2.1

1.9

ko (A)

7.9
8.5
9.0

0.048
0.043
0.058

From Eqs. (5) and (6) we obtain go=8. 5 A and n, s.=2 0.
This value of n, ff is consistent with s-wave pairing, but
does not rule out a more complicated order parameter.

To estimate the uncertainty in this determination of
n,z, we note that the value of n,& obtained is covariant
with the value of T, . Consequently, we test the effect of
changing T, on o. and n, ~, as shown in Fig. 7. Here the
variances are scaled by the minimum variance
o. ;„=0.043 obtained for T, =91.15 K. Clearly, the best
fit is obtained for a low value of n,z,' the variance with
n, fr

= 7 is 60%%uo larger than that of the n,&=2 fit.
Because fluctuations reduce T, from its MF value T,

the values obtained from the fitting analysis for ago and b

Sample

YC180
YC187
YC267

gC~ Z Mc~

7.2
6.6
6.7

bMF

5.2
4.6
4.6

TMF
C

95.6
95.9
94.9

are not the true mean-field values to be compared with
the BCS predictions. We illustrate this in Fig. 8(a). The
entropy of a superconductor with fluctuations (dashed
curve) is larger near T, than that of a reference supercon-
ductor (with no fluctuations) (solid curve) having the
same TM". The same situation is sketched in Fig. 8(b) for
the heat capacity. To determine the underlying MF be-
havior from the data, the total entropy of the fluctuations
must be balanced by the MF entropy lost in the reduction
of the critical temperature from T, "to T, . The total en-
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FIG. 6. Heat-capacity data (C-CBzz) and fitting function for

sample YC187 assuming a= —,
' and n,&=2. The solid-line step

indicates the BCS contribution. The dashed line is the result of
an extrapolation of the mean-field step to account for the entro-
py of the fluctuations.

FIG. 7. Dependence of the variance of the fitting function on
critical temperature for sample YC187. The best fit is obtained
for T, =91.15 K, which gives n,&=2.
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Standard Superconductor

T
TMF

C C

CMF

T
TMF

C C

FIG. 8. (a) Electronic entropy and (b) heat capacity as a func-
tion of temperature for a standard superconductor (solid line)
and for an identical system in which fluctuation effects are pro-
nounced (dashed line). The higher entropy of the Auctuations
drive the system into the normal state at a temperature T, that
is lower than the mean-field critical temperature T, ".

tropy of the fiuctuations is simply S„=~(C„++C„)for
o.= —,', and must equal the "missing" mean-field entropy

z-MF AC(T)
(7)

T. T

Taking into account a small (2%) correction for rounding
at T„we obtain the extrapolation shown in Fig. 6; the
values are given in Table II (bottom). The value for b is
comparable to that of lead and indicates the very strong-
coupling limit. Because b is sensitive to the value of a3,
we have plotted the variation of 0. and b " in Fig. 9, so zSC ( )zBCS (8)

that b =4.6+0.7 ~ The results of a similar analysis for all
three samples are given in Table II. From this entropy-
conserving analysis we find b, C( T, ")/T, "=46 50—

mJ/molK (48 —52 mJ/molK if we assume that roughly
5%%uo of the total heat capacity is due to addenda contribu-
tions). Other researchers have obtained values for the
discontinuity by extrapolating the total heat capacity
below T, in an entropy-conserving construction. Most
measurements on samples with broader transitions give
AC(T, ")/T, "on the order of 50 mJ/molK. Howev-
er, larger values (as high as 75 mJ/mol K ) have been re-
ported for well-oxygenated samples with fairly sharp
transitions. These large values were obtained by a linear
extrapolation of the C/T data from above and below T,
in an entropy-conserving fit. However, this method as-
sumes that the change in slope about T, of the C/T data
is completely due to the change in the electronic heat
capacity at T, . Inspection of the data over a larger
range of T shows that this is not so: the phonon back-
ground (when plotted as C/T) peaks near 100 K and has
a distinct negative curvature. Part of the change of the
slope of the C/T data about T, is due to the phonon con-
tribution, and thus the method of linear extrapolation in-
herently overestimates the size of the discontinuity. Still,
it is quite possible that the b.C(T, ")/T, "we measure is
not optimal. If we assume that the optimal value is 75
m J/mol K, this indicates a superconducting volume
fraction of f=0.64—0.69 for sample YC187. This will
effect our estimates of the coherence lengths and yp de-
rived from our data. The actual values of the coherence
lengths are modified by a factor of f '~ (0.86—0.88 for
sample YC187).

The value of yp cannot be extracted directly from
b, C(T, ") without knowing the strong-coupling correc-
tion factor for the parameter a in Eq. (4). In general, any
quantity Z in the strong-coupling limit can be related
to its weak-coupling (BCS) counterpart Z through a
correction factor g, ( coo ):

1.20

1.16—

1.12—

E

1.08—

! I
f

1 I I
]

1 I I
]

I I I

f

I

where g, (coo) is dependent on a single characteristic fre-
quency cop in an Einstein approximation. Akis and Car-
botte have considered the extreme case of a 5-function
density of states for which T, /cop=0. 19+0.09 gives the
observed range of values for b ". Because b, C(T, ) varies
as the square of the thermodynamic critical field H„we
take"

2

1.04— COp

COp

1.1 ln +0.14
T.

(9)

-6. 1

1.00
0 20 40 60 80

- a3 (m J/gK)

100 120

from which we obtain g&z =2.9+0.7, and

gC( TMF)
p= MF

=11+2 mJ/mol K
1.43g~c T

(10)

FIG. 9. Variance of the fit as a function of the estimate of the
curvature a3 of CzKG. Resulting values of the mean-field slope
b "are shown.

which is similar to estimates from the magnetic suscepti-
bility. ' If we assume a superconducting volume fraction
off=0.66, we obtain yo= 17 mJ/mol K .
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mic singularity best describes the anomaly in
YBa2Cu307

SPECIFIC HEAT IN AN APPLIED MAGNETIC FIELD

0
82 86 90

T(K)
94

FICx. 10. Heat-capacity data {C-Czzz) and fitting function
for the sample YC187 assuming a =0 ( C„-ln~ t

~
i.

Figure 11 shows the effect of magnetic fields up to 7 T
applied both parallel and perpendicular to the c axis for
sample YC267. As was observed previously" in poly-
crystalline samples, the transition is decreased in ampli-
tude and broadened with increasing field, but with little
or no shift in the onset temperature. This broadening
makes a determination of T,z(H) rather arbitrary. We
note that in the analysis of the zero-field data, the choice
of T, (H =0) that minimized the variance of the fit al-
ways fell within 0.1 K of the "inflection temperature" T,.
of the transition, where the negative curvature of C(T)
near the maximum changes to the high-temperature posi-
tive curvature. We assume this point to approximate
T,z(H) in the field data, and determine the infiection
point from the minimum of the first derivative of the
data. In Ginzburg-Landau theory the upper critical field
varies with temperature according to

We test for possible two-dimensional (2D) fiuctuations
by setting o:=1. The resulting fit has a 50% higher o.
than the a= —,

' fit. Using the fitted value C„+ =0.008
mJ/gK in Eq. (5), and assuming g'ii is replaced by Dgo,
where D is the thickness of the superconducting sheet, we
find Dgo= (22 A), significantly larger than other esti-
mates. ' '

Because the fluctuation contribution is significant we
next explore the possibility of a logarithmic divergence.
The result (Fig. 10) gives a variance 30%%uo higher than the
a= —,

' fit. Fitting parameters for each sample are given in
Table III. In each case, the best fit was obtained by using
the largest value of ~a3~ within the acceptable range of
values for that particular sample. The background heat
capacity differs considerably between the logarithmic and
e =

—,
' fits. Other researchers have argued that a logarith-

TABLE III. Fitting parameters assuming a logarithmic
divergence. (Top) Fitting parameters for the lattice plus normal
electronic contributions CBKz =a, +a2t+a3t . The a; pararne-
ters are in mJ/gK units. (Bottom) Fitting parameters for elec-
tronic contributions. AC and C+ are in mJ/gK; b is dimension-
less.

where go is the coherence length perpendicular to the ap-
plied field. Thus, H, z varies as ~t~ in the mean-field re-
gion and as ~t

~

in the critical region. Most critical field
data (e.g., from resistive or magnetic transitions) show
some nonlinear behavior in H, z(t) near T, . The standard
approach is to ignore the low-field data and to estimate
H, z(0) from the more linear high-field data. For in-
stance, Crabtree et al. find from their magnetic suscep-
tibility data ( —T,dH, z/dT)=170 T for fields applied
along the c axis, and 960 T for fields in the ab plane. For
this sample the power law is approximately v=0. 85 in
both field directions, larger than either the expected
mean-field or critical behavior. We have acquired data
for several samples; in general, the power law is larger for
the more heavily twinned samples, as high v=1.2 for
sample YC180. Crabtree et al. have also noted the
effect of twinning on the apparent H, z(t), as determined
from the sensitivity data, and attributed it to flux pin-
ning. If we fit the high-field data to a linear dependence,
we find H;z (0)=250+25 T, H;z (0)= 1000+100 T, and

g(')=2. 9+.4 A
(12)

Po
= 1 1.5+.5 A

Sample

YC180
YC187
YC267

a&

172.6
173.6
170.9

a2

192.9
202. 1

179.4

a3

40
60
50

T, {K)

90.7
91.2
90.7

go=7. 5+.5 A

However, if we assume that H, z
~

~
t ~, we find

H;z (0)=600 T, H;z (0)=3000 T, and

Sample AC(T, )

g(')=1 —2 A

+=7—SA
(13)

YC180
YC187
YC267

4.6
4.8
3.9

2.0
1.0
2.2

2.4
2.2
1.7

2.0
1.8
1.4

0.053
0.055
0.059

go=4 —5 A

It must be understood that neither of these approaches
will give the exact values of the critical fields and coher-
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FIG. 12. Attempt to scale magnetic field data of sample
YC267 according to a one-dimensional mean-field scaling func-
tion. The parameters are given in the inset.

Fisher' hypothesized that the finite-size parameters scale
with length as

for a superconductor in the Geld, the limiting length scale
is related to the field by L —H ' . Therefore, the width
and shift parameters scale with the field as

H 1/2v (19)

Because these parameters depend directly on H, they will
hereafter be referred to a 5& and b,&. Equation (16) im-
plies that, if the zero-field fluctuation heat capacity
diverges according to a power law C +—„~t~, the heat
capacity in the field will vary as

Cs(H, t)=C—„[(t+5tt) +btt] (20)

showing a maximum at t = —5&, of magnitude
C (H)=C —„hit .

Both b~ and 5~ increase with field, broadening the
transition and suppressing C . For xy-like critical be-
havior, when v= —,', the broadening and shift both in-

crease as H . Neither follows Thouless' prediction of
an H and H dependence, respectively. To test this
idea we define the width of the transition as
btt=[(T;(H) —T (H)]/T, (0), where T is the tempera-
ture at which the heat capacity reaches a maximum and
T, is the inflection temperature, although any comparable
definition will sufFice. Note that the zero-field transition
is also broadened, presumably due to sample inhomo-
geneities. We assume that these two eff'ects (the field
broadening and the inhomogeneity broadening) are in-
dependent and therefore add in quadrature. In Fig. 13,
the total width of the transition is plotted as h~ versus
H . Clearly both basal plane and c-axis data follow this
law. The square root of the ratio of the slopes (=4.4)
reflects the ratio of the anisotropic coherence lengths
(P /P). The zero-field broadening b,H(0) corresponds
to inhomogeneities on the order of 30/0. The width hatt
and shift 5' (defined as [T (0)—T (H)]/T, (0)) are
predicted to have the same H dependence in the FSS pic-

FIG. 13. Square of the total broadening of the transition
{.6&) as a function of H for sample YC267.

T T(H )—
T;(H) —T (H)

(21)

The scaling is complicated by the presence of the mean-
field step underlying the fluctuation contribution and the
nearly logarithmic behavior. We first subtract the nor-
mal contribution [Cs~o ( T ) ] determined from the loga-
rithmic fit to the zero-field data. Then, assuming loga-
rithmic behavior, we plot the data as C (H) —C„(H, T)
in Fig. 16. As predicted, the data collapse onto a single

~ ~ ~
W

~ i ~ r r r

5

4

3

0
0.50 1.0 I.5 2.0 2.5 3.0 3.5 4ro

T 5 (K)

FIG. 14. Linear relation between the width h~ and shift 5~
of the transition, demonstrating the similar field dependence of
these parameters.

ture; we demonstrate the linear correspondence between
these in Fig. 14.

From Eq. (20) and for a=0, we expect the maximum
of the heat capacity C (H ) to decrease in field as ln(b, t ).
Figure 15 shows C (H) versus ln(b, It), where C (H) has
been determined by subtracting the lattice background of
Table III. The FSS model correctly predicts the depen-
dence of both the transition broadening and suppression
with field, and the close correspondence between the two
field directions.

Equation (20) implies that it should be possible to col-
lapse the data by plotting them against a scaled tempera-
ture
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logarithmic form, we cannot distinguish which is more
applicable, due to the large number of fitting parameters.
It is possible that the data are in a crossover regime be-
tween MF and true critical behavior. The analysis
presented has concentrated on the sample with the nar-
rowest transition; although there is some variation of the
fitting parameters for the other two samples, neither
shows a result that detracts the above conclusion. How-
ever, an analysis based on MF theory of the C(H, T) data
cannot explain either the extreme broadening of the tran-
sition or the distinct suppression of the heat-capacity
peak with increasing field. Rather, both of these effects
can be explained by critical finite-size effects, present be-
cause of the field-induced dimensional crossover. Indeed
the data can be scaled by assuming a FSS model ap-

propriate to a two-component order parameter in the
critical regime. This result supports the general con-
clusion reached by Fisher, Fisher, and Huse that the
usual Ginzburg criterion is too restrictive. This issue will
be addressed in detail in a future publication. '
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