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Theoretical hole mobility in a narrow Si/SiGe quantum well
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Calculations of the hole mobility in a strained SiGe quantum well on (001) Si are carried out for the
case of a narrow well in which the subband splittings are large due to quantum-size effects. An
envelope-function model for the valence-band structure and hole wave functions in an infinite square
well and calculations of scattering rates in a single parabolic band with an isotropic effective mass are
used to delineate limitations on mobility imposed by lattice scattering, background impurities, alloy
scattering, and interface roughness. Additional scattering mechanisms associated with compositional
fluctuations in the SiGe layer are also discussed. Narrow wells (60 A) with high Ge content (40%) have
large subband splittings and exhibit a light mass for hole densities well beyond 10' cm . Scattering
rates in such structures are greatly reduced as a result of the light mass and large subband splittings.
Numerical results indicate that hole mobilities in the mid 10' cm /V s at room temperature and in the
mid 10 cm /V s at low temperature could be possible in narrow SiGe wells as a result of the favorable
modifications in band structure and scattering.

I. INTRODUCTION

The recent interest in Si/SiGe heterostructures for p-
channel metal-oxide-semiconductor field-effect transistors
(MOSFET's) has been primarily motivated by the poten-
tial for lower interface-roughness scattering and the
reduction of hole mass due to strain. ' Reduced
interface-roughness scattering is expected from the isola-
tion of the holes from the rough Si02/Si interface by
confinement within the SiGe layer, while a light in-plane
mass is expected from the splitting of the light- and
heavy-hole bands by the biaxial compressive strain in a
SiGe layer on (001) Si, similar to the case in
GaAs/In„Ga& As and other III-V materials. While
experimental results are limited, measurements of hole
mobility in Si/Sioe heterostructures ' and preliminary
results on short-channel Si/SiGe MOSFET's (Refs. 8 and
9) indicate that some advantage can be gained in such
structures. The work reported thus far has typically fo-
cused on SiGe layers with Ge contents of about 20% and

0
thicknesses of 100 A or more.

In addition to the reduction of roughness scattering
and the strain-induced band splitting, several other effects
could be useful for obtaining enhanced hole transport in a
Si/SiGe heterostructure. Quantum-size effects (QSE)
provide a means for increasing the subband splitting
beyond that possible with strain alone, provided that the
well is sufBciently deep as in the case of an
Al Ga& As/In Ga, „As heterostructure. ' '" Thus,
narrow SiGe wells with high Ge content should allow a
light mass to be maintained at high hole densities and
high temperatures. The light-hole mass and large sub-
band splitting in a narrow quantum well would also result
in a reduced phase space for scattering. Scattering rates
for al.l scattering processes therefore should be reduced.

These effects would allow the design of a narrow SiGe
quantum well having more favorable band structure and
reduced scattering, thereby providing a significantly
enhanced hole mobility. In this paper, we present
theoretical estimates of the limits of the mobility in such
heterostructures.

The degeneracy of the hole band structure leads to a
complicated coupling of holes with phonons' and makes
the mobility calculation for holes more dificult than for
electrons. In earlier works on mobility calculation in
bulk material' ' and in accumulation layers, ' these
complications were avoided by the introduction of an
electronlike coupling with an effective deformation po-
tential. Tiersten' obtained a rather complicated analytic
expression for bulk mobility limited by deformation-
potential interaction with acoustic phonons. Szmu-
lowicz' carried out detailed numerical mobility calcula-
tions for bulk Si and Ge using the k p method with 6 X 6
Kane's Hamiltonian. Hinckley and Singh made Monte
Carlo calculations for a SiGe bulk alloy under strain, tak-
ing into account light and heavy holes and the spin-orbit
split band. The same kind of approach was used by Kel-
sall et al. ' ' for A1As/GaAs and GaAs/In Ga& As
quantum wells.

Here, we consider SiGe wells pseudomorphically
strained to match a (001) Si substrate. We take advan-
tage of the quantum-size effect and limit ourselves to the
extreme case where the splittings of the heavy-hole sub-
bands HHn and the light-hole subbands LHn are large
compared to all other characteristic energies, such as the
Fermi energy and temperature. We use an envelope-
function model to determine the valence-band structure
in a strained SiGe quantum well. The large subband
splitting in a narrow well allows us to consider transport
by scattering in the highest subband only. The theory of
hole transport in this case is similar to that for electrons,
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which has been treated by Gold for a SiGe quantum
well within the envelope-function approximation. The
previous work by Gold considers only very low tempera-
tures, however, while we are interested mainly in temper-
atures of 77 K and higher. At the same time we will
make use of some of the analytic results obtained by
Gold, and the results of our calculations for back-
ground scattering and surface-roughness scattering can
be compared with those for electrons by scaling the
effective mass. There is an important difference between
the present case and the case of a simple band structure.
The difference concerns the hole wave functions and
Hamiltonians coupling holes with scatterers. In particu-
lar, there is a selection rule forbidding the deformation-
potential scattering by optical phonons in a simple
band. " The large splitting, however, allows a small ad-
mixture of upper subbands at finite wave vectors k which
makes the optical deformation-potential scattering possi-
ble. In our calculations we consider this admixture as a
small correction to the wave function which simplifies the
calculation of the scattering matrix element. For other
scattering mechanisms where there is no such selection
rule, we neglect the admixture.

In the next section we consider the band structure of a
narrow SiGe quantum well. We show the effect of strain
and size quantization on the masses and subband split-
tings. We also show that the nonparabolicity and anisot-
ropy of the highest subband (HH1) are small and can be
neglected for narrow wells with high Ge content. In Sec.
III, the scattering matrix elements and scattering rates
which we use in the numerical calculations are given.
These include single-band models for conventional mech-
anisms such as optical and acoustic phonons, which usu-
ally dominate at high temperatures, and for scattering by
structural imperfections like alloy disorder, interface
roughness, and ionized impurities. We also consider
alloy-assisted optical-phonon scattering which may be
important in SiGe because the alloy disorder to some ex-
tent lifts the selection rule for the deformation optical-
phonon scattering. We neglect the scattering by misfit
dislocations assuming that they are avoided in the growth
of the structure. In Sec. IV, the scattering by composi-
tional fluctuations is discussed. Fluctuations in the Ge
composition along the quantum well result in strain fiuc-
tuations, and the scattering by these strain fluctuations
could be very important because of the large value of the
deformation potential. In Sec. V, results of the numerical
calculation of the mobility are presented. The mobility
limits imposed by the various mechanisms are considered
separately for different parameter values. Finally, the
conclusions are given in Sec. VI.

II. BAND STRUCTURE

The band-structure model used in the calculations was
originally developed for the case of a strained
Aly Ga I y As/I n„Ga I As quantum wel 1 and has been
described in detail elsewhere. It is based on an
envelope-function formulation for the valence band in a
strained, infinite square well. The assumption of an
infinite square well is justified in the case of a high Ge

content due to the very large valence-band offset at the
Sil Ge„/Si interface, which is 0.74x eV. For a
60-A well with x =0.4, for example, the band offset is 300
meV and the HH1 level is 40 meV from the bottom of the
well, so that the actual barrier for holes in this subband is
260 meV. This barrier is much larger than the typical
Fermi energy (6 meV for the concentration of 1X 10'
cm ) and the thermal energy (25 meV at 300 K). The
hole wave function falls off exponentially in such a bar-

0
rier over a characteristic distance about 6 A (in this esti-
mate we used a hole efFective mass of 0.4 for Si). One
effect of the finite barrier penetration is to reduce the
difference between the HH1 subband and the bottom of
the well, i.e., to increase the barrier height. In addition,
the above estimates assume that the interface is a poten-
tial barrier with a height equal to the band offset. Actu-
ally the boundary conditions at the interface are more
complicated, and this improves the hole confinement in
the quantum well.

The penetration of the wave function under the barrier
leads to corrections in the scattering matrix elements
used in the mobility calculations, which are evaluated us-
ing the wave functions for an infinite well. This correc-
tion is small, however, since the penetration distance is
much smaller than the width of the well and the distor-
tion of the wave function is therefore negligible. The
penetration also leads to a reduction in the self-consistent
field for carriers inside the well. The effective potential
associated with this field is only about 10 meV for a hole
density of 1 X 10' cm, however, which is much smaller
than all energies determining the shape of the wave func-
tion in the well. Hence, the self-consistent field can be
neglected.

We also neglect the spin-orbit split subband. While the
splitting of the spin-orbit band is small (40 meV) in the
case of Si, the splitting is reasonably large in SiGe alloys
with high Ge content (e.g. , 300 meV in pure Ge). More-
over, the splitting increases very rapidly in a narrow well
due to the light mass of this band. Hence, this is a good
assumption in the case of the narrow, high Ge content
wells of interest here. Following what has commonly
been done in calculations for SiGe alloys, the values of
the constants were obtained by linear interpolation from
values in Si and Ge. These values are given in Table I.

Figure 1 shows the calculated band structure for an
80-A well with 15%%uo Ge, which represents a relatively
wide well and a low Ge content. (Higher-order subbands
are included for completeness of the solutions for an
infinite we11, although the dispersion law for a real struc-
ture would be substantially changed at energies near the
barrier height for the well. ) The top of the HH band is
taken as the zero-energy reference in the figure and the
top of the strain-split LH band is indicated by the dot-
dash line. Solid and dashed curves represent the (100)
and (110) directions, respectively. We plot the electron
energy versus k

~~,
the square of the in-plane wave vector.

Hence, the x axis is proportional to hole density while the
slopes in the curves are inversely proportional to the in-
plane masses. It is seen that the subbands are highly non-
parabolic except for the HH1 subband, which is parabol-
ic over a relatively large range of k

~~

and exhibits a light-
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TABLE I. Si and Ge lattice constants, inverse-mass band parameters (A, B, and C), hydrostatic de-
formation potentials (a), shear deformation potentials (b), optical-phonon energies (%co), relative dielec-
tric constants (sc), optical deformation potentials (do), and elastic moduli (c» and c») used in the calcu-
lations. Values are taken from Ref. 28, except for do which is taken from Ref. 19. Due to an elastic an-
isotropy, average values were used for c» and c».

Lattice
const.

0

(A)
Band parameters

(A /2mo)

Deformation
potentials

(eV)
i6co do

(me V) (eV)
Elastic rnoduli
(10» dyncm )

Si
Ge

5.43
5.65

B
4.27 0.63

13.3 8.57

C
4.93

12.78

a
—10.2
—12.4

b
2.2
2.2

63
37

29.3 11.9 16.58
40 16.0 12.00

c»
6.39
6.13

hole mass of about 0.18 over this range. The bands are
isotropic near k~~

=0 but become anisotropic at large
wave vectors. It may also be noted that the slope is posi-
tive for the HH2 subband near k~~ =0, representing an
electronlike mass. The QSE-induced splitting of the HH1
and HH2 subbands is 65 meV, which is comparable to
the 48-meV strain-induced splitting of the HH and LH
bands. The combination of strain and QSE results in a
70-meV splitting between HH1 and LH1, the highest LH
subband.

Although the ground-state mass is light near k~~
=0 in

the 80-A, 15% well, the splitting between this band and
the HH2 band, which has a very heavy mass, is too small
to permit a light mass to be maintained at high hole den-
sities. A sheet density of 5X10' cm, for example,
which is typical of that in a fully accumulated field-effect
transitor (FET) channel, corresponds to k~~

=0.3 nm
It is clear from Fig. 1 that a significant population of the
heavy HH2 band would occur for wave vectors in this
range.

An increased Ge content is favorable to the band struc-
ture for several reasons. A higher Ge content results in
lighter HH- and LH-band masses, in a larger ratio of
these masses, and in a greater strain-induced band split-
ting. Because of the lighter HH- and LH-band masses,

I
'

I
'

I
'

I

the QSE-induced subband splitting also increases with Ge
content. In addition to these factors, a larger Ge content
is favorable since it results in a deeper well. A deep well
is required to exploit QSE since it allows large subband
splittings. The depth of a 15% Ge well, for example, is
only 110 meV, which limits the actual subband splittings
to even smaller values than those calculated for the
infinite well in Fig. 1.

Figure 2 shows the e6'ect of increasing the Ge content
in the well. The figure shows results for a 45% well with
the same 80-A thickness as Fig. 1. The HH1 mass in this
case is reduced to 0.11 at k

~~

=0 and light mass persists to
larger values of k~~. The HH1-HH2 and HH1-LH1 split-
tings increase to 72 and 190 meV, respectively. Although
the LH1 band is now pushed far below the ground state
and is essentially out of the picture, the accumulation of a
high hole density would again involve a heavy population
of the HH2 band, which has a heavy mass of 0.30 in this
case.

It is apparent that larger subband splittings than those
in Fig. 2 are needed to provide light mass at high densi-
ties or high temperatures. Improvement by further in-
creases in the Ge content is not possible due to critical
thickness limitations on the layer strain. (According to
the single-kink dislocation model, the 45% Ge content
is, in fact, already higher than the 32%%uo thermodynamic
stability limit for an 80-A SiGe layer. ) Increased subband
splitting can be obtained, however, by narrowing the
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FIG. 1. Band structure for an 80-A, 15%%uo Ge well in the (100)
direction (solid curves) and (110) direction (dashed curves).
Zero energy is referenced to the HH band edge. The strain-split
LH band edge is indicated by the dash-dotted line.
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FIG. 2. Band structure for an 80-A, 45% Ge well.
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where r and z are coordinates in plane and in the direc-
tion perpendicular to the quantum well, respectively, k is
the in-plane wave vector, and S is the normalization area.
The exact forms of the components P, and g,~

are rather
complicated even in the model of the infinite square
well. However, for the mobility calculation we only
need wave functions near the top of the HH1 subband.
In the first approximation we can take

50—
45% Ge 4.5 nm

well.
Figure 3 shows the effect of decreasing the well thick-

ness to 45 A. Narrowing the well is seen to have little
effect on the HH1 subband, except for a shift in energy.
Despite this shift, this subband remains highly confined
within the 330-meV deep well (45% Ge). The HH2 sub-
band is pushed down in energy, resulting in a HH1-HH2
splitting of 230 meV. Population of the HH1 subband to
a density of 5X10' cm, corresponding to k~~

=0.3
nm, can now be attained with negligible population of
the HH2 subband, which is many kT away even at room
temperature.

The main features of the band-structure calculations
which are important for the calculation of the mobility
are (i) the large separation of the uppermost subbands
and (ii) the small deviation of the hole spectrum from a
parabolic shape. The first point allows us to neglect in-
tersubband scattering and the second point allows us to
use a simple isotropic spectrum for the HH1 subband.

For the calculation of the scattering matrix element we
need the hole envelope wave functions. In the basis of
light and heavy holes they have the form

1/2
2

el z o4 z
mz

cos (2)

and neglect all others. In this approximation there is no
scattering between the even and odd states, and it is
su%cient to consider either one of them. For optical-
phonon scattering such an approximation gives a zero re-
sult. " In this case we will use the next approximation
(see Sec. III E).

III. CONVENTIONAL SCATTERING MECHANISMS

The results of the band-structure calculation show that
for a quantum well with a width smaller than 80 A the
separation between the highest subband HH1 and the
next subband HH2 is larger than 50 meV. Since the Fer-
mi energy for the concentration 10' cm is about 10
meV and the thermal energy at room temperature is 25
meV, nearly all carriers are in the HH1 subband at room
temperature and below. Therefore, we deal with essen-
tially one subband transport. The results of Sec. II show
that the HH1 subband is nearly parabolic and isotropic.
If we also neglect an anisotropy of scattering (e.g. , an
elastic anisotropy) we can use the relaxation-time approx-
imation which makes a major simplification of the mobil-
ity calculation (compare Ref. 19).

The solution of the Boltzmann equation for an elastic
scattering leads to the following expression for the in-
verse transport relaxation time:

1= 2~
Ak

~M~ ~ q cosP

' 1+ H(q)II(O, q )
q

X o(E„+q E„) z-d q
(2~)

(3)

Here Ek is the energy of a carrier with the wave vector k,
q is the wave vector transferred in a scattering event, M
is a scattering matrix element, and P is the angle between
k and q. The static dielectric function e(O, q) in the in-
tegrand in Eq. (3) results from the screening of the
scattering potential by two-dimensional (2D) gas. The
calculation of e(O, q) is reduced to the solution of electro-
static equations in the quantum well and the substrate.
The result is expressed in terms of the dimensionless po-
larization operator II(O, q) and the scattering matrix ele-
ment H(q ) (see e.g., Ref. 30),

o ~00

E
~ 150

~ 2OO

250—
HH2

300
0.0 0.1 0.2 0.3 0.4 0.5

k,t' (nm-'}
0.6

FIG. 3. Band structure for a 40-A, 45%%uo Ge well.

e(O, q ) = 1+ H(q)II(O, q ) .
q

(4)

Here q, =2me /K&A is the screening parameter, e is the
electron charge, and Kp and K& are dielectric constants in
the substrate and in the quantum well, respectively. The
polarization operator describes the response of the 2D
gas on an external perturbation, and the screening ma-
trix element is a form factor depending on the wave func-
tions and electric-field distribution. For a square infinite
quantum well it has the form
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(~o+i~, ) 2
H(q)

(iro+s, ) —(i~a —s, ) e

2 e f ~ Er(E)dE
p

4m62nks T 0
2 E

(13)

where

L/2
/ 7TZ 7TZ

X F, (z,z')cos cos dz dz',
—L/2 L L

(5)
In the cases of low and high temperature Eq. (13) can be
reduced to

F, (z, z') =e ' ' —2 e ~coshq(z+z')
Kp K1

Kp+ K1
'2

P 1K K —2qL + q Iz —z'I

Kp+ K1

[compare Eqs. (2.51) and (2.52) in Ref. 30 for an inversion
layer]. In the case of i~o =a, the matrix element takes the
form '

qL

(qL ) +4~
43277

( 1
—qL

)
(qL ) [(qL ) +4~ ]

H(q)= += 2

qL

(7)

The dimensionless polarization operator for zero
transferred energy (i.e., omitting all dynamic effects)
(Refs. 30 and 32) can be reduced to

er(EF )
kg T «EF, (14)

p= f Er(E)e dE, k~T &&E~ .
m(kiiT)

(15)

A. Ionized impurity scattering

For Coulomb scattering the matrix element is

2 2

~Mq~
= fNI(z)[FI(q z)) dz

Kpq

In the remainder of this section we review the relevant
expressions for scattering matrix elements for different
scattering mechanisms and also derive expressions for the
relaxation time for inelastic processes involving optical
phonons.

II(O, q)= f
4k' T kii T

(8) NI(z) is the impurity concentration, and the form factor
1s

Here the chemical potential g is connected with the con-
centration n and the Fermi energy EF=(~r O=~A nlm
by the relation

(Iro+ ~, )

2 —2I.(~o+ i~, )
—

( ~o —x., ) e

X — Fl z z cos dz )I —L/2 L
(17)

= 1+exp
kii T (9)

Both EF and g refer to hole (not electron) energies and
are measured from the HH1 band edge. Equation (8) can
be simplified in the case of low and high temperatures,

where FI(z,z') is the Fourier component of the field
created by a point charge near a quantum well. As well
as H (q) it is determined from the solution of the electro-
static equation in the quantum well and substrate. The
result is

II(0,q ) = 1, kii T «EF,

1 —(E /4k T)(1—K )

k~T p

(10)

2Kp
FI(z,z') =

Kp+ K1
e

—q1~ —~'I —
q I&+&'I —qL

K K
e

Kp+ K1

L
2

(18)

The integration with respect to P in Eq. (3) reduces it
to a simpler form,

Kp LF (z,z') = — F, (z,z'), ~z
~

& —.
K1

In the case of Kp=K1,

(19)

m p2k

~R'k 2

' 1+ H(q)II(O, q )
q

q dq
(4k 2 2)1/2

(12)

FI(q, z)= — e '' ' cos' dz' .
L —L/2 L

For a uniform background scattering

(20)

It is worth noting that Eq. (12) is simplified at sufficiently
high temperatures, when q, EF/k~T &&q, the screening
can be neglected.

The mobility is expressed as where

(21)
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Fs(x) = 4 2x 9677
(

—x)
2

( 2+4 2)2 3( 2+4 2)2

128m
(1 ) + 32vr

x(x +4~ ) x (x +4m )

B. Interface-roughness scattering

(22)

1 6m AA m

m, L q, Ak kg T EF
burgh

(27)

The physical reason for the resulting dependence of the
scattering rate on A and k is easy to understand. With
the increase of the product Ak carriers "see" a smoother
interface and the scattering drops.

Making use of Eqs. (27) and (14) we can get a simple
expression for the interface-roughness limited mobility at
low temperatures,

(b(r)b(r')) =b, exp
(r —r')

A
(23)

the averaged scattering matrix element is

5 4 2 2
m A' b, A q2A&g4

m2L
Z

(24)

where the effective mass of the HH1 subband in the z
direction is determined by the expression

The interface roughness in quantum wells is usually
considered as a random modulation of the width of the
quantum well b, (r), which changes the position of the
subband levels. ' ' The roughness is characterized by
two parameters, the average height 6 and the correlation
length A. Such an approach is justified only if 6 is much
smaller than the width of the well while A is much larger
than the width. For 6, this condition is necessary to jus-
tify the Born approximation in the calculation of scatter-
ing. If A violates this condition, then the wave functions
in the well are distorted and the effective potential is
different from the adiabatic modulation of energy levels.
In practical applications the latter complication may not
be important because two adjustable parameters leave
enough freedom to approximate another scattering po-
tential.

For the Gaussian distribution function of the rough-
ness

21/2em 2L 6 2A3 3/2
Z S

Pl gh 3 2 2, ka T «EF
3m. Ah m

(28)

Another simple expression for p, h can be obtained in
the case of high temperatures such that Aq, EF /k~ T && 1

and the screening in Eq. (26) can be neglected. Then

1 Ah

burgh mz L Ak

and Eq. (15) gives

5em 2L 6A( k T )3/2

I rgh 23/2 4g4g2 1/2

(29)

(30)

C. Alloy scattering

U„(r)=—,'u„ao g 5(r —r ),
J

(31)

where u, 1 is the energy associated with an alloy atom, ao
is the lattice constant, r - are positions of alloy atoms, and
the factor —,

' corresponds to two atoms in a unit cell.
Equation (31) gives

3u„aox(l —x)
(32)

For alloy scattering in a Si1 Ge alloy we use the
scattering potential

=A —B,
2m

(25)

and A, B, and C are the inverse-mass band parameters.

In the case of a large correlation length
A))L, fi /+ 8m' T, the main contribution to the in-

tegral in Eq. (12) comes from a region of q so small that
the relaxation rate due to the interface-roughness scatter-
ing can be reduced to a simpler form. In this case
H(q) = 1, II(0,q ) = 1 —exp( Ez /kz T), and—

1 rr hb, A m
y

2A2)4

burgh 2mz L k

D. Acoustic-phonon scattering

ph

f h
)fc

j* 0
0

j
0

g —h

—A* 0

(33)

where

The deformation-potential Hamiltonian for the cou-
pling between acoustic phonons and holes has the form'

q4dq

I q+q, [1—exp( E~/k~ T) ]I—
(26)

A further simplification is possible for low temperatures
when q in the integrand can be neglected compared to q,
which is typically about kF,

f =a(u„, +u~~+u„)+b

g=a(u, +u +u„) b—
n = —d(iu„, +u~, ),

u~~ +
ugly

ZZu

u„+u
2

u

(34)

(35)

(36)
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3
2

b ( u„„—uy ) —idu„ (37)
where

and a, b, and d are deformation potentials. Making use
of the wave functions Eq. (1) we get the following expres-
sion for the matrix element squared for emission or ab-
sorption of a phonon with the polarization s and wave
vector (q, q, ):

3
g)(z) =

2'
2z +m

( 2+ 2)2

2 23z +m.
(1—e 2')

2z(z'+ ~')' (42)

Ak~ T vr sin (q,L/2)
IM, (q, q, )

2pu, (q +q, ) (q, L/2) [(q,L/2) —
m ]

3

( 1 —2 2~ — 2~)

4z(z +~ )
(43)

ba+ —(q, e„+q e, )
2

7T3
g2(z) =

(z2+~2

2 —3 2 —2z)+ 1
—2z

4z(z +~ )

+(a b)q, e—„ (38)
(44)

where p is the density, Q, is the sound velocity, and e, is
the polarization vector. We assumed that the tempera-
ture is so high that phonon occupation numbers
N, —=k~ T/u, (q +q, )' ))1. For longitudinal and
transverse phonons Eq. (38) gives

5 2+ 2

(z'+rr')' 4z(z'+m')

2
77 —2z2' (45)

tk, T vr sin (q,L/2)
IM, (q, q. ) I'=

2pur (q +q, ) (q, L/2) [(q,L/2) —rr ]
2

a+ —
q +(a b)q, — (39)

(46)

If the deformation potential b is much smaller than a,
then Eq. (41) is reduced to

3a keT
IM

2p'a( L

g IM, (q, q, )I =
s=t

3b
2

2
q

2

Ak~ T

2pu, (q +q, )

m. sin (q, L /2)
X

(q,L/2) [(q,L/2) —~ ]
r

(40)

ac

3ma kg T

2pA QI L
(47)

The comparison of this expression with the correspond-
ing expression for a bulk crystal

At high temperature, Aq, EF/k~T &&1, when screen-
ing can be neglected the integration in Eq. (12) can be
carried out analytically and for the acoustic-phonon re-
laxation rate we get

where Q I and Q, are the velocities of the longitudinal and
the transverse sound, respectively.

After the integration with respect to q„using the ap-
proximate envelope wave function of Eq. (2), we obtain

2 r

ka T 1 b qLa+ —
g&pL,2 2 ' 2

3D
ac

ma'k, T
k

~pA Q
(48)

(Refs. 40 and 41), shows that in the 3D case there is
another numerical factor and the factor kL.

Equation (47) gives the following expression for the
acoustic-phonon limited mobility:

+ (a b) g2—1 2 qL

2

2epW QI L
Pac= 3mak T

(49)

2 b 1 3b+ a+ —(a b)+-
Q I Q E. Optical-phonon scattering

qL
Xg3 (41) The deformation coupling of holes with optical pho-

nons is described by the Hamiltonian'

opt

lQy +Qx

lQz

LQy +Q~

iQ

lQz

lQy Q~

lQz

lQy Qx

d, v'3

ao
(50)
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Here u& are components of optical-phonon displacement,
do is the optical deformation potential, and ao is the lat-
tice constant. It is easy to see that if only components
itt„(z) and $,4(z) are taken into account in the wave func-
tions Eq. (1), then the matrix elements of & „,equal zero.
In the next approximation in the ratio of the characteris-
tic energy to the separation between the HH1 and HH2
subbands it is enough to take into account g,z(z) and

it, ~(z). Approximate expressions are obtained by the ex-
pansion of the exact expressions in terms of kL. The re-
sult is

6AM'„'„.=i
pco

DLd
F, , (kL )

Bao

(54)

M~~. —
'"DLd,

F, ,(kL)(k +ik»+k„'+ik»)e, .
Bao

X[(e +ie )(k„'+ik')+(e i—e )(k„i—k )],

DL(k +ik ) . ~z
g, ~(z) =P;3(z) = sin

sinkL z

sin(kL L /2)

(55)

(51)

where D =C +3B and kL =(3 B)'~ i—rl(A+B)' L.
These wave functions give the following matrix elements
for the Hamiltonian corresponding to the emission or ab-
sorption of a phonon with the wave vector q:

1/2
~k', k+qN

(P,k'~.P, l~, k&= —Mg, g'X
g N+11/2

F,„,(x) = 1 . x 1
2 4 2 2 (x2+k2L2 2)2 4x2k2L2sin —+

Here co and e are the phonon frequency and polarization
vector, respectively. We consider the case of two atoms
in a unit cell when there are only three branches of
optical-phonon spectrum. The form factor

6A'
Mz'z. = —i

pcs Bao

X[(e„+ie )(k +ik )+(e„ie )(k' ik—')—],
(53)

where V is a normalization volume for phonons, a and P
take values e or o for even and odd states, respectively, X
are phonon occupation numbers, and

DLdo
F, , (kL )

kLL
X 2xkL L cot cos—

2

+(x +kLL ir )sin—

(56)

The expressions for hole relaxation rates are

f g J iM ~„
i (t(N+1)f (E„)+N[1—f (E„)]]5(E E„—%co)—

(2vr) p,
+ [Nfo(Eq. )+(N+ 1)N [1—fo(Eg )] J 6(Ei,. Eq+ fico) ), — (57)

where s is the phonon polarization. We consider a non-
polar material and assume that transverse and longitudi-
nal phonons have the same frequency.

Screening of the scattering is determined by the polar-
ization operator II(co,q), depending on the optical-
phonon frequency m. Typically, the optical-phonon ener-

gy Ace is much larger than the Fermi energy of the 2D
gas. In this case the polarization operator is small and
screening can be neglected in Eq. (57).

The relaxation times for even and odd states are identi-
cal. The optical-phonon scattering is important only at
high temperatures when the 2D gas is nondegenerate.
For this case, after the summation with respect to s and
integration with respect to q„Eq. (57) is reduced to where

opt

9D doL
@, ,(kr L )

8mB pcoao

2

X J "" (k'+k')
(2m. )

X [N5(Ei, . Eq fico)— —

+(N+1)5(EJ, Ei, +%co)], —(58)
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C&, ,(z) = 1+Bz — cot—1 1 Z

Z 7T Z
2 9~2

2
7T slnZ

Z —
7T Z2 2

~ 2 Z
sin

2

(59)

fico jk~ T

X
E+Aci)+ (E Ace)8(—E —A'co)e

fico /k~ T
e

(60)

For comparison we write down the relaxation rate
without any selection rule with the coupling Hamiltonian
&=d/uj /ao and d~ =do in the quantum well,

+OPt

3d om 1+8(E fico)e—
pA coIa fi jk Tco ao

(61)

and in the bulk,

Opt

domk 1+8(E fico)e—
27TpA cuba

(62)

Equations (60) and (61) differ by the dependence on the
energy and the width of the well. Compared to Eq. (61),
Eq. (62) contains the factor kL, similar to the case for
acoustic phonons.

F. Alloy-assisted optical-phonon scattering

Due to a specific symmetry, the deformation potential
for optical-phonon scattering in the quantum well is re-
duced. As a result, this scattering can compete with any
mechanism which lifts the symmetry and allows optical-
phonon scattering, even with the wave functions in zero
approximation, when only hatt, &(z) and $,4(z) are taken
into account. In an alloy, the symmetry limitation is lift-
ed by a random distribution of alloy atoms. Each unit
cell containing different alloy atoms couples holes with
optical phonons. The Hamiltonian describing this cou-
pling can be written down in the form

&„,,= g d J p(r)u (r),
a,P

(63)

where the average value of the random coupling function
d J &(r) is zero and its correlation function

(d~&(r)dj&(r') ) =x(l —x )d, ao5~~ 5 P(r —r') . (64)

Due to the short-range correlation the matrix element
for this scattering mechanism does not depend on the
transferred wave vector and all phonons in the Brillouin
zone participate in the scattering. Calculations similar to
those in the 3D case (see Ref. 40) lead to the following ex-
pression for the relaxation rate in a nondegenerate 2D

In spite of its appearance this function does not have
singularities, @,~,(0)= (21m —200) /9n, @,~,(m+ e)
= ( —' —15/8' )e for e ((1,and N, ,(3'�)=5.

After the integration Eq. (58) gives

9D doyyz I
2 2 2 4 oI(

477 8 Peda I

hole gas:

+al-OPt

9d fmx(1 —x ) 1+8(E—geo)e

4pR coaoL k~T—1

IV. SCATTERING RESULTING
FROM COMPOSITIONAL FLUCTUATIONS

A. Scattering by localized holes

Compositional Auctuations or the clustering of alloy
atoms leads to the existence of regions with variations in
the position of the top of the valence band. The regions
with a higher Ge concentration form wells for holes in a
2D gas. Quantum-mechanical calculations show that any
small potential well binds a particle in a 2D gas. Howev-
er, in a very narrow well the binding energy is exponen-
tially small. Thus, this energy can be smaller than the
thermal energy or the energy uncertainty due to scatter-
ing, and one hardly should expect a bound state at each
Ge atom. Clusters, however, can form a well in which
holes can actually be localized. Such localized holes act
to scatter other holes, thereby participating in conduc-
tion like charged impurities. In such a case the effective
ionized impurity concentration that controls transport

The scattering mechanisms considered in Sec. III as-
sume that the material is a uniform medium described by
a number of effective constants which are dependent on
the composition. The only scattering associated with the
distribution of Si and Ge atoms was the usual alloy disor-
der scattering due to a random distribution of these
atoms. In this scattering an alien atom is considered as a
short-range potential well. Meanwhile, in a real material
a correlation of alloy atoms is possible, which can change
this result or lead to other stronger effects. Correlation
in the positions of alloy atoms, usually called clustering,
was experimentally detected in Al Ga& As alloys.
The effect of clustering of alloy atoms on mobility was
discussed by Asch and Hall and Ichimura and Sasaki,
and long-range earlier density fluctuations were con-
sidered by Brews.

Schlimak, Efros, and Yanchev used a correlation be-
tween alloy atoms to explain their mobility data in bulk
Sioe alloys. They considered small clusters and the cal-
culated mobility depended only on the average ~umber of
atoms in a cluster. Marsh modeled clusters in bulk
In Ga l As by spherically symmetric wells. Ohno
et al. used a Gaussian correlation function of alloy atoms
for the explanation of the mobility data in
Al Ga, As/Ga& „In„As/GaAs heterostructures. '

In all of the above models clustering only modified the
scattering by one alloy atom. At the same time clustering
can lead to other stronger effects which are not described
by the scattering in the Born approximation. Unfor-
tunately, an adequate theoretical description of strong
scattering in a random medium does not yet exist, and in
this section we limit ourselves to some speculations and
qualitative estimates. We specifically discuss scattering
mechanisms resulting from localization of holes and
nonuniform strain created by alloy atoms.
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can strongly exceed the actual concentration of back-
ground impurities in the sample.

The hydrostatic strain e —=e„„+ey +e„ is different in
different regions and the difference is

B. Strain fluctuations
e'"—e12'=3a(x, —x, ) . (73)

ak =as;(1 —xk )+ao,x1, =as;(1 —axk ), (66)

where +=a&, /as; —1=0.041. The actual lattice con-
stant in the lateral direction is controlled by the Si sub-
strate. This results in the strain tensor components

&xx =&yy = Qk asl

asl
(67)

In the growth of the layer the average stress normal to
the growth interface is zero. That is, the actual lattice
constant in the z direction a can be found from the condi-
tion

Another important result of compositional fluctuations
is a nonuniform strain. The possible importance of strain
fluctuations in a bulk SiGe alloy was shown by Raikh and
Efros. Lyo and Fritz explained electron mobility data in
an In Ga, „As quantum well assuming strain fluctua-
tions due to randomly distributed In atoms. Here we
estimate the effect of nonuniform strain resulting from
compositional fluctuations in a SiGe quantum well.

We consider a model of a SiGe layer consisting of re-
gions with two different Ge concentrations x1 and x2.
These regions are taken to be distributed with the proba-
bilities p1 and p2, respectively, where p1+p2=1. The
equilibrium lattice constant of the material with a Ge
concentration xk is

The relative shift of the top of the valence band in
different regions

AE =a(e'" e—' ') =3aa(x, —x2) . (74)

V. NUMERICAL RESULTS ON THE MOBILITY

The hydrostatic deformation potential in both Si and
Ge is about 11 eV (Table I). Using this value we obtain a
AE of about 13 meV for a Ge concentration fluctuation
of 1%. This value equals or even exceeds the typical Fer-
mi energy in the 2D gas. Hence, very small composition-
al fluctuations can induce huge fluctuations in the top of
the valence band. Such fluctuations lead to a very strong
scattering. Essentially, the mean free path in this case is
of the order of the correlation length of the fluctuations.

The model is too simplified to describe all the strain
effects resulting from the compositional fluctuations.
Even in the case of two kinds of regions with different Ge
concentrations, there are strains near the boundaries of
the regions which violate the symmetry of the problem.
The order of magnitude of these strains may be smaller
than those estimated above. Nevertheless, the symmetry
violation leads to a change of the band structure which
can result in two important effects. The first is the
change of the effective mass and the second is the split of
the doubly degenerate HH1 level. The estimate of these
effects, however, is beyond the scope of the present work.

(68)

C12
Pla1+P2a2+2 IP1(a1 as1 )+P2(a2 s1 ) j

(69)

For the normal components of the strain tensor
=(ak —a )/as; we obtain the following expressions:

a, —a2 c12
&zz =P2

as;

a1 —as; a2 —as;
P1 +P2

asi as

(70)

a2 —a1 C12
~zz =P1

Qsi

Q1 QS-
+P2

asi

Q2 Qs.
P1

asi

(71)

Equations (66), (67), (70), and (71) give the same uniaxial
strain

C12
xx +Eyy

—26zz 2' 1+2 x
C11

(72)

where x =p1x, +p2x2 is the average Ge concentration.

The components of the stress tensor are expressed in
terms of strain cr„=c»e„+c, (e2, +@~~ ), where c»k (k) (k) (k)

and c,2 are elastic constants. Then

For the numerical calculations of the mobility, we will
focus on a 60-A well with a Ge content of 40%, which
represents a case where the ground-state mass is light and
the subband splitting is several kT at room temperature.
Specifically, the calculated HH1 effective mass and the
HH1-HH2 subband splitting are 0.12 and 125 meV, re-
spectively, for this structure. We assume a 2D hole gas
density of 10' cm . Ohter parameters used in the cal-
culations are given in Table I.

In the acoustic-phonon scattering, we neglect the uni-
axial deformation potential b compared to the hydrostat-
ic potential a. Parameters for Si, Ge alloys are ob-
tained by linear interpolation. The optical-phonon ener-
gies are very different in Si and Ge, so we interpolate the
inverse relaxation times for optical-phonon scattering.
For alloy-assisted optical-phonon scattering, however,
the interpolated optical-phonon energy is used. Where
parameters are not available in the literature, roughly es-
timated values based on reasonable limits are used.
Specifically, the deformation potential for alloy-assisted
optical-phonon scattering d1 is taken to be 30 eV and the
scattering potential of alloy atoms u, &

is taken to be 0.3
eV. The former value is taken to be of the order of the
optical-phonon deformation potential. For the latter pa-
rameter, one good estimate may be the Si/Ge band offset
0.74 eV (compare Ref. 37). One impurity atom is, howev-
er, not enough to completely create the difterent band
structure, and for the scattering potential we used a
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10 scattering mobility in the two cases. A more detailed
comparison is dificult to make since Kelsall et al. show
only the final result of their calculation.

)
10

O

10

Total

10
10'

I I I I I I I I

10
Temperature (K)

FIG. 7. Temperature dependence of mobility limited by
optical-phonon, alloy-assisted optical phonon, acoustic-phonon,
and alloy scattering. The dotted curve corresponds to the
asymptotic expression for acoustic-phonon limited mobility
given in Eq. (49).

tive estimate of the low-temperature mobility in these
structures.

Figure 7 also indicates that optical-phonon and alloy-
assisted optical-phonon scattering are both very weak in
a narrow well. Compared with other scattering mecha-
nisms, scattering with optical phonons is weakened the
most because of the selection rule for intra subband
scattering and the lack of intersubband scattering in a
narrow quantum well with a large subband separation.
We mention that although the deformation potential for
alloy-assisted optical-mode scattering only has been
roughly estimated, it appears quite unlikely that this
mechanism could play a dominant role in determining
the mobility since its estimated value is so small.

The phonon-limited mobilities for the narrow Sioe
quantum well in Fig. 7 are substantially greater than the
phonon-limited hole mobilities in bulk Si (viz. , 400 and
8000 cm /V s at 300 and 77 K, respectively ). One can
expect the quantum-well values to approach those in bulk
material with increases in the width of the well such that
the subband separation is reduced and the occupation of
higher subbands and intersubband scattering becomes ap-
preciable. In this case it is necessary to take into account
the nonparabolicity of the HH1 subband. In such a wide
well the hole effective mass is determined by a region of
large kll and the parabolic region near kll =0 is reduced
and has little effect on the transport. Calculations in-
cluding these effects are beyond the scope of the present
work.

Comparison of the results in Fig. 7 with the Monte
Carlo calculations by Kelsall et a/. ' for a 90-A
In„Ga, As quantum well at 77 K shows the same range
of values for the acoustic-phonon mobility and alloy

VI. CONCLUSIONS

The valence band in a narrow Si/SiGe quantum well
with a high Ge content is characterized by a light mass
over a very large range of wave vectors and by large sub-

0
band separations. In particular, a 60-A SiGe layer with a
Ge content of 40% has a zone-center mass of 0.12 which
remains light for wave vectors as large as 0.3 nm and
has a subband splitting of 125 meV. As a result, trans-
port is expected to be dominated by a light mass for den-
sities well above 10' cm, even at room temperature.
In addition, scattering rates are expected to be reduced as
a consequence of the light mass and large subband split-
tings, which greatly reduce the phase space for scattering.

Models for the scattering within a single parabolic
band characterized by an isotropic light mass were used
to determine the limitations imposed by various scatter-
ing mechanisms on the hole mobility in such structures.
Optical-phonon scattering mechanisms were found to be
very weak, primarily as a result of the elimination of in-
tersubband scattering. Acoustic-phonon scattering was
found to dominate the room-temperature mobility, as in
the case of bulk material. However, acoustic-phonon mo-
bility approaches a high value of 10 cm /V s due to the
light mass and the lack of intersubband scattering. Alloy
scattering was found to dominate the low-temperature
mobility, and a value of 3 X 10 cm /V s was estimated for
a 40% Ge layer. Impurity scattering in such structures is
weaker than in bulk material and should not impact these
mobilities for concentrations below 10' cm . Finally,
an interface-roughness mobility of 10 cm /V s was ob-
tained for a 60-A, 40% well with even a very rough inter-
face (6= 5 A and 6=30 A), and significant degradation
from roughness is therefore expected only for wells less
than 40 A in thickness.

Our results show that narrow Si/SiGe quantum wells
could provide very high hole mobilities in the mid 10
cm /V s range at room temperature and mid 10 cm /V s
range at low temperatures. These values are about an or-
der of magnitude higher than reported for Si/SiGe het-
erostructures thus far. ' While further study is needed
to determine whether other effects, such as scattering by
compositional fluctuations, might seriously impact mobil-
ity, these results indicate that narrow Si/SiGe quantum
wells with high Ge content could provide the basis for
greatly improved p-channel MOSFET's.
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