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The density of states is calculated for superlattices in the presence of an electric field, using the con-
cept of a generalized transmission probability. Various Ga& „Al„As-based quantum-well structures
with up to 200 periods are examined for electric fields ranging from 4X10 V/cm to 1X10 V/cm.
Different field efects are observed in the below- and above-barrier regions of the density-of-states spec-
tra. In the below-barrier region the spectra embody the occurrence of Wannier-Stark localization. The
above-barrier region is dominated by two kinds of structures, one similar to Franz-Keldysh oscillations,
and another resembling a Wannier-Stark-ladder behavior.

I. INTRODUCTION

The effect of an external electric field on the electronic
properties of single (SQW) and multiple (MQW) quantum
wells, as well as superlattices (SL's) has attracted much
attention in recent years. ' In optical measurements
like electroabsorption, ' electroreflectance, ' or photo-
reflectance, one observes Franz-Keldysh oscilla-
tions, ' Stark shifts, and Wannier-Stark (WS) ladders.
The WS ladders are also seen in luminescence and photo-
conductivity. ' Time-resolved optical experiments
give evidence for Bloch oscillations in SL minibands, the
time-domain equivalent of the Stark ladder which, simi-
lar to the Stark ladder itself, has never been observed in
bulk materials.

Various theoretical techniques have been applied in or-
der to understand the electric-field effects on quantum
well (QW) and SL structures, e.g. , perturbation theory,
variational calculations of quasistationary energy levels, '

transmission probability studies, and investigations of
the density of states (DOS). ' ' ' The definition of the
DOS for systems in an electric field as well as other sys-
tems having continuous-energy spectra represents a prob-
lem on its own. It may be solved in different ways. If a
finite transmission probability exists for a plane-wave
state penetrating from —~ to ~, this probability may be
taken to be representative for the DOS. If no such proba-
bility exists one may use a generalization of the transmis-
sion probability expression which exists also under more
general circumstances, or one may consider the change of
the DOS due to a finite potential instead of the DOS it-
self. The latter procedure has been applied to hetero-
structures in an electric field by Austin and Jaros and, in
a slightly different version, by Trezeciakowski and
Gurioli. ' In the present paper we will deal with the
DOS. Since no transmission probability exists in the
presence of a homogeneous electric field, it becomes

necessary to use the generalized DOS expression from
Ref. 27. So far it has been utilized only for SQW's. '

Here we will apply it to SL structures for the first time.
Our aim is, in particular, to demonstrate how Stark
ladders or Bloch oscillations manifest themselves in the
DOS. In Sec. II we specify the generalized DOS expres-
sion to MQW's and SL's by using transfer matrices. We
also demonstrate that the generalized DOS turns into the
transmission probability if the latter exists. In calculat-
ing the DOS of MQW's and SL's in an electric field we
distinguish between energies below and above the bar-
riers. The below-barrier region is treated in Sec. IIIA,
and the above-barrier region in Sec. III B.

II. DENSITY OF STATES

A. Generalized DOS expression

It has been demonstrated that the DOS p(E ) per unit
energy and lengths for an electron in a one-dimensional
system having a continuous energy spectrum may be
defined as

2

+ V(x ) yz~ (x ) =EtpF~ (x ), (2)

normalized such that they possess equal quantum weights
(EQW's). In Eq. (2) m* means the effective mass and
V(x ) the potential of an electron. The EQW normaliza-
tion is introduced as follows: The potential V(x) is
decomposed in a part Vs„(x ) having finite values at —~
and at oo, and a remaining part Vo(x ), so that

p(E)= f dZ'f dx qP *(x)&EPw(x)

Here yE~ (x ) refers to eigensolutions of the Schrodinger
equation
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V(x)= Vs„(x)+ Vo(x) holds. Then the EQW normal-
ized solutions pe (x) are defined by the asymptotic
condition

qEEQw(x)=qoEEQw(x), x (3)

with ~pE' Q (x) being the EQW normalized solution of
the homogeneous Schrodinger equation

2

0 E+ V ( )
O, EQW( )

—E O, EQW(

The EQW normalization of the homogeneous solution

yz Q (x ) means that expression (1) results in the correct
DOS p (E) of the homogeneous system if ipEQ (x ) is re-
placed with ipE' Q (x). Here p (E) is thought to be
known already from other calculations. If, for instance,
Vo(x ) =0, then one knows that p (E)
= ( I /2~)+2m */(A E ).

The normalization integral in (1) may be taken by
means of the Green's formula and Schrodinger's equation
(2). One obtains

EQWe( ) iEQW( ) IEQWe( ) EQW( )]~
f dx q EE9w*(x )g EEQw(x ) =

2m E' —E (5)

In order to make the DOS definition (1) still more trans-
parent we demonstrate that it reduces to the transmission
probability if this probability exists.

B. Relation to transmission probability

Owing to relation (5) the orthonormality integral depends
only on the asymptotic values of q&EQ (x) for x —+ —~
and x —+ ~. For x —+ —~ one has

(x)=a(E)e' +b(E)e '"", x —+ —co (7)

Here a(E) and b(E) are coefficients which follow from
the Schrodinger equation (2). The continuity of the prob-
ability Aow stated by this equation means that

Ia(E)I'=1+ b(E)I'.
By using relations (5), (6), and (7), the orthonormality in-
tegral becomes

dx VEQwe x VEQwx =~1+ a E 2

+ Ib(E)l']S(k —k') .

In order to allow for a nonzero transmission probabili-
ty between x = —&n and x = ~, the potential V(x ) must
remain finite at infinity. For simplicity, we assume that
V( —~ )=V(~)=0 holds. Then Vs„(x)=V(x) and
Vo(x)=0. The homogeneous Schrodinger equation (4)
turns into that of a free particle. The corresponding
EQW solutions are plane waves e '" with
E=E(k)=(A k /2m*). Thus the EQW solutions of
the full Schrodinger equation (2) follows by means of the
asymptotic condition

EQW( )
—ikx

and incoming probability Aows, i.e., the transmission
coefficient T(E). Thus one may also write

p(E) = T(E)1 dE
2~

This means that under the conditions specified above, the
DOS per unit energy and length given by expression (1)
represents nothing but the transmission coefficient T(E),
multiplied with the Wronskian factor of the E(k ) trans-
formation.

d +erx+V, qEQw(x)=EqEQ (x)2' dx
(12)

for x in layer i.
To facilitate solution, we set

1/3

C. Application to heterostructures in an electric field

%'e consider planar heterostructures with N wells and
X—1 barriers, embedded within two barrier layers ex-
tending infinitely, as shown in Fig. 1. The layers of the
entire structure, including the embedding barrier layers,
are numbered consecutively by an index i beginning with
—X for the embedding barrier on the left side. The inter-
face positions are denoted by x;, where the index i refers
to the layer on the right side of the interface. The zero-
field potential in each layer is denoted by V;, where V;
equals V in a barrier and 0 in a well (see Fig. 1). The zero
point of energy is at the bottom and the one of the x axis
is at the center of the rightmost QW. For simplicity, the
effective electron masses are taken to be the same in the
well and barrier materials.

Then the Schrodinger equation (2) in layer i of the
structure has the form

The DOS according to formula (1) reads
- —a

1 1 dE
2~ Ia(E)I' dk

(10) where

2P1

(A'eF )
[E eFx —V(x )]— (13)

Here 1/ a(E)I represents the ratio of the transmitted
EQW( ) EQW( )

dz
(14)
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a,.

b,

a,

V+eFx,
V-

with the transfer matrix T; & i given by

(20)

X -N+2 I p

The initial values a& and b~ of the coefficients a,- and b,.

are obtained by means of the asymptotic condition (3).
The homogeneous EQW solutions yz O read here

Ipg (x)= Ai
eFx+ V; —E

(21)
Qw
No. 2

&- layer No. (-N+3)
QW

&- layer No. (-N+2)

&- layer No. (-N+1)

The general solution of this equation is given in terms of
the Airy functions Ai (z ) and Bi (z) For x in. layer i one
has

qE~Ow(x)=a, Ai
eFx+ V; —E

AO

FICx. 1. Potential profile of a QW structure consisting of N
QW s with well thickness ds, barrier thickness da, and height V
in an electric field F.

for x layer i. Thus condition (3) yields

a~=1 and b~=0 . (22)

All other coeScients a, and b; ( N~i (N—) can be cal-
culated by applying the transfer matrix given in Eq. (20).

Once the wave function yz(x ) is known, the deter-
mination of the DOS p(E ) calls for the evaluation of the
normalization integral (5). Utilizing Eq. (15) we find

p(E) =(~ —x+" x) po—
2 —1/3

$2
po= eF

2m

(23)

III. RESULTS

Here po represents the DOS in a homogeneous electric
field without the SL.

eFx+ V, —E
+b;Bi (15)

with

8=[(eF) /(2m*A')]'

(17)

where

being the electro-optical frequency. The determination of
the coeKcients a; and b,. is carried out using the standard
quantum-mechanical matching conditions at the inter-
faces. Employing Eq. (15) they can be written as

a; ai
M '

b
=M

i —1 l

SL structures consisting of GaAs wells and
Ga& „Al„As barriers are considered. The electron mass
m * equals 0.0665mo. The structures to be examined here
are listed in Table I. The zero-field energy spectra have
different character in the energy regions below and above
the barriers. They are discrete below the barriers, and
continuous above them. This results in different field
effects in these two regions.

TABLE I. Parameters of the structures examined.

Name No. of QW's d~ (A) d~ (A) V (eV)

eFx,-+ V —E
AO

eFx;+ V —E
A'0

eFx;+ V —E
AO

eFx;+ V —E
AO

(18)

and Ai ' =d Ai(x ) ld xetc. A transfer-matrix representa-
tion follows as

SQW1
SQW2
SL1
SL2
SL3
SL4
SL5
SL6
SL7
SL8

1

1

5

10
10
10
10
10
50

200

51
51
51
51
51
51
74
51
51
51

51
23
51

102
40
23
51
51

0.2
0.366
0.2
0.2
0.2
0.2
0.366
0.366
0.2
0.2
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FICi. 5. Average peak separation 6 vs F for (a) SL4, (b) SL3,
and (c) SL2 [dashed line, h~=eF(ds +ds)].

tion. This is appreciably less than the zero-field band-
width, which often has been used as measure. Further-
more, the shape of the DOS peaks changes, as can be seen
in Fig. 3. With increasing field the peaks become broader
and broader. For very high fields F ~ 10 —10 V/cm the
clear WS periodicity vanishes. This is due to the onset of
tunneling through the barrier if AO becoming greater than
V (see Fig. 7), which causes the localization and the cor-
responding WS ladder to disappear.

Figure 3 reveals that the spacing between the peaks at
either edge of the band is smaller than the spacing of cen-
tral peaks. This difference follows from their different lo-
calizations: the outer peaks belong to states localized in
the outer QW's, and the central peaks to states in the
central QW's. Hence, the outer peaks originate from
states that lack the interaction with other states on their
respective continuum sides. The low-field energetic
difference of the energetically lowest and highest states is
a measure of the (zero-field) bandwidth. Our calculations
yield a bandwidth of 0.6 meV for SL4 and 59 meV for
SL2.

The so-called "above-barrier" states have been
neglected so far. This term refers to states with energies
between V z+eFx z+ &

and V&+eFx~ that produce
DOS peaks, but do not correspond to zero-field bound
states. A comparison of Figs. 8(a) and 8(b) reveals the na-
ture of such "above-barrier" states. Figure 8(a) depicts
the squared wave function of a WS state confined to the
seventh QW: its energy is —0.266 eV and the level lies
inside the QW. The "above-barrier" state that belongs to
the same QW depicted in Fig. 8(b) is localized in the bar-
rier layers surrounding the seventh QW. Clearly, its lo-
calization is not as complete as that of the WS state. The

67. 3
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Rn,
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V

400
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64. 6

54. 8
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51.0
&
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I
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I

1500

x (quantum well index)

FICs. 6. ~p~ vs x for (a) SL4, F=0.5 kV/cm, (b) SL2, F=0.5
kV/cm, and (c) SL2, F= 10 kV/cm. Peak energies are given in
meV.

FIG. 7. Field dependence of characteristic energies for a
structure with N 5, d~=d&=51 A, and V=200 meV. The
dashed line indicates V, the dotted line AO, whereas the solid
line represents eFd. The inset shows the magnified lower left
part of the drawing.
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FIG. 8. Localization of (a) a WS state (SL3, F=1.1X10'
V/cm), (b) an "above-barrier" state (SL3 F=1.1X10 V/ )

an (c) a state corresponding to a "short-period" oscillation
peak (SL3, F= 3 X 10 V/cm} in terms of ~y~ vs x. The dashed
line indicates the energy of the state.

energy of this "above-barrier" state is —0. 104 eV, and as
can be seen in Fig. 8(b), this energy lies above the seventh
QW. Obviously, the "above-barrier" states are pushed
downward out of the continuum above Vz+eFxz. For
higher fields, more of these states occur. The "above-
barrier" peaks in the DOS are wider and not as pro-
nounced as WS peaks, because the confinement of the
corresponding wave function is weaker.

So far, results were presented for SL's with ten or fewer
QW's. In experiment, SL's with larger numbers of QW's
are frequently used. Of course, these structures generally
have the same properties as smaller ones (WS ladder, lev-
e separation, localization, etc.). Investigations of SL's
with 50, 100, or even 1000 QW's in low and moderate
electric fields reveal that the splittings of the two —five
outermost Stark levels can differ from the splittings of the
other levels. This is due to the finiteness of the SL struc-
ture, i.e., the missing periodicity. It is a further hint on
the localization of the electronic states. Since Stark levels
that are separated equidistantly do not feel the impact of
the external barriers, the wave functions can extend over
5 —11 QW's.

2. Structures with more than one band below the barrier

FIG. 9. DOS of SL5 (a) for F=4 X 10 V/cm, (b) for
F=1X10 V/cm, (c) for F=3X10 V/cm.

their different bandwidths for zero field, where a higher
band is wider than a lower one. The electric field pushes

the WS peaks towards lower energies, except that the en-

ergetically highest peak of each band remains almost
unaltered [Figs. 9(b) and 9(c)]. With increasing field, the
WS ladder spacings of both bands approach AF. Thus, a

rising field causes the higher band to approach the lower

one. When the bands cross, the DOS peaks are lowered

and broadened considerably. This indicates the onset of
resonant tunneling between the upper and lower band

states, i.e., interband tunneling occurs.

50

C&

bp0

SL structures composed of QW's with more than one
zero-field bound level below the barrier are investigated
in this section. In general, the effects described in the
previous sections occur in these structures as well, and
we will focus here on new properties.

The low-field DOS of SL5 is shown in Fig. 9(a). It ex-
ibits two bands below the barriers. The different spac-

ings between the WS levels of the two bands follow from

10

0.05
I

0.35

E (eV)

FIG. 10. DOS of SL6 for F= 1 X 10' V/cm.
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The large bandwidth of a SL may result in an incom-
plete Stark ladder for bands close to the barrier potential
V. An example of an incomplete Stark ladder is depicted
in Fig. 10. Only the six lowest levels have an energy less
than the corresponding aalu~ of V„~+eFx„~. The
remaining four states are pushed upward into the contin-
uum above Vx+ F~N

0

0-
(a)

B. Above-barrier region

1. Analytic results
bO0

11
WJJadsLIIJ +Bala J.I J.~~ ~a.~

era pp'1'r&gQ p1 I &'I &

9
(c)

Assuming low fields and a small number (1,2, . . . ) of
QW's, the coefficients a ~ and b & governing the DOS
in (23) may be determined analytically by means of the
asymptotic expansions of the Airy functions. Consider-
ing only the leading terms, one obtains expressions for
a & and b & of the general form

0.5

E (eV)

2.0

a ~, b ~= gc fi(5 ~+, )f2(5~) FIG. 11. DOS of (a) SL7 for F=SX10 V/cm, (b) SL8 for
F=SX10 V/cm, (c) SL7 for F=SX10 V/cm, (d) SL7 for
F=SX10 V/cm.

XQh (5, —5 +, )

J

E —eFx,
y;= —'a; +—,a =

4 ' ' A'0
(25)

1P3/2+ ~ E —V —eFxJ
r,e

(26)

where i runs over all well layers (i = N+ 1, N- —
+3, . . . , N —1 ), and j over barrier layers
(j= N+2, N—+4, . . .—, N —2). Furthermore,

the band structure is still visible for low fields (F (10
V/cm) [Fig. 11(a)]. Increasing the field above 10 V/cm
results in the vanishing of gaps [Fig. 11(c)].

A close look at the low-field DOS [Figs. 12(a) and
12(b)] shows that its most striking feature is a kind of os-
cillation manifesting itself as a modulation of the dark
areas. Figure 12(c) exhibits these "long-period" oscilla-
tions revealing that they consist of "short-period" oscilla-
tions. The latter ones are described analytically by the
functions f, and f2 in expression (24). For the positions

and each of the functions f„f2, g; and h stands for a
sin or cos function. The coefficients c are products of

+1/4 +1/4a,— and P,—,with the sum of the powers equaling
zero. The number of terms to be summed up in (24) de-
pends on the number of QW's in the SL. For a SQW, the
sum has four terms; in the case of a DQW there are al-
ready 128 terms. These analytic results will be useful for
the interpretation of the numerical DOS spectra below.

11.0

10.0
I

0.30 0.45

(a)

0.60

2. Numerical results

The zero-field DOS spectrum is continuous for energies
above V~. For an infinite SL one gets a band structure
with clear gaps. Since only finite numbers of QW's are
considered here, the gaps are incompletely manifested de-
pending on the actual number of quantum wells. As
shown in Figs. 11(a) and 11(b), an increase of the QW
number results in more-pronounced gaps. However, a
structure with five QW's (SL1) has its gaps already at the
same positions as structures with many more QW's (see
Fig. 12). Imposing an electric field on the structure has
to be considered as a disturbance of the regular order of
the quantum wells, reducing the wave function overlap
and, thus, affecting the formation of gaps. Nevertheless,

bO
O

o.o-
I

0.30 0.45

(b)
I

0.60

10.4-

I I I

2.48 2.49

E (eV)

FIG. 12. DOS of (a) SL1, (b) SL7, both for F=5 X 10 V/cm,
and (c) SL7 for F=3X10 V/cm.
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E„' of the nth peak, one obtains from (26) in lowest ap-
proximation with respect to F

E„'= [—,
' m. ( n —

—,
' ) ] fz8+ V . (27)

The proportionality of E„with 0 indicates a similarity of
these oscillations to the well-known Franz-Keldysh oscil-
lations. The corresponding periods 6'„at large n are ap-
proximately

35

d)
E

25

I

15
I

25
I

35

AeF

&2m *E' (28)

500

F (kV/cm)

Surprisingly, they are linear in the electric field, although
they have nothing in common with the WS levels. The
linear dependency of 6', on F is also found in the numeri-
cal results. For F= 5 X 10 V/cm and E =2.5 eV one has
6'=0.075 meV, which agrees very well with the value of
0.076 meV obtained from the calculated DOS spectra.
The lowest-order approximation in Eq. (28) breaks down
for F ~ 3 X 10" V/cm. For higher fields (F ~ 8 X 10
V/cm) one "long-period" oscillation consists only of a
few "short-period" oscillations.

An inspection of the "long-period" oscillations in Fig.
12 shows that all bands have the same number of them,
the number being given by the number of SL periods.
This observation indicates a similarity between the
"long-period" peaks and the band or WS levels below the
barriers. Analytically, the "long-period" oscillations are
described by the functions g; and h in (24). As their
respective arguments (y; —y;+, ) and (5J —5~. +, ) indi-
cate, these oscillations emerge from interferences of wave
functions reAected at the two interfaces of a layer. In the
lowest approximation with respect to F in expressions
(25) and (26), one obtains for the position E„' of the nth
peak

2n 772 I
and for the corresponding period

QE„' .
2m *dw

(30)

This implies that, for low fields, the oscillation period
and, hence, the bandwidth, does not depend on the elec-
tric field (Fig. 11).

The arguments of the g,. and h in Eq. (24) refer to well
and barrier regions, respectively. If i and j are taken for
adjacent layers, the g, and h. may be combined into one
expression with an argument (y, —5, +~) referring to a
whole SL period. For not-too-small N, the product of the
thus-obtained expressions approximates the N-fold prod-
uct of the g, and h in (24) very well. Since the arguments
of the approximate expression vary only slightly with i,
one can substitute the X-fold product by one expression
to the Nth power. The latter can be expressed in terms of
trigonometric functions with shorter periods, e.g. ,
cos (kd )= cos(Xkd )+. . . . This explains why the
number of "long-period" oscillations per band equals the
number of periods X. Investigating the periodicity due to

300E

C]

100

100
I

200

F (kV/cm)

I

300 400

FIG. 13. Spacing 6' of "long-period" (%S) peaks as a func-
tion of Beld Fof SL3 at E=2.5 eV.

IV. CONCLUSIONS

We have examined the effects of external electric fields
on the DOS of various finite SL structures embedded
within two infinitely extending barriers. The DOS spec-
tra give clear evidence for the existence of WS localiza-
tion in the below-barrier region. The existence of a WS

the "long-period" oscillations of SL3 yields a SL period d
of =100 A, coinciding very well with d =d~+d~ =102
0
A. If the field strength can no longer be considered to be
low, 6'„starts to depend on F. Numerical results are
shown in Fig. 13. Up to field strengths of about 5X10
V/cm, 6„' remains constant, in agreement with the low-
field approximation (30). Then b, '„rises with F monoto-
nously up to 2 —2. 5 X 10 V/cm. Increasing the field
strength further, any "long-period" oscillation splits into
two at a certain critical value, changing the period to
eF(dw+dii). From this field strength on, the "long-
period" oscillations behave similarly to the WS ladder in
the below-barrier region. For fields greater than 5X10
V/cm, the "long-period" peaks vanish [Fig. 11(d)]. This
resembles the occurrence and disappearance of the
Wannier-Stark ladder below barriers. If eFd exceeds
several long periods for zero electric field, the "long-
period" peaks with period eFd occur. If the field is in-
creased further, AO becomes greater than the band gap,
which is about 150—200 meV, and interband tunneling
becomes possible. Then the "long-period" peaks disap-
pear. In spite of their similarity with WS peaks below the
barriers, the "long-period" peaks may not be traced back
to WS localization [Fig. 8(c)], as this may be done below
the barriers. The wave functions for "long-period"-peak
energies remain delocalized in the whole range of field
strengths.
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ladder depends on the field. It occurs only in a certain
field range which depends on the actual parameters of the
heterostructure. The states forming a WS ladder at
higher fields evolve from the zero-field bound states. The
level separation for the WS localization to occur amounts
to a certain portion of the zero-field bandwidth (rather
than the whole). For moderate and high fields, states
from above the barriers are pushed downwards into the
Stark ladder region. They form the "above-barrier"
states, whose peaks are less pronounced and broader than

those stemming from the WS levels.
The DOS in the spectral region above the barrier is

characterized by "short-period" oscillations with a super-
imposed "long-period" oscillation. The "short-period'*
oscillations behave similar to Franz-Keldysh oscillations,
whereas the "long-period" oscillations resemble a WS-
like behavior in a certain field range, although no WS lo-
calization is observed above the barriers. Similar results
are obtained for SL's embedded within two wells instead
of barriers.
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