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Modnlational instability of a wave scattered by a nonlinear center
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We consider scattering of a quantum particle by a potential which includes a 5 function whose ampli-
tude is nonlinear in the wave function. Solution of the scattering problem in this model is nonunique in

a certain interval of amplitudes of the incident wave. We demonstrate that the nonlinearity gives rise to
an oscillatory instability of the scattering solutions, which is a localized version of the well-known modu-
lational instability of the nonlinear Schrodinger equation. We also consider a nonlinear regime slightly
above the instability threshold. The results obtained can be applied to the problem of single-particle tun-

neling through an ultrashort junction in the presence of multiparticle interaction. Our prediction is that
the instability gives rise to an ac component in the transmitted current.

I. INTRODUCTION

A theoretical and experimental study of single-electron
tunneling has become a rapidly developing branch of con-
temporary solid-state physics and physical electronics
(see, e.g., the recent review'). An important issue is the
inAuence of the many-particle interaction on single-
particle tunneling. It was proposed in Ref. 2 that in the
simplest approximation of the Hartree type the interac-
tion can be taken into account by adding a phenomeno-
logical cubic term to the Schrodinger equation governing
the tunneling. Note that a similar effective nonlinear
Schrodinger equation (NSE) was employed to describe
the dynamics of collective intramolecular excitations (the
so-called Davydov solitons) in long polymer chains. In
Ref. 2, a NSE with a nonlocal nonlinear term was put
forward, and numerical simulations have demonstrated
that the nonlinearity gives rise to temporal oscillations.
(The first possibility of oscillations in systems of this type
was discussed in Ref. 4.) The objective of the present
work is to consider this effect analytically in terms of the
simplest NSE model,

il/, +g„=U(x)g+( A +B ~Q~ )$5(x) .

One may regard Eq. (1) as the dimenionless Schrodinger
equation governing the single-electron tunneling in an ul-
trashort junction (heterostructure ) represented by the
linear term proportional to 5(x); the many-electron in-
teraction is accounted for by the nonlinear term of the
Hartree type. It is assumed that tunneling across the ul-
trashort junction takes place on the background of some
smooth potential U(x). Apart from the tunneling in ul-
trashort junctions, there are physically meaningful prob-
lems of purely classical origin which can also be reduced
to the model Eq. (1). One may consider propagation of a
linear wave in an inhomogeneous dispersive medium
with an inserted strongly nonlinear element. The inho-

mogeneity gives rise to the potential U(x), while the local
nonlinear element is described by the terms proportional
to the 5 function. Particular examples can be found in
dynamical solid-state models, optical wave guides, plas-
mas, etc.

A fundamental property of the usual NSE is the modu-
lational instability (MI) of its solutions in the case corre-
sponding to B (0 (the NSE "with attraction"). It is nat-
ural to expect that the localized nonlinearity in Eq. (1)
may give rise to a local version of the MI. The objective
of the present work is to investigate this effect and its
physical consequences. To do this, in Sec. II we first
solve the scattering problem for the simplest version of
Eq. (1) with U =0,

l l/J, +q„,='{A +B
~ le ~

)1/r5(x) .

We concentrate on the case 3 & 0, B & 0, when MI is
possible. It is implied that the local inhomogeneity repels
the particles (A )0), while the nonlinear interaction is
attractive (B (0). This case has nothing to do with the
electron tunneling problem, as electrons repel each other,
but it can be related to another interesting problem, viz.
quantum diffusion of atoms at low temperatures. The
latter problem plays an important role in the theory of
quantum crystals, where the interaction between the
atoms is attractive. As in the case of electron tunneling,
we assume that the atoms tunnel across some ultrashort
junction in an efFectively one-dimensional system.

Of course, direct applicability of the models considered
in the present work to the real many-particle tunneling of
atoms (in the case B (0), as well as to the many-electron
tunneling in the case B )0 (see below), may seem disput-
able. However, the common experience gained from
analyses of the simplest nonlinear dynamical models
demonstrates that they may be quite useful as paradigms
which grasp basic qualitative features of the phenomena
to be modeled. In particular, a Hartree-type model simi-
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lar to those analyzed in this work has been very recently
set forward in Ref. 9 to model the many-electron quan-
tum dynamics of a heterostructure containing a narrow
potential well sandwiched between two narrow potential
humps. Numerical simulations of that model reported in
Ref. 9 reveal quantum-dynamical chaos which has no
classical counterpart. It has been stressed in Ref. 9 that,
although the model was introduced phenomenologically,
it might be regarded as a simplified version of a more
complicated model that could be derived in terms of the
screened Coulomb potential.

In Sec. II, we demonstrate that the nonlinearity gives
rise to a tristability of solutions of the scattering problem
in the model based on Eq. (2) in a certain region of ampli-
tudes of the incident wave. Next, in Sec. III, we consider
the stability of the solutions found in Sec. II. We demon-
strate that (and this is the central point of the work) lo-
calized MI does occur. Unlike MI in the usual NSE, in
our case the instability is oscillatory, i.e., it produces an
unstable mode oscillating at a certain eigenfrequency that
does not depend on the parameter B, i.e., in terms of the
underlying physical system, on details of the many-
particle interaction modeled by the nonlinear term.
Another important difference from the usual MI is that
ours has a threshold: it sets in when the amplitude of the
scattered wave exceeds a certain threshold (critical)
value. Physically, this means that the density of particles
in the incident wave must be su%ciently large to excite
the MI. The threshold does not depend on the frequency.

For the same model (2), in Sec. IV we consider a weak-
ly overcritical regime when the control parameter lies
slightly above its threshold value. We demonstrate that
in this regime the wave function P contains, as usual, in-
cident, transmitted, and rejected waves, all with the fre-
quency of the incident wave, plus additional transmitted
and rejected components with another frequency pro-
duced by the instability. Thus, the transmitted current
consists of two parts: a large constant one, and a small
variable part oscillating at the difference of the two fre-
quencies. The oscillations of the transmitted current is
the most important prediction of the present work. We
expect that it should be observable in the ultrashort junc-
tions, heterostructures, and in similar systems.

In Sec. V we consider the general model (1) with U(x)
in the form of a broad potential barrier. This time, we

I

are interested in the case 3 &0, when a narrow well ex-
ists on the background of the broad barrier. The local
wel1 gives rise to a discrete quasilevel, and the scattering
of the incident wave is resonant when its frequency (the
single-particle energy, in terms of the tunneling problem)
is close to the quasilevel. The localized MI is apt to
occur in this case, and we demonstrate that it exists at
any sign of B, unlike the model (2). The results obtained
in Sec. V for B )0, i.e., for the repelling particles, can be
directly applied to the above-mentioned electron tunnel-
ing problem which was the motivation for the present
work.

II. THE SCATTERING PROBLEM

We start the analysis with the model based on Eq. (2),
in which 3 )0 and B &0. A scattering solution to this
equation is 1ooked for in the form

( )
—ae I cox

Input+ be l coax IGjt x & 0 (3a)

Po(x)=(a+b)e' ' ', x)0 (3b)

where m) 0 is a given frequency. Evidently, the chosen
form of the solution satisfies the continuity of the wave
function at x =0. Integrating Eq. (1) over a small vicini-
ty of x =0 yields the following boundary condition (BC)
for g(x):

q (x =+0)—q (x = —0)=(A +Blql )ql

The insertion of Eqs. (3) into Eq. (4) yields an equation re-
lating the amplitudes a and b of the incident and reAected
waves. This equation can be conveniently represented in
the following form. Introduce the parameter p according
to the relation

a+b =a/(1+i@) .

Then, Eq. (4) admits real roots p, which are determined
by the equation

p(1+@ )=(A/2&co)(1+@ )+(B/2&co) al . (6)

A straightforward analysis demonstrates that the cubic
Eq. (6) has three real roots if AB & 0,

) 12', (7)

and lal lies in the interval

(4&co/27lBl )( A /4co+3)( A /2+co —+A /4' —3) & lal & (4+co/27lBl )( A /4co+3)( A /2&co+ V A2/4co —3) . (8)

p= A /2&co+ (B/2&co) lcl

-'A ——'+A' —12co& lBC'l &-'A+ —'+A' —12co .

(6')

(8')

Further analysis of Eq. (6) yields the bifurcation diagram
of the scattering solutions shown in Fig. 1. The diagram

In what follows, the actual control parameter for the sta-
bility analysis will be not a, but rather the amplitude
c =a +b of the wave function at x =0 [see Eq. (3)]. In
terms of c, Eqs. (6) and (8) take a simpler form,

takes into account the fact that, according to Eq. (8), the
multiplicity of the solution occurs in the finite interval of
values of lal . It can also be demonstrated that there are
two intersections between different branches of the solu-
tion which are shown in Fig. 1. Finally, one can identify
the branches which are surely unstable and those which
may be stable (respectively, dashed and solid lines in Fig.
1) by using the following well-known elementary
theorems of the bifurcation theory (i) when a pair of
branches appears "from nothing, " one of them must be
stable and the other one unstable; (ii) an intersection is



10 404 BORIS A. MALOMED AND MARK YA. AZBEL 47

I

I
I i

(tai & in ( Io I2) „ I 0 I2

FIG. 1. The schematic bifurcation diagram of the scattering
solution. The values (lal )~;„and (lal ),„are given by the ex-
pressions on the left- and right-hand sides of Eq. (8). f(p, } is
some function of the parameter p [Eq. (5)] whose particular
form is not important.

possible only between stable and unstable branches, and
it gives rise to the stability exchange.

III. THE MODULATIONAL INSTABILITY

The solutions shown as stable in Fig. l may be actually
unstable against modulational perturbations. To investi-
gate the modulational stability, we take the perturbed
solution

2(qA, —py)+( A +2Bc )(q —p) =0 . (16)

Equations (12), (13), (15), and (16) constitute a system of
equations for the six unknown parameters 0, p, q, y, A, ,
and I . Since the underlying equation (1) is a Hamiltoni-
an, the stability of the stationary solutions may be only
neutral, i.e., they are stable as long as I =0. From Eq.
(13), the stability requires y =A, =0, i.e., there must be no
localized eigenmodes. The instability sets in when there
appear infinitesimal positive g and k. The goal of the fur-
ther analysis is to find out how this happens. To that
end, we assume y and A, to be nonzero but vanishingly
small. Using the relation p/q =g/A, ensuing from Eq.
(13), we exclude p and q from Eq. (16) to arrive at the
equation

(To simplify the notation, it is hereafter assumed that the
phase of the complex amplitude a of the incident wave is
such that the amplitude c is real. ) The resolvability condi-
tion for the linear homogeneous system (14) reduces to
the following equations:

(A +2Bc ) +2(A +2Bc )(y+A, )+4yA, +4pq =B c
(15)

P(x, t) =g,(x, r)+ f, (x, r), (p —q) [y+ A, + —,'( A +2Bc ) ) =0 . (17)

where t)'to is the stationary solution given by Eqs. (5) and
(6) and the infinitesimal perturbation g, satisfies the
linear equation

i(i)/i )t + (gi )„=0 (9)

q2 y2 2 0 p2 P2

I =2qg=2pA, .

(12)

(13)

Next, the BC (10) gives rise to the following equations for
the amplitudes f, and g, :

off the point x =0. At x =0, linearization of the full BC
(4) yields the BC for 4&,

g, (x =+0)—P,„(x= —0)= Ag, +2Blcl Q,

+Bc2q4 e
—2int (10)

where, as has been defined above, c =—a +b. Solutions of
the linear boundary problem based on Eqs. (9) and (10)
are presented in the following form:

t((t, =f,exp[(iq —y)lxl+( —i 0+1 )t]

+g*, expI(ip —X)lxl+[ —(2' —Q)i+I ]t[ . (11)

Evidently, the chosen form of the perturbation f& satisfies
the continuity of g at x =0 and meets the physical
boundary conditions at infinity. There are no new in-
cident waves at x =+~, while new rejected and
transmitted waves may appear. The finite value of g at
lx l

= ~ implies that y and A, in Eq. (11)are non-negative.
Substitution of Eq. (11) into Eq. (9) yields the following

relations:

As it follows from Eq. (17), there are two possibilities—
either p =q or

y+A, = —
—,'(A +2Bc ) . (18)

In the former case, it immediately follows from Eqs. (12)
and (13) that y=A, and A=co. The latter relation implies
that this mode of the instability gives rise to no new fre-
quency. Then one finds from Eq. (15)

y=A, = —
—,'(A +2Bc )

+—,'( —ABc ,' A —
—,'B c———2')' (19)

It is easy to find that, at this point, the wave numbers of
the critical disturbance are

(p q)
—1 [(2'+ & A 2)l/2+(2ai & A 2)1/2] (21)

(recall that we assume A )0, B (0). The instability ex-
ists when at least one root (19) is real and positive. It is
straightforward to see that this takes place exactly when
c belongs to the interval (8'). Thus, this mode of the in-
stability should be closely related to the bifurcations
shown in Fig. 1, and a subsequent analysis demonstrates
that this instability is exactly that which is responsible for
the bifurcations.

A nontrivial instability mode is generated by Eq. (18).
According to Eq. (18), positive A yields no instability if
B )0. This complies with the well-known fact that in the
usual NSE "with repulsion" (B )0) there is no modula-
tional instability. If B (0, the instability sets in when
the amplitude attains the critical value given by the ex-
pression

2( iq+g)f, +(—A +2Bc )f, +Bc g, =0,
Bc f, +2(ip+A, )gi+(A +2Bc )gi =0 .

(14a)

(14b)
and the instability is oscillatory, i.e., it gives rise to the
pair of new frequencies
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(Q, 2' —Q)„=co++co —( A /16) (22) p, =+2', and, finally, in the lowest approximation one
obtains

A ~16' . (23)

In the region A & 12', the bifurcations shown in Fig. 1

are absent (the scattering solution is unique), and only
the oscillatory instability occurs. In the region
12' + A ~ 16', the scattering solution may be subject to
both instabilities; however, one can readily demonstrate
that in this case the oscillatory instability always sets in
prior to the bifurcation, i.e., at a smaller value of c . Fi-
nally, the oscillatory instability is absent in the region
A ) 16' [see Eq. (23)].

IV. THE WEAKLY NONLINEAR ANALYSIS
OF OSCILLATORY INSTABILITY

The nonlinear stage of development of the oscillatory
instability can be analyzed in the weakly overcritical
case, when the amplitude of the underlying stationary
wave lies slightly above the critical value (20),

0&5=IBIc'——,'A « —,'A . (24)

We assume that f),g) -v'5. The amplitudes can be
found if one closes equations of the perturbation theory
at the order -6 . To do this, one should first proceed
to the order -5. At this order, it is necessary to add the
combinational harmonics to the linear eigenmode (11),

iq) x) —iA)t ~ ip)x) —i(2' (i)) —t

iq2)x) —i(2Q) co)t +
—ip2)x —i(3' 2Q))t-+ pe +g2e

(25)

where Q, is assumed to be close to the critical value given

by Eq. (22), q, =QQ„p) —=+2' —Q„q, =+20)—co,

p2
——+3'—2Q„and the amplitudes f2, g2, and h2 are

assumed to be -5. Inserting g—= itto+P, into the non-
linear BC (4) and equating coefficients in front of the
combinational harmonics, one can express fz, g2, and h2
as quadratic combinations of fi and gi. Next, closing
the perturbative expansion for the fundamental harmon-
ics (those with the frequencies 0) and 2' —0)) at order
5 ~, one arrives at the equations (14) with the nonlinear
corrections -5 ~ . As the coefficients of Eqs. (14) are
complex, the resolvability condition for the correspond-
ing nonlinear equations should give two real equations to
determine

If, I

-5 and the frequency shift 0)—0„-5.
Next, the relation between g, and f, can be derived from
Eqs. (14) at the critical point

g, = (4iq„/ A—)f, . (26)

In a general case, the eventual expressions are very
cumbersome. So, consider the case A «16' [cf. Eq.
(23)]. Then, 0)——I /2'( A /16), q i

——A /16'/2',

Note that the threshold amplitude (20) does not depend
on (ti, while the critical frequencies (22) do not depend on
B.

The present instability exists if

If i I'=25/IB, &)—II.,=0 . (27)

Thus we conclude that the oscillatory instability gives
rise to an ac component in the full current j=if—„it)*with
the amplitude -&5, oscillating at the beating frequency
0„—co=+co —(A /16) +O(5).

V. THE MODULATIONAL INSTABILITY
ON THE BACKGROUND OF A SMOOTH POTENTIAL

Let us consider the model (1), which includes the
smooth potential U(x) and a local potential well ( A & 0).
In this well, one can get a discrete quasilevel, whose wave
function is localized near x =0. If its localization length
is much smaller than a characteristic scale of the smooth
potential U(x), the quasilevel exists at the value of the
single-particle energy (frequency)

co =U ——'A0 0 (28)

Q U()
—0+ ( —,

' A —
U() +0 )

' = ,' (2Bc + A ) —. — (29)

Equation (29) should be combined with Eq. (15), which
reads at the threshold

QU() —0(—'A —U()+0)'i =—'B c
2 0 4 (30)

Excluding the frequency 0, one finds from Eqs. (29) and
(30) that the instability sets in at

(Bc2+ A)2= 3 A ~ (31)

Recall that in the model (2) the instability exists only at
8 &0. Now the situation is di6'erent. By virtue of Eq.
(31), at B & 0 the instability threshold lies at

IBlc'=(v'3/2 —1) I
A

I
=-',

I
A I; (32a)

at 8 )0 it lies at

Bc =(v'3/2+1)I AI = —", I AI . (32b)

Analysis of the weakly nonlinear stage can also be
developed for the "underbarrier" instability. However, it

where UO=U (x =0). It is well known that the reso-
nance takes place when the incident wave has a frequency
co close to co0. The wave function grows exponentially in-
side the barrier, reaching a maximum value at x =0. As
we have seen above, the instability sets in when the am-
plitude of the wave at x =0 attains a certain threshold
value. Therefore, in what follows we confine ourselves to
the case cu=co0.

We again seek for the eigenmode of the stability prob-
lem in the general form (11). The same equations,
(12)—(16), remain valid if one replaces ()i by
coo

—Uo ————'A [see Eq. (28)]. However, the eigenmode
is now localized inside the barrier, so that the stability
condition I =0 holds as long as p =q =0, while y and A.

are positive [see Eq. (13)]. To find the instability thresh-
old, we again use Eq. (18), which at the threshold (with
infinitesimal p and q) takes the form



10 406 BORIS A. MALOMED AND MARK YA. AZBEL

cannot be presented in a universal form. Indeed, the non-
linear analysis should determine two quantities: The am-
plitude ~f, ~

of the disturbance and the frequency shift
0, Q—„(see Sec. IV). However, Eqs. (14), written for the
locahzed (exponentially decaying) wave function g&, have
purely real coefficients, so one arrives at one equation for
~f, ~

and 0,—0„. To lift this degeneracy, one should
take into account the exponentially small components of
the wave function under the barrier. In principle, this
can be done, but the result depends upon a particular
shape of the smooth potential U(x).

VI. CONCLUSION

In this work, we have found the localized modulational
instability (MI) generated by the localized nonlinearity in
the Schrodinger equation. Unlike the instability in the
usual NSE, the localized MI is oscillatory, and it has the
threshold. We expect that this instability occurs in a
broad class of models. For instance, the numerical simu-
lations reported in Ref. 2 demonstrated essentially non-
linear oscillations in the Schrodinger equation with a
nonlocal nonlinear term, governing resonant tunneling of
a Gaussian pulse through a double barrier (see also Ref.
9).

Our general conclusion can be formulated as follows.
The many-particle interactions in mesoscopic systems (ul-
trashort junctions, etc. ') should give rise to the MI of the
wave function, which will manifest itself by the ac com-
ponent of the transmitted current in the dc-driven sys-
tems. We believe that the search for this effect could be a
relevant problem. As was said above, one can expect that
the variant of our model with attraction between the par-
ticles should be a phenomenological model for diffusion
of atoms in a quantum crystal, while that with repulsion
directly applies to the tunneling of electrons through ul-
trashort junctions. An experimental realization in other
types of heterostructures may be feasible also. '

To give some idea of the conditions necessary for this
effect to be observed, let us note, first of all, that the fre-
quencies (22), at which MI sets in the system with attrac-
tion, do not depend on the parameter B, i.e., on details of
the many-particle interaction accounted for by the non-
linear term. According to Eq. (20), one should provide
for a sufficiently high density of the particles in the in-
cident wave to excite the instability. Simultaneously, Eq.
(23) tells us that the frequency co, i.e., the single-particle
energy in the incident wave, must be sufficiently large
also. It is also noteworthy that the threshold density of
the particles necessary to excite MI [Eq. (20)] does not
depend on the single-particle energy. Both Eqs. (20) and
(23) imply that, the weaker the short potential barrier
characterized by parameter A, the easier it must be to
observe the effect.

If one is searching for the effect predicted on the back-
ground of the broad potential barrier U(x) (in particular,
in the case of the repulsive interparticle interaction), it is
necessary, as emphasized in Sec. V, to choose the single-
particle energy close to the value of the quasilevel gen-
erated by the narrow potential well. Note that in this
case the critical frequencies also do not depend on the pa-
rameter B [see Eqs. (29)—(32)].

As mentioned in the Introduction, the same effect can
also be realized in purely classical dispersive media with
an inserted nonlinear element. Deeper into the unstable
region, the development of the instability may give rise to
dynamical chaos. However, investigation of the deeply
unstable region should be done numerically (recently,
chaotic dynamics in a model similar to ours were ob-
served in the numerical simulations reported in Ref. 9).
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