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The effects of interface optical-phonon and confined slab LO-phonon modes on the polaron
cyclotron-resonance frequency are investigated for a GaAs/A1As quantum well. Using degenerate
second-order perturbation theory, the polaron Landau levels are calculated and the polaron resonant re-
gion is investigated. In order to know the relative importance of the different resonant frequencies we
present a full calculation of the magneto-optical absorption spectrum. At a fixed magnetic field we
found four different peaks in the absorption spectrum. . The relative oscillator strength of the different
peaks changes with increasing magnetic field. For comparative purposes, the polaron Landau levels and
cyclotron mass are also calculated using only the bulk LO-phonon modes. The influence of the finiteness
of the confinement potential is investigated. We found that the interface-phonon modes influence the
magnetopolaron resonance considerably near the optical-phonon frequencies for narrow wells. In the
limit of zero magnetic field we recover our previous results and in the case of an infinite-barrier quantum
well we are able to recover the results for a two- and three-dimensional system.

I. INTRODUCTION

Polarons in polar semiconductors and ionic crystals
have been extensively studied both theoretically and ex-
perimentally. ' In the presence of a magnetic Geld the so-
called resonant-polaron effect occurs. ' These studies
show that the Landau levels are modified by the
electron —LO-phonon interaction in the following way: (i)
they are shifted to lower energy, (ii) the slope of the Lan-
dau levels versus the magnetic field is changed, (iii) the
unperturbed Landau levels split near the LO-phonon en-
ergy, and, (iv) in high magnetic fields the lower branch of
the split Landau levels is pinned to the LO-phonon
branch. In cyclotron-resonance experiments " on bulk
materials the mass renormalization of the electron due to
polaron effects can be observed.

Recent developments in the semiconductor technology
have made it possible to create quasi-two-dimensional
(Q2D) electron systems. For fundamental research the
most important systems are based on GaAs/Al Ga& As
heterojunctions, quantum wells, and superlattices because
of the low disorder. In the last decade, polaron effects in
two-dimensional (2D) systems' have received consid-
erable attention. Theoretical investigations, using bulk
LO-phonon modes, show that the behavior of the polaron
Landau levels and the cyclotron mass in a 2D system is
qualitatively very similar to the three-dimensional (3D)
equivalent. But it was found that polaron effects are
enhanced in a 2D system. Several scaling relations be-
tween the quantities in 2D and in 3D have been derived
by Peeters and Devreese. ' Later studies have found
that, in a real 2D system, the electron-phonon interaction
is reduced by many-body effects. ' '

In all the above works, it was assumed that the LO-
phonon modes were not influenced by the presence of the
interfaces. And most of the theories are for single semi-
conductor heterojunction structures. On the other hand,

we know that in a Q2D semiconductor structure the pho-
non modes are modified by the presence of the interfaces.
Recently, the optical-phonon modes in a Q2D
semiconductor-structure system have been studied
and the electron-phonon interaction Hamiltonian was de-
nved.

In the absence of a magnetic field, several theoretical
results have been obtained on polarons in Q2D sys-
tems where interface- and slab-phonon modes are in-
cluded. Only for very narrow quantum wells are the re-
sults quantitatively different from the bulk-phonon case.
In the presence of a magnetic field, Gu, Kong, and Wei
and Liang have calculated the cyclotron frequency of a
polaron in a polar slab in weak magnetic field with
surface- and slab-phonon modes. Gu, Kong, and Wei
studied the polaron Landau levels in a quantum well,
where only the lowest Landau level associated with the
first two electric subbands are calculated. Lin, Chen, and
George studied the bound-polaron resonance in a
GaAs/Al Ga& „As quantum well. Their result shows
that, due to the interface phonons, the 1s -2p+ transition
of a bound polaron is pinned to the TO-phonon frequen-
cy in the limit of high magnetic fields in a 125-A quan-
tum well. The present investigation does not support this
conclusion.

In the present paper, we report an investigation of the
polaron Landau levels and cyclotron-resonance spectrum
in a quantum well as induced by the electron —optical-
phonon interaction. The interface optical-phonon and
confined slab LO-phonon modes, as well as the 3D bulk
LO-phonon modes, will be incorporated in our calcula-
tions.

We will choose a GaAs/A1As quantum well as our cal-
culation model. The confinement potential of the quan-
tum well will be assumed along the z direction, and the
interface of the quantum well in the xy plane. A rnagnet-
ic field is applied perpendicular to the interface. We
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denote GaAs as material 1 and AlAs as material 2. The
material parameters are given in Table I in Ref. 44.
The conduction-band mass of GaAs m» =0.067m 0,
where mo is the electron mass in vacuum. The LO-
phonon frequency of GaAs will be denoted by HALO. Di-
mensionless units are used such that R=coL~= m» = 1.

Theoretically there are two different viewpoints in cal-
culating the cyclotron-resonance frequency. One is by
starting from the position of the Landau levels, and the
cyclotron frequency is given by the difference between the
Landau levels. Another is by calculating the magneto-
optical absorption spectrum, and the cyclotron frequency
is determined by the position of the peaks in the absorp-
tion spectrum. In the present paper, we will calculate
both the polaron Landau levels and the cyclotron-
resonance spectrum. First, we will calculate the polaron
Landau levels using degenerate second-order perturba-
tion theory. Interaction with interface- and slab-phonon
modes will be included. We will compare our results
with the case where the electron interacts with 3D LO-
phonon modes. Second, we present a calculation of the
magneto-optical absorption spectrum from which we will
obtain the cyclotron-resonance frequency and the oscilla-
tor strength of the different peaks. This will allow us to
know the relative importance of the different peaks in the
spectrum.

The present paper is organized as follows. The Hamil-
tonian for the coupling of an electron to the optical pho-
nons in a GaAs/A1As quantum well is given in Sec. II.
In Sec. III the polaron Landau levels in such a system
will be calculated using degenerate second-order pertur-
bation theory, from which we obtain the cyclotron fre-
quency. 3D LO-phonon modes and the interface and
confined slab LO-phonon modes are considered. Two
different confinement potentials, infinite- and finite-height
barrier quantum wells, are used in order to investigate
the inhuence of the confinement potential on our results.
In Sec. IV the magneto-optical absorption spectrum and
the related memory function with the interface- and
slab-phonon modes will be calculated. Our conclusions
are presented in Sec. V.

II. THE HAMII. TONIAN

For completeness we give a short review of the Hamil-
tonian. The system under consideration is described by
the following Hamiltonian:

H=H, +H h+H,

with

2 2

H, = + (J2Y+eBx) + + V(z),Px 1 5'z

2mb 2mb 2mb

H~„=g IIicoq(aqaq+ —,
' ),

q

(2)

where 8 is the magnetic field directed along the z axis, p
(r) the momentum (position) operator of the electron
V(z) the confinement potential of the quantum well, a
(aq) the creation (annihilation) operator of an optical
phonon with wave vector q and energy A~q, and mb the
electron-band mass which is given by

(4)

where m» and mb2 are the electron-band mass of GaAs
and AlAs, respectively, and 8 is the width of the quan-
tum well.

For an electron in a Q2D system interacting with 3D
bulk LO-phonon modes, the electron-phonon interaction
Hamiltonian H, in Eq. (1) is given by the Frohlich in-
teraction Hamiltonian

~( V a eiq r+ Vs&Pe iq r).
ep ~ q q q q

q

(5)

where

V = —ikcoLO
2mb ]~i.o

1/4

II/ 4vra I / Vq

and a& is the coupling constant of the material inside the
quantum well.

In a semiconductor heterostructure the phonon modes
are modified because of the presence of the interfaces.
For a single GaAs/A1As quantum-well structure, there
are four types of optical-phonon modes interacting with
the electrons: (1) symmetric interface optical-phonon
modes with frequency co++(q~~ ), (2) antisymmetric inter-
face optical-phonon modes with frequency co„+(q~~), (3)
confined slab LO-phonon modes in the well with frequen-
cy coL„and (4) half-space LO-phonon modes in the bar-
rier layers with frequency coL2.

The dispersion relation for the interface phonons is
given by

1
~I, I-(qll ) ' I I (Cl( &L1+ MT2)+62( ML2+N Tl)I 2 2 I 2 2

2(~'I+ e2, )

1/2

—t l. ~l(~LI+~T2)+~2(~L2+~TI)l (~1+ 2)(el~LI~T2+~2~L2~TI ) I
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FIG. 1. The dispersion relations of the interface-phonon
modes in a GaAs/A1As quantum-we11 structure.

w w
where e(=e &(1—yle " ), e2=e z(1+y(e " ), and
I =S, 2 refers to the symmetric (S) and antisymmetric
( A ) modes, respectively, ys = 1,y „=—1, col
=co& (eo„/e„), v=1, 2. In Fig. 1 the dispersion curves
of the interface-phonon modes in a GaAs/A1As
quantum-well structure are plotted. It is seen that
cog =coy-], co~ =coI ],cog + =coy-2, and 67/ + =coL2 at

qlI O' When qll goes to infinity, ~1, + qadi
=~+'

(q~~ ~~ ) =co . The ( —) modes occur in the
reststrahlen branch of GaAs, the (+) modes in that of
A1As.

The confined slab LO-phonon modes are dispersionless
and with frequency coI &, but their momenta in
the z direction are quantized and q, =jm /8' j= 1,2, 3, . . . ,j,„,where j~,„=int( W/ao), ao =5.65 A is
the lattice constant of GaAs.

The electron-phonon interaction Hamiltonian can be
written in the following form:

where I,.(q~~, z) is the coupling function that describes the
coupling strength of a single electron at the position z
with the jth optical-phonon mode with the dispersion re-
lation co~(q~(). The expression of the coupling function
was given by Eqs. (13)—(17) in Ref. 44.

III. THE POLARGN LANDAU LEVELS

The state of a bare electron in such a system is deter-
mined by the Hamiltonian H, . The eigenenergy of the
bare electron is

mb)mb2
m, =

P mb2+ Pb mb (
(10)

where P„(Pb) is the probability to find the electron in-
side (outside) the quantum well. The corresponding wave
function can be written as

E„ I =Ace, (n + ,' )+E(', —

where EI is the electric level in the z direction, n is the
Landau level index, co, =eB/m, is the unperturbed cy-
clotron frequency, and m, is given by

'P„k &(x,y, z) =
n,

m co
1/4

1 H„(+m, co, /fix')exp
2"n!

—m, co,x '
ik y

L

f2 2
Ez= l2 l =1,2 3,

mb)
(12)

where x'=x+fik~/m, co„H„(x) are the Hermite poly-
nomials, and P&(z) is the wave function in the z direction
as determined by V(z) in the electric subband l.

For an infinite-barrier square well, one has (/ 2mb(E (
tan

. 2

' 1/2
mb, ( Vo E;)—

(15)
mb2E )

and the wave function is given by

where V0=0.915 eV for a GaAs/AlAs quantum well.
The lowest electric level E', is determined by the equation

PI(z) =&2/W sint'(z + W/2)lvr/W j, (13)

for ~z~ ( W/2, and 1'&(z)=0 for ~z~ ) W/2. Consequent-
ly, P =1,Pb=0, and mc mb

And for a finite-barrier square well, the confinement
potential can be expressed in the following form:

0, Izl & W/2"'= V„~.~
W/2, (14)

Bocos(kz), ized
~ W/2

1(z}= ' —k&( ~z~
—lV/2)

Bocos(kW/2)e ', ~z~ ) W/2,
(16)

where k =+2mb(E( /A', k& =+2mbz( Vo —E()/A', and
the normalization constant
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2k
1/2

80=
kW+sin(kW)+2k cos (kW/2)/k,

(17)

In the following, we will calculate the polaron correc-
tions AE„& to the unperturbed energy levels E„I due to
the electron-phonon interaction. Then the polaron ener-

gy is given by

(18)

Based on second-order perturbation theory, the shift of
the Landau level in a quantum well due to the electron-
phonon interaction is given by

is the matrix element of the electron-phonon interaction
H,~, the ket In, t;q) = In ) Il )s Iq) describes a state
composed of an electron in Landau level n and electric
level l and an optical phonon with momentum Aq and en-

ergy i6coq.

A. 3D bulk LO-phonon modes

In this case, the phonon modes in the system are as-
sumed to be the 3D LO-phonon modes of GaAs; the in-
teraction matrix element in Eq. (20) reduces to

with

(22)

(19)

and

I ( I

'q[['
)(I ) I2

ni gm' —
me )[[Lm' —

m(g )]2
m'~ (23)

M« „.& (q) = (n', t', qIH~ In, t;0) (20)

where 6„&=bE„ I
—AE0

&
within the improved Wigner-

Brillouin perturbation theory' (IWBPT), and

where
g~~

=Aq
l /(2m, ~, ), m =min(n, n'),

rn'=m a(xn, n'), and L ( j~~) are the Laguerre polyno-
mials.

Then the polaron correction b E„& is given by

dq, (24)

For an infinite-barrier quantum well, we obtain

I Gi, I (q, ) I'=
8ll'm q, 8'

[(l —l') m
—(q, W) ][(l+l') ~ —(q, W) ]

'2 sin (q, W/2), l +l'=even
X '

cos (q, W/2), t + l' =odd . (25)

For a finite-barrier quantum well, only the leading term l'=l = 1 in the sum over l' is considered in Eq. (24); in this
way we have

2k icos(q, W/2) —q, sin(q, W/2) sin[(2k —q, ) W/2] sin[(2k +q, ) W/2]
G»(q, )=Bo 2cos (kW/2) + +

4k, +q, 2(2k —q, ) 2(2k+q, )

sin(q, W/2)+
q,

(26)

Equation (24) can be used to calculate the polaron energy hE„&. But in small magnetic field, the sum over n' con-
verges so slowly that it is almost impossible to obtain the correct 8~0 limit results for AE„&. To avoid this defect, we
cast this sum into an integration representation as what was done in Ref. 20. For the energy below the LO-phonon con-
tinuum, i.e., E & Ep &

+AcoI o AE I becomes

—(co —6 —neo )u "
], —(n —n')co u —co uLo n! c y e c (1 e c )n

&2m. n

oo

X f dq. i. (t q.2) y IG«(q. ) I'e
0 1'=1

(27)
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where

and

p, = (1—e ' ),
2m co

n —1

I„(r)=( t)—"I,(r)+ g ( —r)~(n —1 —j)!,
j=0

(2&)

(29a)

(29b)

Ei ( t ) i—s the exponential-integral function. Note,

AcoLQ 6„&
—n %co, )0 for the energies below the LO-

phonon continuum, i.e., the denominator in Eq. (24) is
larger than zero for all n '.

For energies above the LO-phonon continuum, the
denominator in Eq. (24) may change sign when n ~ 1 and
the above procedure cannot be used. Nevertheless, the
first important region above the LO-phonon continuum
satisfies Eo, +A~LQ+&~, )E )Eo, +&~LQ, and part of
the terms in the sum over n' in Eq. (24) can also be cast
into an integration representation. After some tedious
algebra, we obtain for n ~ 1

+ due
—[]—a —(n —1)~ ]u

0

oo

Qq G&&, q p 1 —e ' ~ & ~„—& pq,
' +,J. & pq,

o nt

n —2 7g

J
(30)

where g, =pq, /(2m, co, ), I„(t) is given by Eq. (29), and

J„(t„r,)= (31)

In Fig. 2 we show the Landau-level energy
E

&

=E
~
+kE„, as a function of the magnetic field for

n =0, 1, 2, and 3 for a GaAs quantum well of width
8'=100 A. In the calculation the infinite-barrier model
is used and all intermediate Landau levels and electric en-

ergy levels are taken into account. The thin solid lines
are the unperturbed energy E„,and the thin dashed lines
are Eo, +Aco~Q+nkco, . Notice also the pinning of the
Landau levels for B~~.

D
3

N
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I

1

B. Interface- and slab-yhonon modes

I I I I I I I I ! I I I I

0.5 1.5

The electron-phonon interaction Hamiltonian with in-

terface and confined slab optical phonons is described by
Eq. (8), and the corresponding matrix element of
electron-phonon interaction in Eq. (20) can be written as

FIG. 2. The first four Landau levels of a polaron in 100-A
infinite-barrier quantum wells with 3D LO phonons. The thin
solid lines represent the unperturbed Landau levels. The thin
dashed lines indicate the energy levels E» +AcoLo+ n Ace, .
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/M„z„,z(q)) = /(1/I (q~~ z)/1'&
/

[&n/e' " ' jn'&/ (32) f(lfr, (q)(, z))l'& f'f(nfe' ~~ "fn'&['

n' I' j q)I
~q n I

(33)

where ((n]e " ~'(n'&( is still given by Eq. (23). As a
consequence, the polaron correction AE„& in Eq. (19) be-
comes

Now, the ((1~I .
(q~~, z)~l'&( has to be derived for the

different phonon modes.
For the interface-phonon modes, we have

—
q W

2 (1/e, —1/e»)qll col, +(qtl )
(34)

where

I. Tl I, (q~~ ))'l T2 ~i, (q)) ))
+I+(q~~)= q q 2 z 2

'

2 I 2 2 2 z 2el(~ii —~Ti)l ~r2 —~l, +(q(()] +e2(~L2 ~T2)((GATI ~I+(ql ))
(35)

In the ease of the infinite-barrier well model, we obtain

811'm q Wtanh(q W/2)
2 2, l +l =even

~(qadi
W)'+( —')'

')l(qadi W'+" +')' ']
0, l +l'=odd, (36)

IG,'(q, )I'= .
0, l +l'=even

8ll'm. ql Wcoth(qll W/2)

I (q
~~

W)'+ (1 —1')'~'] [(q„W)'+(1+1')'rr']

2

l +t'=odd .
(37)

For the finite-barrier we11 model, only the leading term in the sum over l will be taken into account,

2cos (kW/2) 1 q~~cos kW 2ksin(kW)
GII q(( =&0 + + t hq)(W/2+ (38)

o.
For the slab-phonon modes, we have

4&Z~a,
~ Gj,, ~'

&l~rj, ,(q, z) 1 &
'= (39)

where for an infinite-barrier well

0, j +l +l'=even
8ll'j /~

U' —(1 —1')']
I:
J' —(1+1')']

2 (40)

and, for a finite-barrier well,

0, j =even

G'»I =
2 W j m Wcos(kW)

Jrr (j vr) 4(kW)—
(41)

For an infinite-barrier well, the electron wave function is confined in the well, and consequently, the matrix element
of an electron interacting with the half-space phonons is zero. For a finite-barrier well, this term is also zero within the
leading-term approximation, i.e., l = l'= 1.
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Using Eqs. (33)—(41), we obtain the polaron energy due to electron —interface-phonon and —slab-phonon interaction
in such a system. The contribution from interface modes is given by

hE '—+=—
n, l

"e L" "
~~

+pie BI ~ gll Ggg q

~ 2(1/e„, —1/eoi) '=on ! i o tol, + qll ~tol, + qll h, i+(n' n—)to, +E! E!']dq
((

(42)

The contribution from slab modes is given by

gE slab
n, i

Jmax "l:
" "(&ii']'lGt,'! «ii)'

qi + j~/W) ][1 b,„i+(n—' —n)co, +E! E!']
(43)

The contribution from the half-space phonons is zero.
Note, in Eqs. (42) and (43), h„&=DE„& bEo i—, and bE„&=DE„!++DE„!+DE„!++DE„"!+DE„"!. For the

lowest Landau level (n, I)= (0, 1) we have bo, =0 and it is possible to calculate the polaron energy due to the different
phonon modes separately. But for the higher levels b.E„& is calculated self-consistently and Eqs. (42) and (43) have to
be combined. Now, we will have the same problem as what we have discussed in the previous section, i.e., the sum over
n' in Eqs. (42) and (43) converges very slowly in small magnetic field and it results in difficulties to obtain the correct
limit results for co, =0. For the energies below the phonon continuum, b.E„!can be calculated following Eq. (27), and
we obtain

bE„ &= —gg f du e
—(co —b, )u —pqq n, l

nn=o.
2i%$

))
co~ Q

sinh
m, co, 2

n'

(44)

With the interface-phonon modes, the above formula reduces to

AE '—+ =—
n, l f "d f "d

i/2(1/e„, —1/co!) „=o
&t+(q )

gn'( 1
c")2n'

cot y qp

Gl ( )l2 !' ! (45)

(1— ' )" g I ( (
' /~) ) g lG!!

j= 1 1'=1
(46)

where Bl+(q~~) is given by Eq. (35), Gi!.(q~~) is given by Eqs. (36), (37), and (38). Equation (45) is valid when
E I & Eo &

+Act)Tl for the S —mode, En I & Ep l +Ace+ for the S + mode, E„&& Eo l +%co for the 3 —mode, and

En, & Eo, +AcoT2 for the 3 + mode.
With the slab-phonon modes, Eq. (44) reduces to

v'2a, ~ n
gE siab y f

where I„(t) is given by Eq. (29). Equation (46) is valid for E„!(Eo, + ficoL i. For larger energies Eqs. (42) and (43) have
to be used. Now let us consider the case such that E„&—Eo &

is in the region of the interface-phonon energy, i.e.,

Ace En &

—Eo, AcoT, for S —mode,

Aco12 En I
—Eo &

Ac@+ for S+ mode,

AcoL l ~En I Eo, l ~~~— for 2 —mode,

g~+ o E,I Eo, l —A~Tv or 2 + mode .

In the above energy region, the denominator in Eq. (42) (n'=0 term) can become zero because of the magnetophonon
resonance (for n ~ 1). This term can be calculated in the following way:

bE(n'=0)= g f den
n11'=l l co

with

(47a)



47

and

f (CO) = (~ 2
ice iGCO ) (COT —CO')' "

COTi CO )] [E (CO CO')( ' — ')]'

OLARON CYCLOTRON-RESONANANCE SPECTRUM

2 2 2

NA RESULTING. . . 10 365

(47b)

ln
YI~~ 1(~L ~ )( 2COT2

2

(~2 2 2

COT2 CO )+E' COe„2(COL2 —
CO )( COTi

(47c)

where A~ =b1EO n I+n~~ g

(CO~, CO2)—

(COTi CO —)

(~L»~+ )

( COL i, CO )

( „")

for S mode

for S+ mode

for 3 mode

for A+ mode .

(48)

Now, the

g

EE„ I
=ReF( b E„I

with

F(b,E„I ) =$ b,E„'( +hE"'—
I, +

n, l

(49a)

(49b)

where hE '— is ivis given by Eqs. (42
is given by Eqs. (43)
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FIG. 4. The polaron binding energy of (a) n =0 and (b) n =1
Landau levels as a function of the width of a finite-barrier quan-
tum well in different magnetic fields co, /coLQ=O, 0.5, and 1.0,
wit interface and slab phonons (solid curves) and 3D LO pho-
nons (dashed curves) ~

FIG. 5. The olp laron cyclotron mass as a function of the well
width for aor (a) an infinite-barrier quantum well and (b) for a
finite-barrier quantum well in different magnetic fields
co, /co =0 0.5LQ . , and 1 .0, with interface and slab phonons (solid
curves) and 3D LO phonons (dashed curves).

In a cyclotron-resonance experiment, the cyclotron-
resonance frequency co* refers to the transition between
Eo, and Ei &, namely Aco*=E&

&

—Eo, . And conse-
quently, the cyclotron-resonance mass I is defined by

i '(a)

co +(b,E, , bE() ))/A'
(50) I 0

a

Thhe dependence of the cyclotron mass (m* & m )

th e well width is given in Figs. 5(a) for an infinite-ba
well and S(b) for a finite-barrier well in a magnetic field
such that ~, /co«=0, 0.5, and 1.0. The dashed curves
respect the cyclotron mass with 3D phonons, and the
solid curves give the results with interface and slab pho-
nons. Figure 5(a) shows that, with 3D phonons, the pola-
ron cyclotron mass in an infinitely high barrier well starts
from the I2D mass of GaAs at W=0 and decreases to
the 3D value for W~ oo. In the small magnetic-field
limit, the cyclotron mass with interface and slab phonons
is larger than the result with 3D phonons, which is con-
sistent with what we got in the absence f th

44
o e magnetic

field. The interesting thing is that, in the high-
magnetic-field case m, /~z=0. 5 and 1.0, the cyclotron
mass with interface and slab phonons becomes smaller
than that with 3D LO phonons, especially in a narrow
well. At m /co =1 011. A, /coLo=1. 0, a peak in m vs co occurs at
W —'7Q

C—28 A. To understand this, let us consider the limit
case such that the well width goes to zero for the present
model. In such a situation, with interface-phonon modes,
the I2D system of AlAs should be reached. As a conse-

1
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FIG. 6. (a) hE —ReE(EE) and (b) Im(AE) a fm as a unction of

~, —AEO „for a 100-A quantum well with interface and
slab phonons. The vertical thin dotted lines indicate the ener-

z &, %co+, and AcoL2. The upward arrow in (b)
indicates a 6 function. The magnetic fields are such that
~c/~LQ=0. 8, 1.0, and 1.2.
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quence, the result of the I2D A1As system is obtained.
For GaAs the magnetophonon resonance occurs at
co Q)LQ and, at this moment, it is responsible for a large
polaron correction. But the LO-phonon energy of AlAs
is co&2=1.38~zQ, the resonance happens at higher mag-
netic field. Therefore, for a narrow well the polaron cy-
clotron mass with 3D phonon modes is larger than that
with interface- and slab-phonon modes around co, =coLQ.

For a finite-barrier well, the result is given in Fig. 5(b).
The cyclotron mass in this case is smaller than the corre-
sponding result in Fig. 5(a). While for IV~0 and

8'~ ~ the cyclotron mass goes to zero because of the
leading-term approximation. Also, there is a peak in m*
vs 8'at 8'=8 A except for the top solid curve. The peak
in the top solid curve (with interface and slab phonons,
co, /coLo=1. 0), occurs around W=28 A which is mainly
induced by the interface-phonon modes.

When the interface- and slab-phonon modes are con-
sidered, the calculation and the results become more
complicated. To make the problem transparent, we have
calculated the real and imaginary part of F(b,E) in Eq.
(49) as a function of b,E in different magnetic fields. In
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FIG. 7. The cyclotron frequency as a function of magnetic field in (a) 20-, (b) 100-, and (c) 200-A CxaAs/A1As quantum wells. The
solid curves represent the position of the four peaks in the magneto-optical absorption spectrum with interface and slab phonons
(I /A'mLo=0. 01). The dashed and dotted curves are from the IWBPT results with interface and slab phonons and only 3D LO-
phonon modes, respectively.
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Figs. 6(a) bE —ReF(b,E) and 6(b) ImF(b, E) are plotted
as a function of 4E +fico, —AEo

&
for the level

(n, l)=(1,1) in different magnetic fields with a finite-
barrier well model, 8'=100 A. The polaron correction
b,E» is determined by the equation bE R—eF(b E)=0.
It is seen that ReF ( b.E ) is discontinuous at
Am, +DE —EEo, =EI

&

—Eo, =AcoLQ. This is due to the
onset of slab-mode phonon scattering. The ImF(bE)
gives a 5 function at this point. For a finite-barrier well,
only the symmetric interface-phonon and slab-phonon
modes contribute to the polar on effect within the
leading-term approximation. Around the symmetric
interface-phonon energy magnetointerface —optical-
phonon resonances occur. But the real part of F(bE) is
still continuous in the region of the interface-phonon en-
ergies due to the dispersiveness of the interface-phonon
modes. The imaginary part of F(b.E) is now different
from zero. From Fig. 6(a) we observe that Eq. (49a) can
have two roots in the low-magnetic-field region: one
E& & Eo i below the interface-phonon energy of the S—
modes, another above the LO-phonon energy. But in
large magnetic fields, Eq. (49a) may have up to six roots.

The transition energy %co =E» —Eo „as obtained
from the roots of Eq. (49), is plotted (dashed curves) as a
function of magnetic field in Fig. 7 for different well
widths (a) &=20 A, (b) &=100 A, and (c) W=200 A.
The dotted curves are the results when only bulk LO-
phonon modes of GaAs were included. The solid curves
are the peak positions in the magneto-optical absorption
spectrum which will be discussed later. The cyclotron
frequency, when including interface and slab phonons,
deviates appreciably from the result with only the bulk
LO phonons when ro*~coro(oaAs). With 3D phonons,
the frequency co* splits into two branches around coLQ,

and the lower branch is pinned at coLQ in high magnetic
field. With the interface and slab phonons, however, the
cyclotron-resonance spectrum not only splits at coLQ, but
also around the

q~~
~, S —,and S+ mode frequencies.

The dashed curves in Fig. 7 can be divided into six sec-
tions. Four of them increase monotonously as the mag-
netic field increases, and the other two —one occurs in
the energy region of the S —mode and the other in that
of the S+ mode —are nearly Rat.

A direct measure for the strength of the electron-
phonon interaction is the splitting 6 of the Landau level
at co coLQ around Eo, +AcoLQ. This splitting is shown
in Fig. 8 as a function of the well width for 3D phonons
(dashed curves) and for the case of interface and slab

0.4 I I
I

I I

0.3 y

O

0.2
c]

~3D

.+SLAB

0. 1 LO

0
0

I I t I I I I I I I I I I

100
w ()()
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FIG. 8. The splitting of the n =1 Landau level at co, =co«as
a function of the well width with 3D GaAs LO-phonon modes
(dashed curves) and with interface- and slab-phonon modes
(solid curves). The thick and thin curves present the results for
the finite- and infinite-barrier wells, respectively.

modes (solid curves). The influence of the confinement
potential is shown for the infinite-barrier (thin curves)
and finite-barrier (thick curves) case.

IV. MAGNETO-OPTICAL ABSORPTION
SPECTRUM

—ImX(co )

[co—co, —ReX(co)] +[1m'(to)]
(51)

where X(co) is the so-called memory function We obta. in
the memory function with interface- and slab-phonon
modes

where

In this section we will calculate the magneto-optical
absorption spectrum as induced by the interaction with
interface- and slab-phonon modes following the method
in Refs. 50, 51, and 19. Within the linear-response theory
the frequency-dependent magneto-optical absorption
spectrum is proportional to

F(t)= —gg [[I+n(coj(q~~))](I J(q~~, z(t))I *(q~~,z(0)))(e ~' " e ~' " )

n(CLED (q~~ ))& r,*(q„,z(0))I, (q~~, z (t)) & & e (53)
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where n(ter(qll))=(e ' ll —1) is the number of the
Phoo. (q )

phonons in the jth mode with energy A'tp (qll), and

(~J qli'z(t))I * qll'z(0))) and (e II 'll e
'

ll 'll ) are
correlation functions. In the following, we will concen-
trate on the zero-temperature case and calculate the
correlation function to zero order in the electron-phonon
interaction.

At zero temperature, n ( d'or ( q
II

) ) =0, and the density-
density correlation function in the xy plane reduces to

(
' ll'll ' ll'll )=( =()I

' ll'll' ' ll'll
I

=0)
=e " ' r exp[ gll(1 )

(54)

where ln =0) indicates the lowest unperturbed Landau

= y I& ifr, (q„,z)fi') I'e ' ' (55)

where Il =1) indicates the electron state in the lowest
electric subband. For the finite-barrier well case only the
leading term in the sum over l' will be included and F(t)
reduces to

level, and r is the Landau-level broadening parameter.
For convenience this parameter is taken independent of
the Landau-level number. The correlation function
(I r(qll, z(t))l r (qll, z(0)}) can be calculated in the fol-
lowing way:

(r (qll z(t))r'(qll z(0)))
=

& I = 1 lr. (qll, z(t))I *(qll, z(0)) fl =1)

F(t)= pp I( III '(qll&z)f1 ) I exp
Am,

I 2t2
1 —e '

) itoi—qll}t (56)

For the interface-phonon modes,

W

(Xi +7're II )F' (t)= -— — J" q„" I i'( ql I'exp-''2(1/e i 1/e ) p iver +(qll )

I 2t2 —
gll(1

—e '
)

icier

+(qll )t—
(57)

I CO

) 1 cpLot—
gll(1

—e

and for the slab-phonon modes

1b + a& qll IG/t IF'"(t)=-
Then F(t) is given by the sum F(t)=F '+(t)+F ' (t)+F"' (t).

At last, we obtain the memory function with the interface and slab phonons, at zero temperature,

(58)

ReX(cp) =—

~I
2D

2 qll
cz& q

II
(1+yre

dqll &r, +(qII }I Gl I (ql ) I1«pi) r, + ci)r ( q
II

)

Pe E +COxg —D
0 n!mr r

Cn CO
I

2&2a ' - „q'IG!'.I' g"e

W . p " '+( ~/g}' n! clpI ~"0+~
n—D

c."0—e)n—D (59)

and

ImX(to) =— qll
~

CXi qll (1+'Pre ' )
dqll &r, +(qII )I Gg'((ql }I',&2(1/e, 1/epi) r + ter +(qll )

e II E cp
—

n

2n!cur
En +CO

r
'2

2&2a)'- „q'IG(, I' - &~Pe
Jp II 2 + (

~ /pr)2 ~ 2n!~I' exp

2cLo —con —exp
c"o+a

n

2

(60)
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co —co, —ReX(co) =0 . (61)

+ ( ) s =neo +coLo, and D(x) iswhere c.„=n,co, d'or, + qll
the Dawson integral.

We have calculated numerically the real and imaginary
of the memory function, including interface- and

sa -p onon m1 b- h on modes in a finite-barrier GaAs/ q
-o ticalturn well from which we obtained the magneto-optica

absorption spectrum.t The cyclotron-resonance frequency
~ ~ ~ ~

co* is determined from the peak position in the absorption
spectrum. en m co =Wh I X(co)=0 the absorption peak is a 5
function w ose ph osition is given by the nonlinear equa-
tion

present study.
The oscillator strength of the different absorption

peaks was calculated and is given in igs. aFi s. 10(a) for
W =20 A, (b) for W=100 A, and (c) for W =200 A.
The are indicated by co, , co2, co3, and 4and cu' for the fourey

eaks and are in increasing order of frequency. The os-pea s an
cillator strengths of the absorption spectrum wi ywith onl

the thin-solid3D bulk LO phonons of GaAs are given by the in-
ic fieldan t e in-ad h th' -d shed curves. In a small magnetic

most of the oscillator strength is contained in t e rs
peak. As the magnetic field increases, the oscillator
strength of the first peak is transfered to the other three.

For a 100-A GaAs/A1As quantum well, the function
co —co, —ReX(co) and the imaginary part of the memory
function m coI X(co) are plotted in Figs. 9(a) and 9(b), respec-
tively, at different magnetic fields co, /coLQ=O. 8, , an

.2
'

h a Landau-level broadening parameter
te ther =O.o&~LQ The vertical thin-dashed lines indica e e

oo and co . It is seen that thefrequencies AT(, co, col i, co+, an coL 2.
ImX(co) has a peak around the phonon frequencies and
when the frequency co deviates from the phonon frequen-
cies e imth

'
aginary part of the memory function tends to-

wards zero as shown in Fig. 9(b) for I = . coLo. n
h the eak position in the magneto-optical ab-suc a case, e p

E . (51) is deter-sorption spectrum, which is given by Eq. 5, is e er-
mined by Eq. (61) and there exists a 5-function absorption
at co*. Actually, Fig. 9(a) is similar to Fig. 6(a). Because
the Landau-level broadening was included in the memory
function, ReX(co) is continuous at co=coLo. For I %0 we
determined the cyclotron frequency su* from the peak po-
sition in the absorption spectrum and not from the equa-
tion co —co, —ReX(co) =0 directly.

Fi ure 9(c) gives the corresponding magneto-optical
absorption spectrum. The upward arrows indicate a 6-
function absorption. With interface and slab phonons,
the spectrum structure is quite difFererent from that with
3D LO- honon modes and is more complex. It is ap-
parent that there are four distinct absorption peaks in the
spectrum. The position of the first peak starts from zero
at co, =0 and is pinned bello~ ~s (q~~ )» « ig-
magnetic-field limit. The second peak occurs for

the third peak for cu&+ ) co* ~coLQ, and
the fourth peak for co*~co&+. It is noticeaU e t at in
high magnetic fields, the first peak occurs for ~*)coT&,

which is in the reststrahlen region of GaAs. It is a so
found that the fourth peak may occur in the reststrahlen
region of A1As.

The frequency co* from the four peaks in the absorp-
tion spec rumtrum are given by the solid curves in Fig. 7.

n fre-With interface- and slab-phonon modes the cyclotron re-
quency splits into four branches, which is similar to the
result from IWBPT. Actually, there exist three other
very weak peaks in the absorption spectrum. Two o
t em areh responsible for the nearly Aat dashe ine
(IWBPT result) in the range of the S — an
interface-phonon frequencies, and another from the slab
phonons. These three peaks are due to the phonon emis-
sion and have almost no weight in the absorption spec-
trum. Therefore they will not be considered in e
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FIG. 9. (a) co —co, —ReX(m) and (b) ImX{co) are plotted as a
function of the frequency co for a 100-A quantum well in
different magnetic fields. The corresponding absorption spec-
trum is given in c . e( ) Th Landau-level broadening parameter is
I / L =0.01. The vertical thin dotted lines indicate the ener-~LO
gies AcoT], Rco, AcoL ], AQ)+, and AcoL~.
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The second and the third peak reach to a maximum and
then decrease. The oscillator strength of the fourth peak
increases monotonously. In very high magnetic fields the
fourth peak contains most of the oscillator strength. It is
found that the absorption of the second peak is very weak
except for narrow wells. With increasing well width the
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FIG. 11. The magneto-optical absorption spectrum for a
0

100-A quantum well with di8'erent Landau-level broadening pa-
rameters I /%co«=0. 01, 0.05, 0.1, and 0.2 at co, =co«.
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maximum of co3 becomes larger, and the oscillator
strength of the fourth peak increases more rapidly.

From Fig. 10 we see that the first branch in Fig. 7 has
the largest oscillator strength when co /coLQ ( 1.035,
1.015, and 1.0 for 8'=20, 100, and 200 A, respectively.
The third branch has the largest oscillator strength when
the magnetic field is in the range 1.32) co, /cuLQ & 1.035,
1.28) co, /coLo) 1.015, and 1.275) co, /coLo) 1.0 for
8'=20, 100, and 200 A, respectively. And the fourth
branch has the largest oscillator strength when the mag-
netic field is outside the above range.

So far, we have only studied the absorption spectrum
with small broadening parameter I =0.01coLQ. The
Landau-level broadening also influences the spectrum

0
structure. As is shown in Fig. 11 for a 100 A
GaAs/AlAs quantum well at co, =coLQ. The thick solid
curve is the spectrum with I =0.01uLQ and the upward
arrows indicate 5-function absorption. At this moment,
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FIG. 10. The oscillator strength of the four peaks in the
magneto-optical absorption spectrum as a function of the mag-
netic field for (a) 20-, (b) 100-, and (c) 200-A GaAs/AlAs quan-
tum wells with I /A'coLo=0. 01. The thin solid and dashed
curves are the results when only the bulk LO phonons of GaAs
were included.
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FIG. 12. The magneto-optical absorption spectrum with
I /Ace«=0. 05 in difFerent magnetic fields for a quantum well
with width 8'=100 A.
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there are four distinct peaks. The first and the third are
given by 5 functions. The second and the fourth are
broad with nonzero linewidths. When I =0.05co„z, the
spectrum (dashed curve) reduces to three broad peaks.
As I increases further, the absorption peaks become
broader and their maximum value reduces. When
r=0.2~«, all the peaks are mixed and the absorption
spectrum reduces to one broad peak.

Figure 12 gives the absorption spectrum with broaden-
ing I =0.05coL& in different magnetic fields for a 100-A

quantum well. Notice that there are only three peaks in
the absorption spectrum. A comparison of the
cyclotron-resonance spectrum with I =0.01co~o and
r=o.oS~Lo is presented in Figs. 13(a) for W'=20 A, (b)
for &=100 A, and (c) for 8'=200 A. For a Landau-
level broadening parameter I =0.05cuL& the cyclotron
frequency only splits into three branches. In high mag-
netic fields the pinning behavior of the first branch is
mainly determined by the S —mode. The lower part of
the second branch depends mainly on the
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FIG. 13. The cyclotron frequency as a function of the magnetic field for (a) 20-, (b) 100-, and (c) 200-A GaAs/A1As quantum wells
with I /AcoLo=0. 01 (dashed curves) and F/RcoLo =0.05 (solid curves).
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electron —slab —LO-phonon interaction. The splitting in
higher magnetic fields is due to the S+ interface mode
and is nearly the same for the two different considered I .

V. CONCLUSIONS

In this paper we present a detailed investigation of the
effect of interface optical-phonon and confined slab LO-
phonon modes on the polaron Landau levels and the
magneto-optical absorption spectrum. We applied our
theoretical results to the case of a GaAs/A1As quantum
well. As a comparison, the polaron Landau levels and
the cyclotron-resonance spectrum are also calculated
when only 3D LO-phonon modes of GaAs are included.

The polaron Landau levels and the cyclotron-resonant
mass as a function of the magnetic field and of the well
width were obtained. For an infinite-barrier well, the po-
laron energy and cyclotron mass vary from the 2D results
at W =0 to the 3D results when W~ ~ in different mag-
netic fields. For a finite-barrier well the results with the
leading-term approximation are obtained. As a function
of the magnetic field, the binding energy of the n =0
Landau level increases slightly with increasing magnetic
field. For interface- and slab-phonon modes the n = 1 po-
laron Landau level splits around the LO-phonon energy,
and also around the interface-phonon energies. The
interface-phonon mode plays an important role in the
magnetophonon resonance in a quantum well. In a nar-
row well, the splitting of the Landau level around the
interface-phonon energy is larger than that at the GaAs
LO-phonon energy, and with increasing well width the
splitting due to the interface-phonon energy decreases
while that around the slab-phonon energy increases.
When W~ ~, they approach the result of the 3D sys-
tem.

In order to assess the relative importance of the
different resonances we investigated the magneto-optical
absorption spectrum. The magnetophonon resonance
occurs at three places, two of them around the S —and
S + interface-mode frequencies, and another at the slab-
rnode frequency. Including interface and slab phonons,
the cyclotron spectrum splits into four branches. In high
magnetic fields, the first three branches are pinned and
the fourth approaches the unperturbed transition energy.

Furthermore, we found that the pinning position due to
the interface-phonon modes depends on the width of the
quantum well. For the S —mode the pinning position
starts from co T& in a narrow well and reaches the
co+ (q~~ ~) in a wide well. But, for the S+ mode, the
pinning position decreases as the well width increases. It
is at cur z in a narrow well and at cps+(q~~ ~ ) in a wide
well.

In the calculation of the magneto-optical absorption
spectrum, a Landau-level broadening parameter I was
introduced phenomenologically. The absorption spec-
trum structure is also influenced by the Landau-level
broadening. With I =0.05coiz we found that the four
branches of the cyclotron-resonance spectrum collapse to
three. Especially, the splitting due to the slab phonons
disappears in a 20-A quantum well.

Our result with the 3D phonon modes is consistent
with that from Ref. 33 in which Wu, Peeters, and De-
vreese had calculated the cyclotron mass in a quantum
well. The present result is different from those in Refs.
47 and 48. In Ref. 47 interface- and slab-phonon modes
were included and Gu, Kong, and Wei calculated the
lowest polaron Landau level associated with the first two
electric levels in a GaAs/Al„Ga& „As quantum well.
Their result shows that, as the magnetic field increases,
the polaron correction to the lowest Landau levels in-
creases abruptly at B ~ 10 T. The latter is not found in
our more thorough calculation. In Ref. 48 Lin, Chen,
and George studied the bound polaron with interface-
and slab-phonon modes in a GaAs/Al Ga, As quan-
tum well. It was claimed that the 1s —2p+ transition is
pinned to the TO-phonon frequency due to the
electron —interface-phonon interaction. From the present
theory for free electrons it is dificult to understand such
a behavior.
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