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Nonlinear orbital magnetic response in isolated quantum dots
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The magnetic response of an ensemble of quantum dots all having the same macroscopic parameters
but different defect configurations is calculated. The number of electrons in each dot is constant. The
response is paramagnetic, can be large at small fields for two-dimensional (20) dots, and has a charac-
teristic nonlinear behavior including a regime where the magnetization is field independent in 20, albeit
with significant corrections. These results are due to the crossover in the spectral correlations brought
about by the time-reversal symmetry breaking due to the magnetic field.

I. INTRODUCTION AND ENUMERATION
OF THE VARIOUS FIELD REGIMES

The orbital magnetic susceptibility g of an electron gas
restricted to a finite volume V is still of interest, even for
noninteracting electrons. For clean systems, one has the
celebrated diamagnetic Landau susceptibility, and vari-
ous surface or edge corrections may be considered. '

When impurity scattering is included —such that the
motion of the electrons becomes diffusive (L ))l, where
L is the linear system's size and I is the elastic scattering
length) —one still finds that the impurity-averaged sus-
ceptibility is (to leading order) equal to the Landau
one. This holds for the macroscopic regime where L ))l
or L ))lT, l„denoting the quantum-mechanical coher-
ence length (the "dephasing length" ) or the inelastic
length, and lT is the thermal length defined by
k~T=fia/IT, D being the diffusion constant. In the
mesoscopic regime (L (1 and L ( lT ), the impurity
aUeraged orbital susceptibility is still equal, to leading or-
der, to the Landau diamagnetic susceptibility when the
system is held at a fixed field-independent chemical po-
tential (the grand-canonical ensemble). Mesoscopic
fluctuations are important and have been the subject of
numerous recent papers.

For noninteracting electrons, it turns out that there is a
significant difference between the canonical' ' and
grand-canonical' ' situations (by this we refer to the
system being held at a constant number of electrons and
chemical potential, respectively, as the magnetic field is
varied). An unexpected by-product' of the work on per-
sistent currents in mesoscopic rings is the following:
Consider the case where y is averaged over an ensemble
of simply connected systems, each of linear size L,
characterized by its own microscopic impurity
configuration and sharing the same macroscopic parame-
ters (volume, general shape, impurity concentration, etc.).

This is the case when a very large system is physically
partitioned into many subunits of size L each; one may
then measure the magnetic susceptibility of the collection
of these subunits. A crossover from a grand-canonical to
a canonical situation may be achieved when the ability of
the subunits to exchange electrons with a "bath" (e.g. , a
conducting substrate) is suppressed (e.g., by varying the
thickness of an insulating layer separating the system
from the bath). It turns out' ' that the Coulomb in-
teraction may limit the charge fluctuations and make the
situation canonical even in the presence of a coupling to a
bath. Denoting these averaged orbital susceptibilities by
(gz) and (g„), respectively (() stands for impurity-
ensemble averaging), one can prove'0'3 ' the following
very useful thermodynamic relationship:

where 6 is the average level spacing and (5N )„ is the
grand-canonical (fixed p) average of the subunit-to-
subunit fluctuation of the number of particles. This rela-
tion is obtained as an expansion of the exact thermo-
dynamic relation 8 F(T,N, K)lt)H~~=t) Q(T, p, H)l
t)H ~„, neglecting terms of order smaller than 5/eF. It
will be evaluated below for various regimes employing
the Green's-function diagrammatic technique.

Conventional calculations have addressed (y„). The
new term (y~) —(y„) is the main subject of this paper.
Evaluating it, one finds —as is originally stated in Ref.
10—a paramagnetic contribution to the orbital suscepti-
bility which can be large, even much larger than the Lan-
dau term, in appropriate cases. Some of these results, fol-
lowing Ref. 10, have been obtained parallel with this
work in Ref. 8. Here we shall give further results for the
nonlinear susceptibility regimes.

It is actually remarkable that the orbital susceptibility
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is paramagnetic. This is because it measures a profound
change in the statistics of the energy levels when a mag-
netic field or a magnetic Aux is applied. ' lt is known
from the theory of Gaussian random matrices, which de-
scribes very well the statistics of levels in a metal on cer-
tain scales, that the spectrum becomes more rigid when
there is a breakdown of time-reversal symmetry. As a re-
sult,

(5N (H)) ((5N (0)) hence (y ) —(g„)&0

at H=O. (1.2)

The way this symmetry change shows up in spectral
properties (such as (5N )„)will be elaborated upon and
used in this paper. In the presence of a flux inside a me-
tallic ring of perimeter L, the effect of the Aux has been
found at small cruxes to be a function of the unique pa-
rameter E,q, where E, is the Thouless energy AD/L
and g the dimensionless flux 2n.glgo. The change in the
spectral rigidity implies that the small energy separations
between pairs of levels typically increase with magnetic
Aux or field. Depending on the number of electrons, one
or both members of the pair are occupied. When only
one is occupied, it has negative curvature and the small-
field susceptibility is paramagnetic. This argument was
put forward for the case of the Aharonov-Bohm (AB) flux
in Ref. 12. In that case, the Aux-dependent part of
(5N ) does not exceed an order of l.

The goal of this paper is to study the average orbital
susceptibility of isolated quantum dots. We calculate the
paramagnetic contribution (yz ) —(y„) for various
geometries and eventually we compare it to the Landau
diamagnetic susceptibility. We show that the total sus-
ceptibility may be paramagnetic in the mesoscopic re-
gime. We limit our study to the diffusive (metallic) re-
gime.

The behavior as a function of the magnetic field is
found to be quite intricate. Throughout this discussion,
we assume that the relevant linear size of the system, L,
satisfies

(1.3)

Even under this assumption, we identify, in principle, six
different regimes for the magnetic response, governed by
the following four length scales: (i) The system's size L,
(ii) the elastic mean free path l, (iii) the magnetic length
lH =v'Pic /eH, and (iv) the cyclotron radius
l, = lH+E~/Ace, -kFIH; here the cyclotron frequency is
~u, =eH/mc.

The different regimes are depicted in Fig. 1. The
weak-field regimes ( A, B) are defined by lH & L, i.e., there
is less than one Aux quantum enclosed in the system. Al-
ternatively this is defined as H &Ho, where Ho is the
value of the magnetic field which corresponds to one Aux
quantum through the system. For the "super-weak-field"
case iH & (E, /y )' L [regime A, y = min(A'/r~, T), where

is the quantum-dephasing scattering time]. The typi-
cal meander of a single-electron energy level as a function
of H is smaller than y, and perturbation theory is applic-
able as long as y) 6, 6 being the average level spacing.

FIG. 1. The various field regimes defined by the characteris-
tic length scales in the problem (for schematic, see text). 1H and
I, are the magnetic length and the cyclotron radius, respective-
ly.

In the mesoscopic regime, y & E, .
The intermediate-field regimes are defined by

L & lH & i. This is divided into two subregimes (C,D), as
discussed in Sec. III. The strong-field, deep quantum re-
gimes, are defined by lH & l. In regime E, the motion as-
sociated with the low-lying Landau levels is not fully
diffusive. As we increase the field, more Landau levels
fall into this category, until finally one reaches the quan-
tum Hall regime F, where I, ( I or w, r & 1 (r=l/uF, uz is
the Fermi velocity). (These deep quantum regimes are
not treated in this paper. ) In the subsequent sections, we
study four of these regimes: In Sec. II, we consider the
weak-field regimes ( A and B) in which nonlinear behav-
ior already appears. We discuss various geometries and
point out the importance of the boundaries even though
the motion of the electrons is diQusiue In Se.c. III, we
consider the nonlinear (yz ) —(y„) in the intermediate-
field regimes (C and D). For two-dimensional systems,
we find a contribution to the magnetization which is field
independent. This contribution does not show up in the
susceptibility but is of importance for magnetic rneasure-
ments. The strong-field regimes (E and F) are not treated
here.

We recall that for AB geometry, one does not en-
counter this multiplicity of various regimes. Indeed, for
H (Ho, the field (or flux) dependence of (5N ) is similar
between AB and simply connected geometries. For

(5N (0) ) —(5N (H) ) —1. Due to the flux
periodicity in the case of AB Aux, this difference remains
bound when P is increased. For simply connected sys-
tems, this difFerence increases with H, until finally (5N )
is suppressed by a factor of —,', as is predicted by the gen-
eral theory of spectral correlations.

II. WEAK-FIELD SUSCEPTIBILITY
FOR DIFFUSIVE ELECTRONS

In this section, we evaluate the weak-field susceptibility
for diffusive (metallic) systems. As was noted above, we
shall assume large enough inelastic broadening (y & b, ,
but y ~ E, ) for our perturbation theory to hold for the
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very weak-field regime A. From Eq. (1.1) one may ex-
press the canonically averaged susceptibility as the sum
of the grand-canonical susceptibility and a second term
which is paramagnetic (at H =0),

&y~ &
= (y„&+&y, &,

with

82
(y &= ——

2 gH'

(2.1)

The first term on the right-hand side of Eq. (2.1) is readily
shown" to be the Landau diamagnetic susceptibility
XL, ~

e skF
V in three dimensions,

24~ mc

e s2

+L 5 in two dimensions
24+me

(2.2)

(we note that in 2D, yL -b, /Ho, ' V and S denote volume
and area, respectively). Here kz is the Fermi wave num-

ber, m is the electron's effective mass, and s is the degree
of degeneracy of each orbital mode (e.g. , due to spin). In
the presence of moderate disorder (1/k~&l &L):
diffusive regime), the grand-canonically averaged suscep-
tibility (y„& remains equal to the Landau result (to lead-
ing order in 1/k~l) for lH & l. As long as the magnetic
length is larger than the elastic mean free path, the boun-
daries of the sample play no important role. A key point
of our analysis is that while this statement is valid for
thermodynamic, grand-canonically averaged quantities, it
does not necessarily apply to fluctuations thereof.

In the present and following sections, we focus on the
orbital paramagnetic contribution (y &, eventually com-
paring it with the diamagnetic Landau susceptibility.
Our starting point is the calculation of (5N &, using the
results of Altshuler and Shklovskii; ' similar results can
be obtained from a semiclassical picture. ' The most
divergent contributions to the fluctuations of the particle
number are the double-diffuson and double-Cooperon di-
agrams, shown in Fig. 3 of Ref. 21. These are the most
important contributions when dealing with either a large
system (summing over a large number of q modes) or a
quantum dot (when only the q =0 mode is kept, see
below).

The diffuson and Cooperon satisfy the equation

sample's boundary X.

nBD cP ' (r„r2)~„x=0 . (2.5)

where

a ~na a ~ a 0~ 1~2, . . . , O'=x~y~z (2.8)

In the present section, we treat the magnetic field as a
weak perturbation. %'e note that the term Dq in Eq.
(2.7) is obtained as the eigenvalue of the efFective
Schrodinger equation

D(dc) q'q, q, q E(qx qy qz)'Pq. , q
(2.9)

with the boundary condition Eq. (2.5).
The magnetic field gives rise to a quadratic shift of the

eigenvalues of the Cooperon: E; (H) =E;+ ,'E;"H, —

where E;=E;(0)=D (q„+q~+q, ). The last statement
assumes that the set [E;} contains no degeneracy. Start-
ing from Eq. (2.7), it can be shown that

2

From Eqs. (2.3)—(2.5), it is evident that the diffuson
does not depend on A. This is related to the fact that
within a semiclassical picture it represents a sum over
probability amplitudes of electron trajectories, each mul-
tiplied by its complex conjugate. Such terms are insensi-
tive to quantum-mechanical phases. By contrast, the
Cooperon contribution correlates trajectories with their
time-reversed counterparts. Hence, it consists of squares
of probability amplitudes and therefore it is sensitive to
A.

The particle fluctuations within an energy range
[—W, 0] (we shall measure energies from the Fermi ener-

gy; W is a high-energy cutoff satisfying y « W 1/r) is
given by the integral

(5N &„=V f J deidE2K(E, , e2), (2 6)

where V is the system's volume. Since we are interested
in magnetic-field derivatives of (5N &, we shall consider
only the Cooperon contribution to this quantity, (5N &'.

At H =0, for a rectangular box geometry,

S 1K "(e„e2)= — Re g
2m V

( ~
[e, e2+iy—+iDq ]

(2.7)

[ iw D(—BDc) +yDc—]P ' (ri, r2)=5(r, r2), (2.3)— 1+
271

I
I'

I

8'
y+E;

(2.10)

where yD and y, represent the inelastic damping of the
diffusion and the Cooperon, respectively.

= a
BD

r,
8 + 2ieA

Or, mc

(2.4)

D is the diffusion constant in three dimensions
D =vFl/3, and A is the vector potential associated with
the magnetic field. For an isolated system, the boundary
conditions of Eq. (2.3) impose zero current across the

where Ii }—= [q; } and E; & W. The precise value of W is
irrelevant for the H dependence. Here y is a cutoff, due
either to dephasing of the wave function as discussed in
Sec. I or to having a finite temperature. Computing the
derivatives of this quantity with respect to the field, we
obtain expressions for the paramagnetic moment(I (H) & and the susceptibility (g~(H) &.

Special attention should be paid to the mesoscopic re-
gime, when y «E, =fiD/L (or L « l~). Then
E, »y=D/1, so that only the i =0 mode (q =0) is
kept in the sum of Eq. (2.10). Consequently,
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The boundary-condition equation reads
(2.1 1)

s2g Eoa
&M (H)&='

2a2 y+ —'Eo'H2
2 —i f (r)/„~ =0,. a

Br
(2.13)

In the linear, super-weak regime, the magnetization,
hence (y~ ) = (s b /2m. )(Eo /y ), is proportional to the di
amagnetisrn of the Cooperon, uiewed as a free particle in a
box, of mass 1/2D and charge 2e. The super-weak-field
susceptibility is sensitive to the details of the boundary
conditions even in the di+usiue regime

The magnetization reaches its maximal value at the
crossover from regime A to regime B. In the peak (but
not super-weak) case L & l~ &L [E,/y )'~ (B), the mag-
netization and susceptibility are given, respectively, by

a&M, &

(M, (H) & =,', &y, ) = (2.12)
~H

where R is the cylinder s radius. This equation is in-
dependent of H. For R & l~ we need only the shift in the
lowest eigenvalue which is due only the "bulk contribu-
tion" and is equal to %DR /2lH, as has been found by
Altshuler and Aronov. We note, however, that the cir-
cular geometry is quite special, as the introduction of a
magnetic field does not give rise to matrix elements
among the H =0 eigenstates (it is analogous to the clean
limit in ordinary quantum mechanics, where the above
would imply that there are no van Vleck-type contribu-
tions to the magnetic susceptibility of the cylindrically
symmetric electron system). Throughout this calcula-
tion, we recall that R ~ l~.

We consider two cases for the cylinder of length L, .

As
2H 2

1. R &I,lg; L, &l~

We include only the n, =0 mode in Eq. (2.10), so that

(gz ) =(bs /2yir )(8 /BH )(fiDR /21H ). The paramag-
netic correction is written in terms of the Landau suscep-
tibility:

( )XP XI„gk V
(2.14)

where V=mR L, is the volume. The level spacing 5
near the Fermi energy is (in 3D)

2A' ~
sm Vkz

Note that for y &5, the factor 6/y should be replaced
by a constant of order unity which will yield the maximal
effect,

&X, & 4s i (2.15)

We note that this ratio can reach values exceeding unity.
In the strict two-dimensional (2D) limit, L, —kF « 1, it
reaches a maximum value of the order of k~l ))1.

For y )b., the result Eq. (2.14) may also be cast in the
form

24 (2.16)

We see that as we decrease y, the total susceptibility be-
comes larger. For a two dimensional sample (kFL, =1),
it reverses sign for y -D/R and reaches a positive value
of order:A. Cylinder

This is a "universal" result, independent of disorder and
geometry. We note that it is also y independent. Within
regime B, the above analysis holds even for y &h. The
magnetization is parallel to the field, but the curvature is
such that the field-dependent susceptibility changes sign
and becomes diamagnetic. In 2D, y is of the order of
yI (Ho/H) .

We now calculate the super-weak-field, linear suscepti-
bility for various geometries. This requires evaluation of
the quadratic shifts E;" of the Cooperon eigenvalues.
There are in principle two different contributions to the
field-independent corrections of E(q ): The first one (the
"bulk contribution" ) arises from the A dependence of the
operator (8, ) [cf. Eq. (2.4)]. This will give rise to O(A )

corrections in E ( q ), calculable within a standard
second-order perturbation theory. The second contribu-
tion (the "boundary contribution") arises due to the
change of the homogeneous Neumann problem (for
A=O) to a mixed, Neumann and Dirichlet, boundary-
condition problem (for AAO). This second contribution
can be calculated using a boundary-condition perturba-
tion theory. The existence of these two contributions,
ignored in some previous studies, is evident. Each of
them depends on the particular choice of gauge; it is only
their sum which is gauge invariant.

The calculation is simplified if only the shift of the
ground-state energy of the Cooperon can be considered.
We note that this shift does not contain any van Vleck
term. This simplification is obtained if we restrict our
study to the case where the typical length of the sample
in the plane perpendicular to the field is smaller than the
phase-coherence length. The length along the field, how-

ever, may be either smaller or larger than l . We now
calculate (y ) for two geometries where the boundary
contributions may be ignored. This is the case for a
cylinder and a very anisotropic rectangle.

The boundary-condition-related contribution can be
avoided if one considers a cylindrical geometry with 8
parallel to the cylinder's axis (e.g. , A„=O, Ae= ,'Hr, —

A, =0). Solutions of the effective Schrodinger Eqs. (2.9)
can be parametrized as 4'=f (r)e™g(z), m =integer.

(2.17)

for lq )&A'D/6 [in that limit, l in Eq. (2.17) is replaced
by +fiD/b, ].
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2. R &I~,I-~, L, ) I~

Now we have to sum over the n, modes, all having the
same shift in H. The summation is transformed into an
integral X,~L, /w fdq, .As a result, the paramagnetic
term is enhanced by a ratio L, /1 compared with Eq.
(2.16), so that

(2.18)

This corresponds to the addition of L, /l contributions.
Each piece of length l along z contributes independent-
ly.

B. Rectangle

suin [i I is performed over the q, q, modes. In this case,
it is found that the shift in the eigen values is
Dq ~Dq +DL„/31H.

Note that with the gauge A=(Hy, 0,0), the L factor
should be replaced by L~( &&L„) in the H-dependent
term of the energy shift. But with that gauge, the bound-
ary contribution is no longer negligible, and will compen-
sate for most of the DL /310 term.

In the simplest limit of our rectangular geometry,
L,L,L, « l~, l, the shift of the lowest eigenvalue is
DL„/31H instead of DR /2lH in the cylinder geometry.
The results we obtain are similar. We find

(2.19)

For a sample of the square cross section, one needs to
consider the finite contribution of the boundary term to
second-order corrections to the eigenvalues. We have
also to include a mixed contribution, resulting from cal-
culating the first-order correction to the operator (8, )

with the first-order-corrected eigenfunctions due to the
change in the boundary conditions. In the following dis-
cussion, we choose an anisotropic rectangular geometry
such that, subject to an appropriate gauge, the boundary
contribution may be neglected. We should note, howev-
er, that as the limit of a square cross section is ap-
proached, this boundary contribution introduces an extra
field-dependent contribution into the Cooperon, on the
order of the contribution calculated below.

We consider the anisotropic geometry shown in Fig. 2,
where L «L . The magnetic field is perpendicular to
the xy plane. (Within the linear response, one may deal
with each field component separately. ) The gauge selected
is

A = (0, Hx, 0), —

III. INTERMEDIATE FIELD: DIFFUSIVE REGIME

We now study the limit l & lH &L„,L (i.e., regimes C
and D, cf. Fig. 1). For the sake of concreteness, we con-
sider a rectangular box. For regime D, it turns out that,
in contrast to the super-weak-field limit, the details of the
sample's geometry do not play a crucial role. For this re-
gime, when L, «I, the Cooperon correlation function
[cf. Eq. (2.7)] assumes the form

IC (e, —ez, H)—=- eJIs' LxLy

2773

m

XRe g
0 [e2—ei+4ieDH(n +—,')]

(3.1)

where the summation is over the Landau levels of the
effective Schrodinger equation with a cutoff

leading to a correction in the eigenvalue equation (2.3).
We now use Eq. (2.10) where, choosing L„«lH, I~, the

lH
nm=

2I
(3.2)

(This is based on the fact that, for eigenvalues larger than
—1/r, the form of the Cooperon should be modified and
the related contribution may be neglected. ) In this inter-
mediate regime, the vector potential appears as a phase
factor in the single-particle eigenfunctions. It may be ig-
nored in the expressions for the single-particle Green's
functions.

The classical radius corresponding to the highest
Cooperon Landau level, n, is

lH
R„ (3.3)

FICx. 2. The perpendicular field in a rectangular geometry
(L «L, ).

In regime D (Ll & lH & I ), this radius is indeed smaller
than the linear system's size. In regime C (L & lH &LI),
this is no longer the case, and one needs in principle to
sum separately over Landau levels with a cutoff
n -L /IH, and higher-lying "box-states, "which are the
original H =0 states weakly perturbed by the magnetic
field.

Before discussing the results of more careful evalua-
tions based on the above, we try to reach a qualitative un-
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(5N (0, W)) —(5N (H, W))- —,'5N (O, ficoH)
d/2

Ho
(3.4)

(similar considerations can also be made in the weak-field
regime). This result indeed follows to leading order from
more detailed evaluations. Below we give the calculation
for the interesting case of d =2. We point out that from
Eq. (3.4) it follows that the magnetization is proportional
to H" ' and the susceptibility to H" . In 2D, one
obtains the unusual result that (M~ ) is a universal con-
stant independent of H and disorder, and the
field-dependent paramagnetic susceptibility (yz )
=c)(M ) /dH is zero to leading [see (3.7)] order. Howev-
er, an examination of the Cooperon approximation [(3.1)]
reveals significant deviations from the result [A. Altland
and P. Gefen (unpublished)].

The leading approximation of the behavior in regime D
is obtained by dropping the cutoff, Eq. (3.2), and neglect-
ing all corrections in the denominator of Eq. (3.1). The
sum is easily evaluated in terms of derivatives of II and I
functions; hence, the integrals are straightforward, and
we find, for the Cooperon contribution,

derstanding of the behavior of (5N (H, W)) as a func-
tion of H. We note that for H=0, performing the in-
tegrations of IC (e, —e2) to obtain (5N (0, W) ), one finds
that they are dominated by the high-energy parts ' (this
is due to the power-law nature of K and to the cancella-
tions of the lower-energy contributions). For
E, « W & h /i. , (5N (0, W) ) ~ W . For H in the inter-
mediate regime, the Cooper on contribution to
(5N (H, W) ), arising from the energy range lEl «A'coH,
is much smaller than the H-insensitive diffuson contribu-
tion; it is approximately equal to the latter for
e»hcoH =4eDH. The quantity A'AH is the crossover en-

ergy ' in this regime between orthogonal and unitary
behavior. Thus one expects that, in the intermediate re-
gime in d dimensions,

dependent and sensitive only to the effective mass or den-
sity of states. We note again that extrapolating this to
the edge of the intermediate-field regime, H -Ho, agrees
with the weak-field result Eq. (2.12), extrapolated to
H-Ho as well.

The constant M yields a vanishing susceptibility
c}M/dH. The corrections to the latter can be obtained by
inserting the corrections to the "Landau levels" due to
the boundaries and the upper cutoff, Eq. (3.2), in Eq.
(3.1). In regime D, this yields the two respective correc-
tions

~H ~H
&x, )-lxil

F z x y

2

+p I

H
(3.7)

IV. DISCUSSION

We have demonstrated that the zero-field orbital sus-
ceptibility in the metallic (diffusive) regime contains a
paramagnetic contribution (y~ ) which, in the mesoscop-
ic regime, saturates to

(y ) —ly~ l cylinder
l

Z

L
&X, ) - X~I L LZ

anisotropic rectangular box (L„«L ) .

(4.1)

(4.2)

We expect that for any cross section which is not too an-
isotropic, y is given (up to a numerical factor) by Eq.
(4.1).

a and P being numerical coefficients. These two terms
can be regarded as coming from the smaller and larger
field regimes, respectively. It appears that to leading or-
der, y and M are "universal" in the entire weak (B) and
intermediate ( C +D ) regimes.

2
(5N')'=

8~' E,
2eH$ 2,n IY/cuH-

27T3
(3.5)

(3.6)

This is "universal, " in the sense of being disorder in-

Apart from the exponentially small corrections, we have
an H-independent part which agrees with Ref. 21, and a
linear H-dependent part, as expected. It is more difBcult
to perform an accurate calculation in regime C; a numeri-
cal evaluation of Eq. (3.1), including the high-lying box
states, is needed. However, since the sum is dominated
by n -e, —e2/coH, and the relevant values of e, —e2 are
up to a few times A'coH, we expect the results to be quali-
tatively the same as in range D. We also note (see below)
that the extrapolated results on the D-C and 8-C boun-
daries are of the same order of magnitude, which is con-
sistent with the whole region C behaving similarly to D.
Equation (3.5) leads to a paramagnetic H-independent
moment (here we restore the fi and c factors)

As 2/ ln2 2Q

4-'I 2-'H,

& M&(H) ) AI
I

I

C ]XLlHO
f

C+D

—]XL]H, -

I
I
I

lI. „(&c)'"L („-L
FIG. 3. The nonlinear paramagnetic magnetization

(M~(H} ) in the weak- and intermediate-field regimes (schemat-
icj.
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Strong nonlinear dependences of the magnetization
and susceptibility are obtained in the weak but not
super-weak regime B [see Eq. (2.12)], and in the inter-
mediate regimes C+D [see Eq. (3.6)]. They are schemat-
ically depicted in Fig. 3 for 2D. They are universal, i.e.,
disorder independent (as well as dimensionality indepen-
dent in regime B), and particularly interesting in the 2D
intermediate-field regime. The independence on disorder
suggests the interesting question of whether some of
those results should hold in the ballistic chaotic regime.

We also note that our results suggest that the depen-
dence of the susceptibility on system's size may not be
monotonic: in the macroscopic (l &&L) regime
g= —

~gL ~, the system is diamagnetic, its susceptibility
being extensive in the volume. For atoms, one expects
Larmor diamagnetism (which is superextensive) to dom-
inate. The crossover between these two regimes goes
through a mesoscopic paramagnetic regime, where the
susceptibility is extensive and subextensive in d =2 and 3,
respectively. The experimental data of Refs. 29 and 30
may support this picture. However, more experimental
evidence is needed. The additional effect of electron-

electron interactions ' ' ' on the susceptibility is of in-
terest as well.
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