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Connection rules for envelope functions at semiconductor-heterostructure interfaces
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Connection rules for envelope functions are formulated in terms of a transfer matrix, the elements of
which are calculated using a scattering-matrix approach based on empirical pseudopotentials. We pro-
pose a 6X6 transfer matrix for the case when a four-band k-p model is used, contrary to the convention-
al 8 X 8 matrix. The transfer-matrix elements are calculated for a GaAs/A1As interface, in which case
the transfer matrix appears to be almost diagonal. The envelope functions are to a good approximation
continuous at the GaAs/A1As interface, whereas the first derivatives appear to be more or less discon-
tinuous at the interfaces. However, we find no evidence for connection rules for the first derivatives of
envelope functions involving effective-mass ratios, which is at variance with the rules as commonly used
in the literature. For the InAs/GaSb interface the off-diagonal elements of the transfer matrix appear to
be nonzero, whereas the diagonal elements are negligibly small.

I. INTRODUCTION

A frequently used approach for the calculation of the
electronic and optical properties of heterostructures is
the so-called envelope-function or k p model approach
(see, for instance, Refs. l —7). This method is used to at-
tempt to deal with the slowly varying envelopes of elec-
tronic wave functions only, omitting details of the addi-
tional rapid microscopic variations. The main advantage
of the envelope-function approach is the simplicity of the
method which makes it relatively easy to incorporate
effects of external potentials, magnetic fields, doping,
charging effects, etc. Another strong point is that, by
concentrating on small but relevant parts of the involved
band structures only, a relatively high accuracy can be
reached in accounting for these parts in the theoretical
description. There are, however, two serious drawbacks.
The first one is the restriction to wave vectors lying close
to particular band extrema, i.e., to envelopes varying
slowly over unit-cell distances. Only if this restriction is
made is it allowable to deal with relatively simple
envelope-function equations. The second drawback has
to do with the question of how to match envelope func-
tions at heterostructure interfaces. Whereas an electron-
ic wave function as well as its first derivative obviously
have to be continuous at a heterostructure interface, this
does not imply that its slowly varying envelope (and the
first derivative of the envelope function) is also continu-
ous at the abrupt interface. The problem of matching en-
velope functions at heterostructure interfaces has been
the subject of several papers, ' but has not yet been set-
tled satisfactorily, the reason being the difficulty of
translating the connection rules for real wave functions
into rules for envelope functions without making an ex-
plicit appeal on those real wave functions themselves.

An alternative manner to describe electronic properties
of heterostructures is to use a model based on empirical
pseudopotentials. ' ' In this theory the pseudo wave
functions are properly matched at the heterostructure in-
terfaces. Proper matching implies continuity of both the
pseudo wave function and its first derivative in each point

of the interface. In view of the well-known relation be-
tween the actual wave function and the pseudo wave
function' the matching of pseudo wave functions implies
proper matching of the actual wave function to a very
high extent. The method is, contrary to the envelope-
function approach, valid for wave vectors throughout the
first Brillouin zone. A disadvantage of the method, also
present in the more common k.p method approaches, is
its restriction to the flat-band approximation in which the
heterostructure layers are assumed to be entirely bulk-
like. A more serious drawback is that the matrices in-
volved in the calculation have a dimension that is much
larger than the dimension of the matrices involved in a
simple envelope-function approach, thus drastically in-
creasing computing time. It will be shown, however, how
the results of a pseudo-wave-function approach can be
used in formulating a much more reliable envelope-
function approach.

The object of this paper is the following: From the ex-
act treatment of the scattering of an electron at a hetero-
structure interface (based on empirical pseudopotentials)
we can derive what the related envelope functions are,
simply by rewriting our results for pseudo wave functions
in the heterostructure in terms of envelope functions. We
are then left with envelope functions which are what they
ought to be. We are thus in the position to verify wheth-
er proposed boundary conditions for envelope functions
at interfaces are valid or should be replaced by more ap-
propriate ones. In this manner we are able to resolve, for
a number of important cases, the ambiguities which exist
in matching prescriptions for envelope functions at het-
erostructure interfaces, thus eliminating one of the major
drawbacks in envelope-function theory.

The outline of the paper is as follows. We will first give
a brief description of the scattering-matrix method,
which uses empirical pseudopotentials, in Sec. II. In Sec.
III a transfer matrix is introduced, connecting envelope
functions and their first derivatives at a heterostructure
interface. In this section we will explain the method to
calculate the transfer-matrix elements using the
scattering-matrix approach based on empirical pseudopo-
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tentials. The transfer-matrix elements will be calculated
for a GaAs/Al Ga, As interface in Sec. IV A. An im-

portant issue in the matter of connecting envelopes at
heterostructure interfaces is the conservation of Aux at an
interface, which we deal with in Sec. IVB. For the
InAs/CzaSb interface the transfer-matrix elements are
presented in Sec. IV C. We summarize our results and in-
clude some additional remarks in Sec. V.

II. SCA'1"j.ERING-MATRIX APPROACH

where a,„, and a;„are 2M-dimensional vectors, the ele-
ments of which are the a~' coefficients of the outgoing
and incoming channels, respectively. Note that there are
M outgoing and M incoming channels in each material
layer. Choosing a particular incoming channel relation
(2) will give all outgoing channels.

For each Bloch or evanescent wave g'(r) there is a set
II

of corresponding envelope functions f1'(z). These are re-
lated to g' (r) by means of

II

,„,=Sa;„, (2)

The scattering-matrix approach for the calculation of
electronic states in heterostructures using empirical pseu-
dopotentials is extensively discussed in a previous pa-
per. ' We will therefore recall only the ingredients which
are necessary for the understanding of this paper.

In the scattering-matrix approach each material layer
of a heterostructure is assumed to be entirely bulklike.
The general wave-function solution in a heterostructure
layer j, at given energy and parallel wave vector kII, may
then be expressed as a linear combination of Bloch and
evanescent waves which are characterized by a (real or
complex) wave vector kf, where s labels each individual
Bloch or evanescent wave and where the z direction is
taken to be perpendicular to the interface planes. A cal-
culation of the complex band structure of the layer ma-
terial using empirical pseudopotentials, ' at given kII,
gives the k~' values with corresponding wave functions
Q'(r). In Fig. 1 we have plotted the complex band struc-

ture of GaAs and A1As at kII =0. Using N plane waves in
the pseudopotential calculation, it can be shown' ' that
the number of in-zone k~' solutions equals 2M, where M
is the number of projected reciprocal-lattice vectors KII
on the interface plane. The general wave function in a
material layer is therefore written as a linear combination
of 2M Bloch and evanescent waves:

2M

Q (r)= g a~'g'(r) .
II IIs=1

The aj' coefficients in Eq. (1) have to follow from the
boundary conditions, which are the continuity of the
pseudo wave function and its first derivative at every xy
point of the interface plane. ' The boundary conditions
at the interfaces may be reformulated in terms of a
scattering matrix relating all outgoing waves, which trav-
el or decay away from the interface, to all incoming

s 15, 16

Q'(r) =e " gf„'(z)+0(r), (3)

in which +0(r) are the Bloch eigenfunctions of the un-
perturbed bulk crystal of material j with a band index n
at k=0 and where we assume that kII lies in the area in
which only one envelope function per band index is need-
ed. ' The number N is equal to the number of plane
waves taken into account in our pseudopotential calcula-
tion. The envelope functions of the final wave-function
solution in layer j, given by Eq. (1), are then expressed as

PJ„(z)= gaj'f J'(z) .

III. TRANSFER MATRIX FOR ENVELOPE FUNCTIONS

It should be realized that the number N of energy
bands taken into account in Eq. (3) will generally be
large, say, equal to 27 or 59. On the other hand, the
number of band-indexed envelope functions taken into
account in practical applications of the envelope-function
formalism is much lower, and may vary between one and
four (or eight if spin states are explicitly dealt with). This
reduction is generally justified by the application of a
Lowdin-renormalization procedure. In the Lowdin
procedure a small number of bands (belonging to class
A ), lying close together in energy, is taken into account
exactly, whereas all other bands (belonging to class S)
are accounted for in a perturbative way. Typically for
states in the energy region around the conduction-band
minimum only one energy band in class A could be
sufficient. For such a case the Lowdin-renormalized
envelope-function equations reduce to the widely used
effective-mass equation in which the normal electron
mass, due to the inAuence of states in class %, is renor-
malized to the effective mass. For holelike states, on the
other hand, we have at least to include heavy- and light-
hole bands in A. In that case a more sophisticated mod-
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C
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FIG. 1. The complex band structures of
GaAs and A1As at kII=O. The conduction-
band minimum of A1As at the I point has an
onset of approximately 1.0 eV with respect to
the GaAs minimum.
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el, such as the four-band k-p model in which class A,
consists of the three valence bands and the lowest con-
duction band (which form, in fact, eight bands if the
spin-orbit interaction is included), is frequently used. '

The JV-band Lowdin-renormalized envelope-function
equations for a perfect bulk material, which form a set of
JV coupled second-order difFerential equations, give rise
to 2JV kj' solutions, where JV is the number of energy
bands in class A. (We use the script notation to distin-
guish numbers in the Lowdin-renormalized scheme from
those mentioned in the previous section. ) The number of
in-zone solutions kj' will generally be smaller and will be
denoted by LR. In case of the simple one-band effective-
mass approximation we obviously obtain two in-zone k~

solutions only, corresponding to A, =l (so here JK=JV).
In the case of the four-band k p model for the heavy-
hole, light-hole, and conduction bands six different in-
zone k J' solutions are obtained. Two k~' solutions are al-
ways such that they are out zone. In the valence-band
energy region four of these six in-zone k J' solutions corre-
spond with the two heavy-hole bands (see Fig. 1) and two
kJ' solutions correspond to the light-hole band. At ener-
gies in the conduction-band region we find two I -point
conduction band k, ' solutions and four solutions corre-
sponding to branches of imaginary k~' values which are
connected with the two heavy-hole bands (see Fig. 1).
For energies in the energy gap again four heavy-hole type
imaginary k, ' solutions are obtained as well as two imagi-
nary k J' solutions corresponding to the branches connect-
ing the light-hole band with the conduction band. The
six k~' solutions correspond with At=3, so for the four-
band model A, & JV.

The general envelope-function solutions of the
Lowdin-renormalized envelope-function equations in a
material layer j at given energy and k~~ and with n EA
are linear combinations of all ZJK in-zone solutions fJ'(z),
i.e.,

(5)

In the previous section we already dealt with an expres-
sion of this form [see (4)] in which n was not exclusively
in A. and in which the summation over s ran from 1 to
2M, where M was the number of two-dimensional
reciprocal-lattice vectors taken into account. Here, in
the Lowdin-renormalized approach, we consider the en-
velope functions (5) as truncated approximations of the
more general expression (4), with n EA and with s run-
ning from 1 to LK instead of from 1 to 2M. In the
scattering-matrix approach described previously the a '
coefFicients followed from the continuity of the full elec-
tronic wave function and its first derivative [reformulated
into Eq. (2)]. However, in Lowdin-renormalized
envelope-function approaches one does not want to ap-
peal explicitly to the electronic wave function itself. In-
stead, an appropriate set of boundary conditions for the
envelope functions V„and their first derivatives is
sought. The most general (linear) relation between en-
velope functions Pj„and their first derivatives at inter-
faces can be written in the form

pj+ i

ag&+'

Bz

yj
as~
az

where 9~ stands for a vector with components 9~ (zo), zo
is the position of the interface, and T is the transfer ma-
trix. Including all envelope functions with n HA in Eq.
(6) implies in fact that we are then dealing with 2A'

boundary conditions, where in the above two examples
we have either JV=1 or JV=4. As mentioned before, a
uniform and generally accepted set of boundary condi-
tions is not available.

In order to fix the 2JK unknown coefficients aj' in ex-
pression (5) in each material layer j there are ~ condi-
tions needed at each interface, together with 2' condi-
tions in z =+~. In the effective-mass approximation, (6)
involves two boundary conditions (JV= 1) which is
sufficient to fix the two a~' coefficients in each layer
(Af=JV,= I). For the four-band k p model, Eq. (6) con-
stitutes eight boundary conditions (JV=4). There are,
however, only six aj' coefficients which are to be deter-
mined in each layer, since JN, =3. So here Eqs. (6) form
too many equations for the determination of the a
coefficients (JV& JR). This inconsistency can be resolved
in the following way. At a given energy, we always ob-
tain k~' solutions which are related to three bands only,
although there are four bands involved in the calculation
of the complex band structure: At energies in the
valence-band regime we find two light-hole and four
heavy-hole band k~' solutions and in the conduction-band
energy region we find two conduction-band and four
heavy-hole band k~' solutions, the latter corresponding to
evanescent waves. In the energy gap the branches con-
necting the light-hole band and the conduction band
must be attributed a band index either belonging to the
conduction band or the light-hole band, depending on
which one is closest in energy. So at each fixed energy it
is sufficient to incorporate three band-indexed envelope
functions only in (6). Consequently, the T matrix (6) be-
comes a 6X 6 matrix, which is consistent with the num-
ber of equations required to fix the six unknown n '
coefficients in each material layer.

Our scattering-matrix calculations based on empirical
pseudopotentials enable us to determine the actual values
of the T-matrix elements as a function of energy. We
derive the proper electronic wave function for a hetero-
structure first, as previously described. Once we have
calculated the aj' coefficients, we are able to calculate the
envelope functions V~ (z) using Eq. (4) in which the en-
velope functions f~'(z) are calculated using relation (3).
Envelope functions obtained in that manner contain
terms corresponding to a large number of 2M solutions
kj' which may have a real part not only close to ko=0
(the I' extremum) but close to ko=(2n. /a)e, (the X ex-
tremum) as well. In a Lowdin-renormalized scheme only
a limited number of 2' solutions k~', which lie close to
one particular ko value, are taken into account. In order
to obtain envelope functions using the empirical pseudo-
potential method which are as close as possible to en-
velope functions obtained in Lowdin-renormalized
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schemes we restrict the summation over s in Eq. (5) to the
reduced number ZAt. This implies that we have to be
aware of shortcomings in the Lowdin-renormalized
scheme which have to do with the neglect of possibly par-
ticipating channels.

In the case of the scattering of an electron at a
GaAs/A1As single interface the procedure is that we
choose one particular incoming channel, for instance cor-
responding to an incoming conduction-band electron,
and determine the a coefficients of all outgoing waves us-
ing the S-matrix description (2). For this configuration
the values of JR band-indexed envelope functions and
their first derivatives at both sides of the interface can
then be calculated in the manner described above. Sub-
stituting these values in Eqs. (6) gives at equations for
the 2' X~ unknown T-matrix elements. In each ma-
terial layer there are ZAt k J' solutions which we have tak-
en into account in the calculation of the envelope func-
tions, A, of which correspond to incoming channels.
There are therefore ZAt —1 other independent possibili-
ties for choosing the incoming channel, namely, At 1—
channels which are incident from the GaAs side and
another AL which are incident from the A1As side. Each
choice for an incoming channel leads to ZAL equations for
the T-matrix elements. The total number of equations
will therefore be equal to 2' X~ which fixes each T-
matrix element.

IV. RESULTS

2.0
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1.0
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0.0
0.0 0.5 1.0 1.5

Energy (eV)

velope function may take values as large as 50% of the
value of the conduction-band envelope function. Note in
this connection that if the class A is reduced to the con-
duction band only, we may express the value of the light-
hole band envelope function V(h(z) approximately in
terms of V, V, . For a zinc-blende structure we find
with k0=0

FIG. 2. The absolute value of the conduction-band envelope
function at the right-hand side (solid line) and left-hand side
(dashed line) of the GaAs/A1As interface in case of the scatter-
ing of an electron at a single interface. Also the light-hole band
envelope functions at the right- and left-hand sides are depicted
(long-short dashed and dotted lines). The zero of energy lies at
the GaAs conduction-band edge. The conduction-band edge of
A1As lies at 0.98 eV.

A. The GaAs/Al„ t"a& „As interface
(7)

1. Conduction-band energy region

We will focus here on the energy region above the I-
point conduction-band minimum in GaAs. At these en-
ergies the most important u~' coefficients, for the case of
an incident electron with k~~ =0, are the ones which corre-
spond to the transmitted and rejected electron. ' In view
of the fact that the important o,~' coefficients in each layer
correspond to two kj' solutions which both have real
parts close to the I point, we take A, = 1 and ko= 0 in the
calculation of the envelope functions. The calculation
procedure provides us with expressions for f~'(z) func-
tions with varying n. Obviously, the conduction-band
(n =c) envelope functions fJ'(z) are important at ener-
gies in the conduction-band regime. However, we find
that also the light-hole band (n =lh) envelope functions
f('h(z) are significant. In Fig. 2 .ve have plotted the
values of the envelope functions V, and V~„at the inter-
face position zo, constructed according to (5). Values of
V„ for all other n values appear to be negligible. In most
applications of the effective-mass approximation, in
which class M consists of the conduction band only, the
light-hole band envelope function lying in class 9 is en-
tirely neglected. The wave function Q (r) is then simply

Il

approximated by exp(ik~~ p)P~(z)+0(r) [see Eq. (3)].
Charge densities, for instance, are thus expressed in terms
of conduction-band envelope functions only. This is at
least not justified for our case dealing with GaAs and
AlAs since the absolute value of the light-hole band en-

where we define PJ=(fi jm)(gh 0~(A'li)(ayaz)(P 0).
For GaAs and A1As we find from our empirical-
pseudopotential calculations the values 0.95 and 0.48 for
P~/aEJ, , respectively (a is the lattice constant).

In a Lowdin-renormalized scheme in which only two
kf solutions are taken into account (Af = 1), the T matrix
at the interface reduces to a 2X2 matrix, as described
earlier in Sec. III. This T matrix relates the envelope
function V, +'(z) and (Blitz)VJ+'(z)=VJ, +'(z) for A1As
to the ones for GaAs. We remark that most, if not all,
connection prescriptions in the literature for electron
states in the considered energy region are formulated in
terms of a diagonal 2X2 T matrix. Our calculations, for
k~~=0, show that the values of the off-diagonal elements
of T, i.e., the ones connecting V, (z) to V, .(z), are smaller
than 10 so that they indeed appear to be negligibly
small and to support the diagonal T-matrix model. The
absolute value of the diagonal T-matrix elements T„,
connecting the functions V, (z), and the absolute value of
T. .. which connects the derivatives V, .(z), are given in
Fig. 3 as a function of energy. (Note that T„can be
chosen to be real. ) A striking feature is that T„ is almost
constant and close to unity (0.9(T„(0.92) in a rela-
tively large energy interval (1.5 eV) above the I -point
conduction-band minimum in GaAs. This implies that
the envelope function P, (z) is almost continuous at a
GaAs/A1As interface, which is only slightly at variance
with the connection rule for the conduction-band en-
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FIG. 3. The absolute value of the matrix elements T„(solid
line) and T,,, (dashed line) which connect the conduction-band
envelope function and its first derivative at a GaAs/A1As inter-
face, respectively. The zero of energy lies at the conduction-
band minimum of GaAs (this will be so in all the following
figures). The I -point conduction-band minimum of A1As is lo-
cated at 0.98 eV.

T-matrix elements as a function of energy. The diagonal
elements of T at k =0.1(2m. /a) are plotted in Fig. 4. We
again find approximate continuity for the conduction-
band envelope function, as well as for the two heavy-hole
envelope functions. The first derivative of the
conduction-band envelope function is also for this case
slightly discontinuous, in accordance with our previous
results at k~~=0. We remark that if we take JR=1,
despite the obvious importance of the heavy-hole type
solutions, the conduction-band envelope function and its
first derivative appear to be largely discontinuous. The
first derivatives of the heavy-hole band envelope func-
tions show rather sizable discontinuities. Note that the
value of IThh hh I

lies between 0.6 and 0.8 which is much
smaller than the ratio of the heavy-hole effective masses
which equals 1.04 for effective masses obtained using
empirical pseudopotentials. Also the largest off-diagonal
element T»&», which has a value close to 0.1, has been
depicted in Fig. 4. All other off-diagonal elements have
smaller values.

velope function as often used in the literature and which
supposes continuous envelope functions. The first deriva-
tive P, ,(z) appears to be more or less discontinuous; we
find 1.05 &

I T, , I
& 1.26. We also find that T... is almost

real valued, so that the phase of the first derivative does
not change very much across the interface. The value of

I T... I
is much closer to unity than to the often applied

value of IT, , I=m~"+, /m* which would be equal to
about 1.8 for effective masses for a GaAs/A1As based
heterostructure, as obtained using empirical pseudopo-
tentials. It is worthwhile to reemphasize that we did not
assume the basis functions Pc(r) [see Eq. (3)] to be iden-
tical for both materials, as is a common Ansatz in the
literature, but have taken the exact eigenfunctions of the
Schrodinger equation at ko =0 for each material. We
also want to stress that the envelope functions which
have been used to obtain the T-matrix elements are the
exact ones and are not obtained from an approximate set
of Lowdin-renormalized envelope-function equations.

2. Parallel wave vector k~~ unequal to zero

In order to investigate whether the above result con-
cerning the approximate continuity of the conduction-
band envelope function and the slight discontinuity of its
first derivative also holds for k~~&0, we have calculated
the T-matrix elements for k„=0.1(2m /a). However, for
this value of k~~ the coefficients a ' corresponding to k J'

branches connected at the heavy-hole valence bands are
not negligible anymore, due to the coupling between
heavy holes and electrons at klAO. The number Af,

therefore has then at least to be taken equal to 3 in order
to incorporate the heavy-hole type k 1' solutions. This im-
plies that a simple one-band effective-mass model is not
valid anymore, since it entirely neglects the heavy-hole
type kj' solutions. Clearly, a four-band k p model (in
which A, =3) should be used. The dimension of the T
matrix then becomes 6 X 6, connecting the conduction-
band and two heavy-hole band envelope functions and
their first derivatives. We have calculated each of these

3. Valence-band energy region

1.5

1.0

IT„„I
0.5

c'c' k 0 1x
hh, hh ~

~ cc

hh1 ', Ih'

hh', hh'

0.0
0.0 0.5 1.0 1.5

Energy (eV)

FIG. 4. The diagonal elements of the 6X 6 T matrix connect-
ing conduction-band and heavy-hole band envelope functions
and their first derivatives at a GaAs/AlAs interface are given
for k =0. 1 ( 2m /a). Also the largest o6'-diagonal element

I &hhl'. 1h I is given.

If we now focus on energies in the valence-band region
we have to determine the matrix elements of the 6 X 6 T
matrix which connect the light-hole and two heavy-hole
band envelope functions and their first derivatives at the
interface. For a GaAs/A1As interface, with k~~

=0,
we have plotted the diagonal T-matrix elements in
Fig. 5. The envelope functions appear to be approxi-
mately continuous, with 0.991 & T»» & 0.992 and
1 & T» i hh &

= T»2 hh2 & 1 .009. In contrast, the T-matrix
elements connecting the first derivatives show rather
large deviations from unity; we find 1.22 & T~h. ». & 1.47
and 0.712 & T»i », . = T», . »,. & 0.754. The ratio of the
effective masses in A1As and GaAs for the light holes
equals 1 .8 and for the heavy holes 1 .04, where the
effective masses are obtained using an empirical-
pseudopotential band-structure calculation. So also for
this case we do not find that (m") 'B9'„/Bz is continu-
ous at a GaAs/A1As interface. The off-diagonal elements
are all smaller than 0.08.
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servation at the interface, at least if the expression for the
unit-cell averaged Aux in the effective-mass approxima-
tion

(8)
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Also for k~~%0 we have calculated the T-matrix ele-
rnents connecting the valence-band envelope functions.
The diagonal T-matrix elements for k„=0.1(2n./a) are
approximately the same as for k~~=O. The off-diagonal
T-matrix elements which show appreciable values close
to 0.1 or above have been depicted in Fig. 6. All other
off-diagonal matrix elements are smaller.

In summary, in the valence-band energy regime the
light-hole and heavy-hole band envelope functions are al-
most continuous. However, their first derivatives are
discontinuous. Notably this discontinuity is not given by
the ratio of the effective masses.

B. Conservation of Aux

We want to emphasize again that the envelope func-
tions are calculated starting from true electronic wave
functions. These wave functions and their first deriva-
tives are continuous at every (x,y) point of the interface.
As a rnatter of course the charge density and density-
current probability (or fiux) will then be continuous as
well. However, our results obtained above for the con-
nection rules for conduction-band envelope functions and
their first derivative seem at first sight to violate Aux con-

0.5

0.4

0.3

FIG. 5. The diagonal T-matrix elements between light-hole
and heavy-hole band envelope functions for energies in the
valence-band region, with k~~=0. The valence-band maxima of
AlAs and GaAs lie at —2.06 and —1.53 eV, respectively.

1.5
band edge AI„Ga, gs

~ EMA

~ EPM

1.0

is used. Here the argument z„, of the envelope func-
tion is some position within a unit cell. Since both the
envelope function and its first derivative are approxi-
mately continuous, but the effective masses of both ma-
terials are largely different ( m A,~, /m o,~, = 1.8 for
effective masses as obtained with empirical pseudopoten-
tials), this expression appears to be discontinuous across
the interface. It is precisely because of the wish to have
(8) continuous that a large variety of authors has urged to
propose as obvious the connection rule that
(m *) 'B9', /Bz should be continuous. This rule, together
with continuous envelope functions V„ indeed provides a
continuous density current, as given by expression (8). So
there seems to be a contradiction between our approach
in which the continuity of the density current within the
scattering-matrix method is built in from the outset and
the apparently discontinuous density current according
to expression (8), in which the conduction-band envelope
function obtained from pseudo-wave-functions and its
first derivative are substituted.

The discrepancy can be explained as follows: In Fig. 7
we have given the ratio of the unit-cell averaged Aux, as
given by (8) in which we have substituted the envelope
function 9, and its first derivative which are calculated
starting from the pseudo-wave-function and the "exact"
Aux as obtained within the scattering-matrix method us-
ing empirical pseudopotentials for a GaAs/A1Q 3Gao 7As
single barrier structure (k~~=0). One conclusion to be
drawn from this figure is that expression (8) apparently is
a good approximation for the exact Aux in GaAs at ener-
gies close to the conduction-band edge of GaAs. This is
the energy region where the effective-mass approximation

0.1
0.5

0.0 0.1 0.2 0.3 0.4 0.5

-2.5 -2.2 -1.8 -1.5 Energy (eV)

Energy (eV)

FIG. 6. The most important nonzero off-diagonal matrix ele-
ments of the 6X6 T matrix connecting light-hole band and
heavy-hole band envelope functions and their first derivatives at
a GaAs/AlAs interface are given for k =0.1(2m/a).

FIG. 7. The ratio between the unit-cell averaged flux j, as
calculated in the effective-mass approximation (in which the en-

velope function and its first derivative as obtained using the
empirical-pusedopotential method are substituted) and the flux

j, as calculated exactly within the empirical-pseudopotential
method in GaAs (dashed line) and Alo 3Gao 7As (dotted line) for
a single GaAs/Alo 3Gao 7As barrier structure.
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is valid. But at these energies the deviation of the Aux in
Alo 3Gao 7As, given by (8), from the exact fiux is rather
larger (+20%%uo). This is because the effective-mass ap-
proximation is rather poor at these energies in
AlQ 3GRQ 7As since we are far from the conduction-band
edge of A1Q 3GRQ 7As. At energies close to the
conduction-band edge in A1Q 3GRQ 7As the situation is re-
versed. At energies in between the conduction-band
edges of both materials the deviations of the Aux given by
(8) from the exact fiux are opposite in both material lay-
ers. Our conclusion therefore is that the Aux, calculated
with expression (8) in which we substitute the envelope
functions obtained from the pseudo wave function ob-
tained using the scattering-matrix method, indeed is
discontinuous at the GRAs/AlQ 3GRQ 7As interface. This
discontinuity is due to the poor approximation for the
unit-cell averaged fiux given by expression (8) in a materi-
al layer j at energies that are not close to the conduction-
band edge of that material.

C. The InAs/GaSb interface

The GaAs/Al Ga
&

„As interface is a particularly
favorable case: the materials are quite similar and the
band lineup is such that, at a given energy, electron states
are matched at interfaces which correspond to energy
bands which have the same band index. For such a case
it may be expected that a simple prescription for the con-
nection rules for envelope functions can be obtained. The
situation is less favorable for the case of an InAs/GaSb
interface. Here the accepted value of the valence-band
offset is such that the valence bands in GaSb are lined up
with the conduction band in InAs. Whether it will still
be possible to formulate simple connection rules for en-
velope functions can seriously be doubted for this case.

We have used the empirical-pseudopotential method to
calculate the scattering amplitudes of an electron in InAs
at an InAs/GaSb interface. The valence-band offset has
been taken equal to 0.65 eV, so that the top of the valence
bands of GaSb lies 0.15 eV above the minimum of the
conduction band of InAs. Spin-orbit interaction is
neglected although actually this is not justified for these
materials: The spin-orbit splitting of the valence bands at
the I point equals 0.4 eV in InAs and 0.8 eV in GaSb.
These values are comparable to the direct band gap,
which is equal to 0.5 eV in InAs and equal to 1.0 eV in
GaSb. However, we do not expect that spin-orbit in-
teraction will qualitatively inhuence the results with
respect to the connection rules for the envelope functions.
At the InAs/GaSb interface there are two possible types
of interfaces, one consisting of bonds between As and Ga
and the other where the bonds are between Sb and In.
Experiments show that the Ga-As interface is usually
found. We therefore consider an InAs/GRSb interface
consisting of the As-Ga bonds. The precise interface po-
sition zQ, to be used in our scattering-matrix calculations,
is to be chosen such that the difference between the total
heterostructure potential and that of the bulk potential of
material j shows antisymmetric behavior. ' The results
for the total self-consistent potential, averaged parallel to
the interface plane, as given by Ihm, Lam, and Cohen,

0.0 0.5 1.0 1.5

Energy (eV)
FIG. 8. The values of the matrix elements IT, ~h I

(dashed
line), connecting the conduction-band envelope function in InAs
at the first derivative of the light-hole band envelope function in
GaSb, and IT, &hI (dotted line), analogously defined, as a func-
tion of energy at k~~

=0. The zero of energy lies at the
conduction-band minimum of InAs.

We have succeeded in calculating the T-matrix ele-
ments, connecting envelope functions at heterostructure

indicate that the interface position where the difference
potential satisfies this condition lies halfway between the
Ga and As planes.

At energies above the conduction-band edge in InAs,
the light-hole band envelope functions are the dominant
ones in GaSb. If we now, as a logical choice take the
2 X 2 T matrix such that it connects the light-hole band
envelope function in GaSb with the conduction-band en-
velope function in InAs, we find that the diagonal ele-
ments of T are small; Tc 1h 0.092 and Tc' lh'&0. 008,
while the off-diagonal elements happen to be the larger
ones in amplitude. This can be explained as follows: the
GaSb light-hole band envelope function is, using relation
(7), in first order proportional to the first derivative of the
GaSb conduction-band envelope function. Vice versa, in-
terchanging the conduction-band index and the light-hole
band index in relation (7), the conduction-band envelope
function in GaSb is in first order proportional to the first
derivative of the light-hole band envelope function. Put
otherwise we find, in first order, Vih ~ r) V, /t)z and
t)Vi„/t)z ~ 7, . The roles of the envelope function and its
first derivative at the right-hand side of relation (6) have
therefore effectively been interchanged. This implies that
the previously diagonal elements of the T matrix for the
GaAs/A1As interface, connecting conduction-band en-
velope functions at both sides of the interface, now play
their role on the off-diagonal positions. As a matter of
course relation (7) is only approximate, the first-order ap-
proximation being poor since the energy generally is far
from both the conduction-band edge of GaSb. In Fig. 8
we have printed the off-diagonal elements as a function of
energy. The off-diagonal matrix element T, &h appears to
be weakly dependent on energy, 2 &

~ T, &h, ~

& 2. 6 for ener-
gies between 0 and 1.5 eV above the conduction-band
minimum of InAs. The matrix element T,. &h

is almost
constant. Its absolute value appears to be approximately
equal to 0.8.

V. CONCLUSIONS
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interfaces, using the scattering-matrix method based on
empirical pseudopotentials. We conclude from our
scattering-matrix approach that the T matrix, for
GaAs/Al Ga, As interfaces and k~~=0, to be used in a
4-band envelope-function model is an almost diagonal
6X6 matrix, connecting two heavy-hole band envelope
functions and either the light-hole band envelope func-
tion for energies in the valence-band region or the
conduction-band envelope functions in the conduction-
band energy region. The diagonal elements connecting
the envelope functions appear to be close or even equal to
unity. The first derivatives appear to be discontinuous.
These discontinuities, however, have nothing to do with
effective-mass ratios in contradiction with the often ap-
plied values for these matrix elements. For k~~&0 the di-
agonal T-matrix elements keep approximately the same
values as for kI~=O, but now there are also off-diagonal
elements which may take appreciable values. Only in the
important energy region above the conduction-band
minimum of GaAs and at k~~

=0 the T matrix can be re-
duced to a 2 X 2 matrix connecting the conduction-band
envelope function and its first derivative.

To give an indication of the errors due to the use of in-
correct connection rules we have considered the lowest
electron bound state in a 26.6-A-wide A1As/GaAs/A1As
quantum well. If we use envelope functions with wave
vectors which follow from our empirical-pseudopotential
calculations (so the conduction band is taken into ac-
count "exactly" ) and take the envelope function to be
continuous and a first derivative divided by the effective
mass to be continuous we find an error in the bound state
energy of about 35 meV. In an effective-mass approxima-
tion, however, the conduction band is approximated by a
parabolic band. This introduces an error which has near-
ly the same value but with the opposite sign. The final re-
sult in such an effective-mass approach therefore nearly
coincides with the "exact" result. Note, however, that
the errors due to the simple parabolic band approxima-
tion can easily be avoided by incorporating nonparabolic
effects. The relative success of the effective-mass ap-
proach therefore certainly cannot be interpreted as a gen-
eral plea for a connection rule for derivatives of envelope
functions involving effective-mass ratios.

Given the results for the connection rules for the
conduction-band envelope functions, the expression for
the unit-cell averaged density-current probability in the
effective-mass approximation gives a flux which is discon-
tinuous at the interface. This discontinuity is due to a
breakdown of this expression for the flux at energies
which are far from the conduction-band edge in either

one or the other material layer, rather than to erroneous
connection rules for envelope functions.

For the InAs/GaSb interface, at which the conduction
band in InAs is lined up with the valence bands in GaSb,
the T matrix connecting the light-hole band envelope
function and its first derivative in GaSb with the
conduction-band envelope function and its first derivative
in InAs appears to have diagonal matrix elements which
are negligibly small. For this case the off-diagonal T-
matrix elements are nonzero. These off-diagonal matrix
elements have values which depend only weakly on ener-
gy

Given the above results for T matrices, the envelope-
function approach seems to be reasonably applicable for
the description of the electronic properties of
GaAs/Al„Ga& „As-based heterostructures, at least for
those cases in which the electronic properties are deter-
mined by the I -point Bloch waves in each material layer.
Clearly it fails if states associated with other band extre-
ma play an important role, as shown in Refs. 15 and 28
for the GaAs/A1As single barrier case. For InAs/Gasb
based heterostructures, in which case the conduction
band and the valence bands are lined up close to each
other, the envelope-function approach may be successful-
ly used also, but now an off-diagona1 transfer matrix must
be used.

The connection rules for envelope functions as ob-
tained using the scattering-matrix approach in principle
apply to the special cases in which the flat-band approxi-
mation is valid only. The question is whether they will
also be applicable to cases in which the flat-band approxi-
mation is not valid anymore such as in the presence of
electric fields or potentials resulting from doping profiles.
If these potentials are slowly varying over distances of
the order of the size of a unit cell of a bulk material there
will be, over distances of a few atomic layers near the in-
terface, no difference with or without the additional po-
tential. The connection rules at interfaces as obtained in
the flat-band approximation will therefore be applicable
to the cases in which slowly varying potentials are
present also.
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