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We have studied the effects of expansion of the lattice on band-edge levels in Si, Ge, Sn, and SiSn.
The variation in the gap in the Si—Ge—Sn series can be explained as moving along a universal
curve of the variation of band-edge levels with the combined effect of volume and potential. For all
of the materials studied, the gap at low volumes is from I' to X. There is a small range of volumes
where the gap is from I to L, and at high volumes the gap is direct until it closes. Thus, in addition
to the usual process of applying postive pressure to close the gap, applying negative pressure also

causes band overlap and metallization.

INTRODUCTION

Because of recent observations of photoluminescence
in porous silicon! there has been a revival of interest in
ways to create a silicon structure with a direct band gap.
The widespread technological use of silicon has provided
a wealth of information about this material. A direct
gap semiconductor based on existing silicon technology is
highly desirable since the silicon information base would
likely provide direction in solving problems from design
to processing.

In addition to the motivation of examining the possible
production of Si with a direct band gap, the purpose of
this study is to understand the trends in band gaps of
group-IV materials. Going down the group-IV column,
the band-structure changes tend to produce a direct gap
material. However, for a-Sn the gap at I" goes to zero. A
material intermediate between Ge and Sn could possibly
give a moderate direct gap. The advantage of high carrier
mobilities in nonpolar, direct gap materials would also
make a IV-IV alloy intermediate between Ge and Sn of
technological interest.

Theoretical efforts for predicting group-IV materials
that are likely to have direct gaps have been concentrated
in two areas. The first is the investigation of materials
where the cubic symmetry is broken and the zone-edge
states are folded back to the center of the zone as in the
models of porous silicon,? and Si-Ge superlattices.? The
second area focuses on predicting the properties of IV-
IV alloys with the diamond structure.* This in effect al-
ters the chemical and structural environment of the bulk
material in a uniform way. Here we consider the latter
approach and attempt to provide a theoretical base for
further studies of these materials.

The chemical trends in group-IV compounds were
studied previously® using a simplified pseudopotential
model. It was shown that at a fixed lattice constant (ag
for Ge) one could reconstruct the characteristic features
of the electronic structure of the Ge—Sn—Pb series by
simply varying one Fourier component of the pseudopo-
tential.

To study the variations in the types and sizes of band
gaps of the group-IV and IV-IV materials, we have cal-

4

culated the energy levels at high-symmetry points as a
function of primitive cell volume for Si, Ge, Sn, and SiSn
(in the zinc-blende structure). We consider the effects
arising from the increase in volume with no change in
potential. This is a complimentary study to that done
in Ref. 5 where the effects of a change in potential were
studied. It is found that unit-cell size and variations in
the potential give similar changes in the band structures
of these materials.

METHOD

In this study the self-consistent charge densities and
eigenvalues are obtained by solving the one-particle
Shrédinger equation. Ab initio pseudopotentials® are
used to represent the electron-ion interaction and the ex-
change and correlation interaction is given by the po-
tential derived” from the Monte Carlo calculations of
Ceperley and Alder® within the local-density approxi-
mation (LDA). The Sn pseudopotential includes scalar-
relativistic effects, whereas the Si and Ge potentials are
nonrelativistic. The Kohn-Sham equations are solved
using a plane-wave basis with an energy cutoff of 30
Ry. The charge density and potentials are represented
by Fourier components up to Gmax = max{| G |} =
10.95 a.u.~L. Ten special k points® are used to sample the
Brillouin zone with occupation of the valence-band states
only. This does not pose a problem for determining the
potential because of partial band occupation since even
for the calculations of Sn at high volume there is band
overlap over a very small fraction of the Brillouin zone.

The LDA does not accurately describe the eigenvalues
of the electronic states which causes quantitative under-
estimations of band gaps. However, the pressure deriva-
tives of conduction-band states'® and their relative po-
sitions are given reasonably well within the LDA. We
therefore assume that the band states calculated within
the LDA show the qualitatively correct ordering and de-
pendence on cell volume.

In order to investigate the effects of cell volume on the
size of the energy gap and position of the conduction-
band minimum of the group-IV materials the total band
energy €y, the (local) potential energy, and the kinetic
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energy at selected symmetry points as a function of cell
volume are examined. To calculate the potential energy
Uy, of a state k,

Ui = [ our)Wian(r)dr =25 pu(@)Vier(~G)
Q G

=23 A@Vie(@), ()
G

we use the Fourier components V(G) of the self-
consistent potential and px (G) of the charge density. The
kinetic energy is given by

T =Q)Y  |la(k+G)? (k+G)? (2)
G

where ax(k + G) is defined by

Yic(r) = ) ak(k + G)e!k+ )T, 3)
G

The total band energy €y includes a contribution from
the nonlocal parts!! of the potential in addition to T
and Ug. This nonlocal term can be a large fraction of €y
(about 2 eV for the I'ys/ state in Si at Vj), but does not
vary as much as Ty or Uy with volume.

RESULTS AND DISCUSSION
Silicon

First we study silicon as a prototype for the group-IV
elemental semiconductors. In Fig. 1 the variation in the
one electron energy levels at the top of the valence band
and at several high-symmetry points in the conduction
band is shown. At the equilibrium volume, the band gap
is indirect from I' to A 85% along the line from I' to X.
The energy dependence of the state at X closely follows
the minimum along A; therefore, for simplicity the X
band edge is plotted instead of the minimum.

Although the minimum direct gap in Si is from I'gs/
to the I'y5 level at Vp, the dependence of the I'y5 level
on volume (pressure) is small. It is the next I' state,
'/, which changes most rapidly with an increase in cell
volume and is therefore of interest in this study.

The indirect gap first increases with volume until the
L, state crosses the X; state. Then for a small range
of volumes the gap is from I'zs to L; which is similar
to Ge at zero pressure. At around 355 a.u.® the LDA
gap becomes direct, from I'z5 to I'y» and finally closes
at around 370 a.u.® per cell. Above 370 a.u.3, the gap
is zero because of the threefold degeneracy of the I'ys
state, similar to Sn. So, in a qualitative way, the trend
of the band levels with volume in Si mimics the trend in
the group-IV elements from Si—Ge—Sn.

For Si, there exists a range of volumes where the gap
is direct. The volume at which the gap becomes direct,
however, corresponds to a negative pressure of about 155
kbar, much larger than the predicted —69 kbar (Ref. 12)
required to stabilize Si in the graphite phase. One ap-
proach to achieving a larger volume is to grow several
layers of Si on a substrate which forces the crystal to
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FIG.1. Band-edge levels as a function of the primitive cell

volume for Si are shown. The calculated equilibrium volume
is denoted by the dashed vertical line. States are labeled as
valence- or conduction-band states based on their positions
at the equilibrium volume. The shaded triangle is discussed
in the text.

have a large lattice constant. However a suitable sub-
strate is not obvious since InSb (Vp ~ 341 a.u.3) is not
large enough and Sn (Vp ~ 460 a.u.?) is opaque. It is
also likely that on any substrate the highly strained lat-
tice would relax via dislocations after several layers were
grown.

Despite the fact that the large volume required to cre-
ate a direct gap in Si is probably unattainable, there
are still interesting and potentially useful properties of Si
which are obtained from this study. For example, there
are two notable features in the variation of Si levels with
volume. First, at high enough volume the gap will close
and the system will metallize. This corresponds to met-
allization at a large megative pressure, in contrast to the
usual process of metallization which occurs at positive
pressures due to the I'-X overlap. The second feature is
the triangle which is created by the variations of the L,
X1, and T’y levels with volume (from about 320 to 350
a.u.3). This feature is not specific to silicon, but occurs
in Ge, Sn, and even SiSn.

In order to better understand the 'y state’s strong de-
pendence on lattice expansion and the various crossings
of the conduction-band states with volume, we decom-
posed the total band energy for the I'ss/, 'y, X7, and L,
states into components arising from the local potential
energy and from the kinetic energy.

The kinetic energy and local potential energy for Si as
a function of volume are plotted in Figs. 2 and 3. The
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shown for symmetry points in Si.

The kinetic energy as a function of volume is

FIG. 4. Charge-density contours of the 'y state in Si at
the experimental equilibrium volume (270 a.u.?) are shown.
The (110) plane is shown. Contours of 1,2,...,10 elec-
trons/unit cell are drawn. The lowest contour is shown as
a dotted line, and the highest contour is shown as a bold line.

decrease in kinetic energy with increasing volume is sim-
ilar for the L; and I'y/ states which have net decreases of
about 4.8 and 4.7 eV, respectively, over the volume range
studied. The I';s5 and I'y5 states decrease by 4.3 and 3.7
eV, while the X; state decreases by only 2.6 eV. Poten-
tial energies of the I'15, X1, and L, levels drop by 0.5
eV or less over the volume range studied. The valence-
band I'z5 state shows a small rise in potential energy, but
the conduction-band I'ys state’s potential energy drops by
more than 2.5 eV. A study of the charge-density distribu-
tion of these states helps to explain the overall ordering

T T T T T T T T of the kinetic-energy levels and the variation with volume
. of the kinetic- and potential-energy levels.
i Charge densities for the I'ps/, I'15, 'y, X3, and Ly
o T states are given in Figs. 4-8. Although the states are
-2 o shown only at the experimental equilibrium volume, their
Py = 'y qualitative character changes little with lattice expan-
o o L® sion. The top of the valence-band I'z5: charge density
8 I . Xlo is concentrated in the bonding region. This state has a
° t highly localized charge density with a maximum p(r) of
% —4 " l_‘25’
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FIG. 3. The local potential energy as a function of volume

FIG. 5. Charge-density contours of the I'ys state in Si.
is shown for symmetry points in Si.

Contours of 1,2,...,6 electrons/unit cell are drawn.
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FIG. 6.
shown. Contours of 1,2,..., 10 electrons/unit cell are drawn.

Charge-density contours of the I'y state in Si are

about ten electrons per unit cell. At the equilibrium vol-
ume, the first I" state in the conduction band is I';5. The
charge density for this state, shown in Fig. 5, is much
more spread-out than for the I';5/ valence-band state. In
contrast to the bonding maxima of the I'z5: state, the I'15
state has antibonding maxima.

Charge contours for the I'ys state in the conduction
band are shown in Fig. 6. Like I'y5, it has antibond-
ing maxima, but the I'ys is much more localized with a
maximum p(r) of about 9.75 electrons per unit cell. The
first conduction band state at L, L;, is shown in Fig. 7.
The charge distribution for L; is very similar to the I'y/
state, though much less concentrated with a maximum
p(r) of about 6.4 electrons per unit cell. At X, the first
conduction-band state is X;. As shown in Fig. 8, it is the
least localized state with a maximum p(r) of about 3.7
electrons per unit cell. It can be characterized as being
spread out over the interstitial region.

By examining these charge densities, the relative order-
ing of the kinetic energies and their different variations
with volume can be qualitatively explained. The “least
localized” state X; should and does have the lowest ki-
netic energy. The two states I'y» and I'zsr which have

FIG. 7. Charge-density contours of the L, state in Si are
shown. Contours of 1,2, ...,6 electrons/unit cell are drawn.
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FIG. 8. Charge-density contours of the X state in Si are
shown. Contours of 1, 2, and 3 electrons/unit cell are drawn.

the highest kinetic energies also have the highest peaks
in p(r). Even though the L; and I';5 states have similar
ranges in p(r), the avoidance of interstitial regions by the
T state raises its kinetic energy above Lj.

While the degree of localization explains the relative
ordering of the states, the drops in kinetic energy for
the five states plotted can be explained by examining the
shape of the charge distributions. The I'sr and L; states
drop by about 4.75 eV over the volume range plotted
in Fig. 2. These states both have spherical-like charge
densities centered on the Si atoms. For the 'z state,
with charge concentrated between Si atoms, the drop in
kinetic energy is 4.3 eV. Based on the maximum in p(7),
25 has a very high absolute kinetic energy but its vol-
ume dependence is less strong than for I'ys and L;. This
is because with decreases in volume the charge in the I'5
state is free to relax perpendicular to the bond. Charge
in the more spherical states does not have this freedom.

States with charge minima in the bond region such as
I'y5 and X; show the least kinetic-energy variation with
volume. Kinetic-energy drops for these states are 3.70
and 2.60 eV, respectively. While both states are depleted
along the Si-Si bonds, the I'y5 state is fairly localized
near the atoms whereas the X; state is spread uniformly
in the interstitial region. Thus, changes in volume affect
I'15 slightly more than X; although both states are less
restricted in shape than the L;, Iy, and I'ss/ states.

Tonic potentials for Si from about 15% below to about
33% above the equilibrium volume were studied. The
change in potential in this volume range is basically from
a directional potential, with large wells along the bonding
directions, to a fairly spherically symmetric “atomiclike”
potential. Variations in potential energies of the band
edge states can be predicted based on their distributions
of charge and the positions of the minima of the solid-
state potential.

Charge-density maxima for the I';s state lie in the
middle of the bond and vary only slightly with lattice
expansion. At very high volumes the charge density de-
velops a “double hump” in the bond charge similar to
carbon in the diamond structure. For the range of vol-
umes studied, the charge distribution stays essentially
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constant with a slight decrease in the maximum of p(r) as
the unit-cell volume is increased. The double-hump char-
acter at high volume is an attempt to lower the state’s
potential energy by fitting into the atomiclike potential
minima near the ions.

The I'ys state’s maxima, however, lie along arcs around
the ions fitting into the minimum of the potential. As the
cell volume is increased, the maximum in p(r) increases
from 8.8 to 11.2 electrons per unit cell at 230 a.u.® and
360 a.u.3, respectively. Separate atomiclike orbitals start
to form around each ion. This is the primary reason for
the dramatic decrease in potential energy with volume
of the 'y state. The I'y5, Ly, and X; states also have
maxima that can take advantage of the change in poten-
tial with volume. Although they are much less localized
than the I'y/ state these states also show increases in the
peak value of p(r) with volume. Hence, their potential
energies decrease with volume but at a rate much smaller
than for the I'ys state.

Based on this discussion, one can explain why Si is an
indirect semiconductor at the equilibrium volume. Al-
though the I' states in the conduction band have a low
potential energy compared to the X; state over a wide
volume range, the high kinetic energy dominates at vol-
umes around Vp. It is not until the I'yy state’s charge
density becomes strongly localized in the minimum of
the solid’s potential that it becomes lower in energy than
the L, or X, states. Therefore the intrinsic size of the Si
atoms determines Vj which forces the relative ordering of
the states, causing the energy gap to be indirect.

The variation of the levels with volume (see shaded re-
gion of Fig. 1) shows an interesting pattern formed by the
X, L, and T levels as the gap changes from indirect at X
to indirect at L to direct. There is a delicate balance be-
tween the decreases in kinetic and potential energies for
the X; and L; states. Although the X state’s potential
energy drops slightly faster than the energy for L;, the
kinetic energy of the L; state drops even faster as com-
pared to X; and thus the L; state becomes the lowest
conduction-band state for a small range of volumes. The
'/ state “passes” even the L; state at high volumes be-
cause its drop in potential energy is so much larger than
for L,.

Ge, Sn, and SiSn

To understand more generally the connection between
variations in volume and potential of band states, we
consider the I', X, and L states for Ge and Sn (omitting
the conduction-band I' state analogous to the Si I';s).
The results are shown in Figs. 9 and 10. For compari-
son, we also calculated the energy levels for SiSn in the
zinc-blende structure. The energy levels as a function of
volume for SiSn are shown in Fig. 11.

In Ge the gap is from I' to L, while Sn has a zero gap
at the zone center (T'g is threefold degenerate, while I'; is
nondegenerate). SiSn at the calculated equilibrium vol-
ume has an indirect gap from I' to X, similar to Si. It is
known that the trends in the energy gaps of the group-
IV materials can be reproduced with changes in the ionic
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FIG.9. Band-edge levels as a function of the primitive cell
volume for Ge are shown. The calculated equilibrium volume
is denoted by the dashed vertical line.
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FIG. 10. Band-edge levels as a function of the primitive
cell volume for Sn are shown. The calculated equilibrium
volume is denoted by the dashed vertical line.
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FIG. 11. Band-edge levels as a function of the primitive

cell volume for zinc-blende SiSn are shown. The calculated
equilibrium volume is denoted by the dashed vertical line.

potential.5 However, the patterns in the dependence of Si
levels on volume such as the “triangle” are unmistakably
present in the variation of Ge, Sn, and even SiSn levels
with volume. Hence, the gap in SiSn could be obtained

10 309

by expanding Si closer to the X;-L; crossing, and the in-
direct I' — L gap for Ge could be obtained by expanding
Si past the X-L crossing. Even the zero gap of Sn could
be obtained by expanding Si through the L-I' crossing
and until the conduction-band I state crossed the top of
the valence band.

Although it is clear that the energy gap is determined
by an interplay between the potential and the volume,
the similarity in the dependence of the band-edge levels
on volume for Si, Ge, Sn, and even SiSn suggests that
volume alone may be an interesting parameter to vary.
Changes in the potential just place the materials in dif-
ferent equilibrium positions on the “universal” energy-
volume graph. By carefully controlling the composition
of a IV-IV alloy, one could presumably find the area in
potential-volume phase space where the gap is direct.

A theoretical study of Ge;_;Sn, alloys* showed that
an alloy of ~ 70% Ge, 30% Sn would yield a material
with a direct gap of ~ 0.5 eV. This gap is calculated
to decrease with increasing Sn content and to close at
z ~ 0.74. This is consistent with our study. The stability
of GeSn (Ref. 4) alloys and of SiGe (Ref. 13) alloys has
been investigated, and these studies show that epitaxial
films may be successfully grown despite the fact that the
bulk materials are not expected to be stable.
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