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Elasto-optical constants of Si
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The three independent components of the piezo-optical tensor P,~I,~(u) have been determined in
uniaxially stressed Si using rotating-analyzer ellipsometry. This tensor, with only three complex
independent components in the case of Si, links the changes in the real and imaginary parts of
the dielectric tensor Ae, s(w) to an arbitrary stress X=Xq~ [i.e. , De,~(ur) = P~&I, (w)Xq~]. Using
the experimental values of P,sq~(~), several related functions and parameters were derived and
compared with previous piezoreflectance, ac-stress-modulated reflectivity, Raman spectroscopy work,
and theoretical estimates. Deformation-potential constants for the optical transitions between 3 and
4 eV were obtained using the ellipsometric data. In addition, the diferent components of the piezo-
optical tensor were calculated using the empirical pseudopotential method and reasonable agreement
between theory and experiment was found. Our data also clarify previous problems and errors in
the existing literature.

I. INTRODUCTION AND OVERVIEW

Stress in semiconductors and its relation with the op-
tical properties~ is a subject of long-standing basic in-
terest which has been revived by the appearance of novel
semiconductor structures such as strained superlattices.
While the main effects observed in these systems are re-
lated to the atomic superperiodicity, others are simply
produced by the presence of internal strain, caused by
lattice mismatch. The latter can contribute significantly
to the physical properties of the superstructure. An im-
portant ingredient for the analysis of stressed superlat-
tices, especially their optical properties, is the detailed
knowledge of the dielectric functions of the composing
bulk materials under stress. However, the complex di-
electric tensor e,s(u) or, equivalently, the complex index
of refraction n,s(w), as a function of stress are in many
cases not known. Only in some cases is qualitative in-
formation derived by way of Kramers-Kronig analysis of
piezoreflectance data (with the consequent uncertainty
arising from the extrapolations at low and high energies)
available. This lack of information is particularly acute
in the visible-uv photon energy range (~ 1.5 —6 eV)
even for the most common semiconductors such as sili-
con. The goal of the present paper is to report an experi-
mental determination of the so-called piezo-optical tensor
P,sI,I, (u), s s as well as to compare the data with previous
related information (such as deformation potentials) and
clarify some problems existing in the literature. A com-
parison with theoretical calculations based on the rigid
ion empirical pseudopotential method (EPM), and other
recent theoretical work, is presented.

This work complements previous papers on the optical
properties of bulk semiconductors under stress includ-
ing germaniums and GaAs (Ref. 6) and, for that reason,
background material will be kept to a minimum. Rather
than dwell on basic facts of the data evaluation and the
experimental details, the reader will be referred to Refs. 5

and 6 and the discussion will be focused on the features
specific to Si so as to keep the length to a minimum.

The structure of the paper is as follows. The experi-
mental section discusses the data evaluation, results, and
comparisons with previous data. The section devoted to
theory shows the EPM calculations and, finally, the con-
clusions are presented at the end.

II. EXPERIMENT

A. Experimental technique and sample preparation

In order to measure the differential changes of the real
and imaginary parts of the dielectric tensor Ae,s(u) as a
function of applied uniaxial stress X., we used a rotating-
analyzer ellipsometer (RAE). s The instrument can be
employed as a tool to obtain the projection of the dielec-
tric tensor along the line defined by the intersection of the
plane of incidence and the sample surface. The experi-
mental method to obtain the piezo-optical components of
the tensor, starting from the ellipsometric measurements,
is identical to that explained in Refs. 5 and 6, where a
detailed description of the setup and the analysis of er-
rors can be found. The stress apparatus used for the
optical measurements is detailed elsewhere. We use the
same conventions of symbols and signs as in Refs. 5 and
6.

The samples used in the present work were high-
purity n-type Si (p 800 Acm at room tempera-
ture), with typical dimensions 1.8 x 2.8 x 18 mms, oriented
with the longest side along [111] or [100], respectively.
The surfaces were mechanically polished and chemically
etched before the experiment using 0.02 vol. % bromine in
methanol, 1:1NH4OH:H20 and 5 vol. % HF in methanol
as suggested in Refs. 13 and 14.
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B. Experimental results and discussion
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FIG. 1. Real [e&(u)] and imaginary [ez(cd)] parts of the
pseudodielectric function of bulk Si at room temperature
without stress. The data have been corrected for an ox-
ide layer (Si02) of ~10 A. . The solid symbols are data from
Ref. 13 on a very clean surface maintained in a Nz atmosphere
(see also Ref. 15).

The starting point of our experiments is the ellipso-
metric determination of the pseudodielectric function of
unstressed bulk Si at room temperature (RT), which is
shown in Fig. 1 (lines). The data have been corrected for
a Si02 oxide layer of ~10 A. The symbols in Fig. 1 rep-
resent data from Ref. 13 taken within a windowless etch-
cell in a Nq atmosphere on a very clean surface. These
data from Ref. 13 are used as reference values to take
into account the effect of an oxide layer on the surface
of our samples. Data of the pseudodielectric function
of epitaxial Si surfaces have been recently reported in
Ref. 15. The comparison between our results and those
of Ref. 13 for Si is similar to that shown for GaAs and
Ge in Refs. 5 and 6. Applying a compressive uniaxial
stress along [111]or [100] up to ~ 20 kbars= 2 GPa, and
measuring the parallel (~~) and perpendicular (J ) com-
ponents of e,~(cd) with respect to the stress (X), it is
possible to obtain the three independent components of
P~g((cd), i.e. , Pit(cd), Pn(cd), and P44(cd). The difFerent
configurations and the possible results according to ev-
ery particular geometry were given in Refs. 5 and 6, and
can also be found in Ref. 4. In Fig. 2 we show the three
independent components of P,~r, t(cd) with their real and
imaginary parts. The Kramers-Kronig consistencys s be-
tween the real and imaginary parts of each component of
P,~l, t(cd) was checked using the experimental imaginary
part and calculating the corresponding real part with the
use of Eq. (14) of Ref. 5 (dashed curves accompanying the
real parts in Fig. 2). The consistency is satisfactory for
all components of P~~A, t(cd). Typical error bars are shown
in Fig. 2 for some photon energies; they were obtained
as in Refs. 5 and 6. These are the basic experimental
result of the present paper. In Fig. 3 we show two of the
linear combinations that are irreducible components of
the piezo-optical tensor, i.e. , [Pit(cd) + 2Piz(cd)], which
represents the hydrostatic part transforming like I'q and
[Pii (cd) —Pi2(cd)] that transforms like I'i2. The third ir-

reducible component P44(cd), already shown in Fig. 2(c),
transforms like I'2s . The data of Fig. 3 were obtained
directly from the data of Fig. 2 by computing the appro-
priate linear combination.

The curves displayed in Fig. 2 can be used to simu-
late several piezo-optical response functions by means of
simple numerical manipulation. They can be used later
to compare with existing data from other related exper-
iments. In Fig. 4 we show a comparison of this kind.
The five curves in Fig. 4 correspond to several differen-
tial changes in the refiectivity ER(cd)/R(u) for X along
[110]or [001] and polarizations parallel (~]) or perpendic-
ular (J ) to the stress. For X~][110] and polarization of
the light ~]

to [110], the change in the projection of the
dielectric tensor along this direction is given by

DE[[tip]](cd) = [Pi] (cd) + Pi2(cd) —P44(cd)] X'. (2)

The inset at the top of Fig. 4 shows the same two results
obtained with ac-stress modulation of the refiectivity in
Ref. 16. Figure 4(b) shows the other possible perpendic-
ular polarization (E along [001]) for X]~ [110].In this case

De[tip](cd) oc Piz(cd). The inset in the middle of the figure

displays data from Ref. 16 corresponding to this config-
uration. Figure 4(c) shows the case of X~~[001] for

~~
and

J polarizations. The inset at the bottom exhibits the
equivalent data from Ref. 16. In these two last cases we

have Ee[ppi](cd) oc Pit(cd) and Ae[ipp](cd) oc Piz(cd), re-[001] [ooij

spectively. In Ref. 16 three fundamental piezoreflectance
functions [equivalent to our P;~1,~(cd) tensor] were given.
However, the evaluation of these functions seems to have
been incorrect. The same problem was found with the
data shown in Ref. 17. Although the procedure to cal-
culate the piezo-optical components was in principle cor-
rect, the lack of an absolute zero in piezoreflectance ex-
periments produces considerable errors. For example,
P44 (cd) in Ref. 17 was calculated by Kramers-Kronig anal-
ysis of the difference between the curves shown in the in-
set of Fig. 4(a). However, this implies the subtraction of
data from two different experiments and produces prob-
lems with the numerical analysis of the Kramers-Kronig
integrals. Contrary to this, our data for P~gi(cd) repro-
duce rather well the raw piezoreflectance or ac-stress-
modulated refiectivity data. In Fig. 5 we compare the
absolute change in the refiectivity R(cd, X) for different
polarizations ([~ or J to X) with polarized refiectivity
data from Ref. 18. Although the stress is not exactly
the same as in Ref. 18 the same qualitative trends agree.
Our changes in R(cd) with X have been calculated using

+&[lip](cd) = [Pit(cd) + Pig(cd) + P44(cd)]

where the subscript of e(cd) indicates the direction of X,
A its magnitude, and the superscript the direction of the
electric field of the light (E).Using (1), the related change
AR(cd)/A(cd) can be calculated by means of Eq. (3) of
Ref. 5, making use of the experimental values of P,~l, i(cd)
shown in Fig. 2. The result obtained with Eq. (1) is
plotted in Fig. 4(a) (Pol. J ). The curve labeled (Pol.
~~) in Fig. 4(a) corresponds to parallel polarization along
[110] and was calculated using
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the appropriate change in the dielectric tensor with the
experimental P,~ki(w)'s from Fig. 2 (see Refs. 5 and 6).

In Fig. 6 we show the low-energy tail of the real part
of s~~ (cu) —s (w) /X = [Pqq(cu) —Pq2(cu)] (Refs. 5 and
6) for X~~[100]. The full circles are a collection of ex-

perimental data from Refs. 19—23, involving direct mea-
surement of the birefringence below the lowest (indirect)
gap by transmission between parallel or crossed polariz-
ers, and Raman scattering above that gap. 2~ Open circles
are theoretical ab initio pseudopotential calculations us-
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FIG. 2. Real and imaginary parts of (a) Pzz(ur), (b) P&2(u), and (c) P44(u) obtained as in Refs. 5 and 6. The real parts
are shown together with the computed Kramers-Kronig curve (dashed line) utilizing the imaginary counterpart. Error bars
correspond to the given photon energies and were obtained as in Refs. 5 and 6.
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ing a local-density approximation (LDA) for exchange
and correlation and the so-called "scissors operator. "2
Since the low-energy tail of Re[Pqq(u) —Pq2(cu)] is very
small, the statistical noise shown in Fig. 3(a) was too

large to allow comparison with previous data. This re-
gion was measured separately 16 times, thus reducing
the statistical noise by a factor of 4. The inset of Fig. 6
shows explicitly Re[Pqq (~) —Pq2(~)] between 1.9 and 3.4
eV [compare with the real part shown in Fig. 3(a) in the
same energy range]. Both previous experiments and cal-
culations compare well with our experimental data. In
Fig. 7 we show the real part of the hydrostatic component
of P,~gt (u) below ~3 eV taken from Fig. 3(b) and the cal-
culation of this function from Ref. 24. The comparison
is again satisfactory. Finally, we compare in Fig. 8 pre-
vious experimental results from Ref. 23 for the real part
of e~~(cu) —e+(w) /X when K~~ [110], which are equiva-
lent to P44(u) shown in Fig. 2(c). s ~s There is a small
difference between the P44(w) obtained when X

~~ [ill]
or

[~ [110] probably due to internal stress of the samples.
The experimental data of Ref. 23 for the stress-induced
birefringence shown in Fig. 8 were again obtained with
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FIG. 3. (a) I'12 irreducible representation of the piezo-
optical tensor P,~I,I(cu), i.e. , [Pj 1(ur) —P12(ur)] obtained from
the data shown in Fig. 2. (b) Same as (a) but for the hy-
drostatic component [Ptt(w) + 2P12(u)] (I't irreducible rep-
resentation).

FIG. 4. Changes in the refiectivity [AR(w)/R(cu)] cal-
culated using the piezo-optical tensor components shown in
Fig. 2. The insets are data from Ref. 16 obtained by ac-stress
modulation of the re8ectivity. Agreement between both sets
of data is good (see the text for details).
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Raman spectroscopy, in the region above 1.65 eV (where
the material is opaque), and by transmission between
polarizers below 1.2 eV. The comparison with previous
experimental data is again satisfactory, as in Pigs. 6 and
7. However, the calculations of Ref. 24 do not agree as
well in this case. The P44(u) irreducible component cor-
responds to a strain of I zs symmetry which can be de-
composed into an aKne plus an internal deformation of
the unit cell, i.e. , an internal degree of freedom repre-
sented by the sublattice deformation parameter (.2s 2s In
Fig. 3 of Ref. 24 the authors showed that the calculated
P44(w) is rather sensitive to the value of ( but were not
able to obtain agreement with the experimental results
for any reasonable values of that parameter. We believe
that this is due to the fact that this calculation did not
include exciton enhancement near the Eo and Eq gaps, a
problem which will be discussed in the next section.

In Figs. 4—8 we showed several comparisons of the
present results with previous experimental and theoret-
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ical information; the agreement is satisfactory. This
means that the experimental components of the tensor
P~g~(cu) in Fig. 2 are able to reproduce several sets of
previous results, a fact that gives additional confidence
to our procedure. In the following subsection we shall
concentrate on the microscopic nature of the structures
between 3 and 4 eV (Eo and Ei gaps).

C. Structures between 3 and 4 eV

(the four equivalent [111],[111],[111],111] directions)
for the conduction and valence band, respective]y. ss For
X~~[100] the valence bands split due to the intravalley
efFect of the shear strain. This, together with the hydro-
static shift (6EH), give rise to the transitions labeled E
and Eb in Fig. 9(a). The relative intensities shown in
the figure have been calculated using a k p scheme in
Ref. 28. The eigenvalues for these two transitions as a
function of the stress X' = ~X.

~

along [100] can be shown
to

The optical structures and the effect of uniaxial
stress in this photon energy region (3—4 eV) have been
studied in the past, in particular by piezoreBectance
techniques. 7 The structure exhibits fundamental dif-
ferences with respect to the (Ei —Ei + Ai) gaps of Ge
or GaAs (Refs. 5 and 6) which are the dominant opti-
cal structures inmediately above the lowest direct gap.
According to ellipsometric data, the model pseudodielec-
tric function of Si in this photon energy region is well
represented by

and

Q1E (X) = Ei(o)+ ' (Sii+2Si2)X
3

+ ID.'(S»-S»)X

D
Es(X) = Ei(0) + (Sii + 2Siz) X

3

(4)

A ]n ((u —Es, + iI'o) e['o'&

A'( —E„+ r, )-' &'

for E,'
for Eg,

(3)
Ds (Sii —Sip) X,

where A and A' are the amplitudes (or strengths), Eg, ,
the energy thresholds (or gaps), I'c i the broadenings,
and Oo i the phases, which take into account the ex-
citonic character of the optical critical point. The Eo
function of Eq. (3) corresponds to a two-dimensional crit-
ical point (CP) while that for Ei, a discrete Lorentzian,
is sometimes called a zero-dimensional CP. As in Refs. 5
and 6, we fitted the second derivatives of e(u) as a func-
tion of X with a model dielectric function which includes
the two contributions of Eq. (3); a standard ellipsomet-
ric procedure to obtain critical-point parameters.
We set foi' the fits 8p = 0 i (Refs. 5 and 6) and we
used trial values from Refs. 32 and 33 to start the pro-
cedure. We neglect spin-orbit splitting efFects, known to
be small (& 40 meV) in Si. The Ei critical points be-
have under stress as shown schematically in Fig. 9. 7

The Ai and As bands are the orbital bands along (lll)

where S,~ are the appropriate elastic compliance
constants, and Di, Dss the hydrostatic and intraband
deformation-potential constants, respectively.

For X~~ [111]the gap along the [ill] valley splits from
the other three along [111], [111],and [111],as shown
schematically in Fig. 9(b). In this case there are three
contributions to the gap changes depicted in Fig. 9(b)
as intraband, interband, and (6E~) (hydro'static). The
three allowed transitions are labeled as E„Eg, and E„
respectively, with the following eigenvalues (with X =
ixlii[»1]) '

E,(X) = El(0) + (Sll + 2Siz) X+ DiS44X)
Di v3
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FIG. 9. Stress-induced intraband and in-
terband splitting for different optical configu-
rations. Aq and A3 are the orbital conduction
and valence bands, respectively, along [111).
The intensities were calculated using k p per-
turbation theory starting from the bands at
I' in Ref. 28. The eigenvalues for each case
are given in the text.
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show the experimental second derivatives of e+(u) for
X=O, 1290, and 1820 MPa and their best fits with the
model dielectric function of Eq. (3). In Fig. 10(a), for
X=O, we observe a single minimum in Im d e(u)/eh&
but the fit requires both Eo and Ei, as explained above.
As the stress is increased, we can observe a clear split-
ting of both CP's, which is larger for X][[100] than for
X]][ill]. We also show in Fig. 11 the broadenings of
Ei for both ][ and J components when X]~[Ill]. Note
that for the parallel component, the Ei CP is given by
a single eigenvalue (7), which separates from Eo as X.
is increased. The peak becomes well defined as a single
CP and the broadening shrinks. Still, for the perpendic-
ular component, and despite the fact that Eo separates,
Ei has contributions from E„Ed,, and E, [Eqs. (6)—(8)],
so that the peak broadens. That leads to the behavior
shown in Fig. 11. In Figs. 12 and 13 we display the com-
plete series of critical-point energies at room temperature
obtained from the fits as a function of X.. In Fig. 12(a)
we display the data for Eo and E~ obtained from the
fits of e~~(u) and e (u1) when X[][100]. In Fig. 12(b) we
plot the equivalent results for X~~ [ill]. The data are la-
beled as Eo(RT) and Ei(RT). Some typical error bars
are shown; they represent only errors in the parameters
of the fit. The full symbols are data at 77 K for the same
gaps obtained by means of wavelength-modulated reflec-
tivity in Ref. 27. The following distinctive features can
be observed: the difFerence between Et'i(RT) and Eo(77
K) at X.=O is 0.03 meV while that between Ei(RT)
and Ei(77 K) is 0.07 meV. This is in agreement with
what was observed and calculated in Ref. 32. The ener-
gies Ei are linear in the entire stress range, for all possi-
ble configurations, as expected from Eqs. (4)—(8). These
curves can be used to obtain the deformation-potential
constants as done in Refs. 5, 6, 27, and 36. Note that
the difFerence between the slopes of Ei(RT) and Ei(77
K) are small in any case, leading to values of D' which
are similar to those reported in Ref. 27. A comparison
with previous experimental values for the deformation-
potential constants of the Eq gap is given in Table I. The

4.295
X II [

Ep (77K)

3.34 + & $ g ~
n 4 o

o Ep(RT)
r

-100 500 1100 1700
Stress (MPa)

FIG. 12. (a) Critical-point energies for the Eo and Ei gaps
of Si obtained from the fits of e~~ (~) and e~(u) and X]][].Op].
The data labeled with (RT) correspond to our ellipsometric
determination at room temperature. The data at 77 K were
measured with wavelength-modulated reflectivity in Ref. 27.
Some typical error bars are shown at some points. In the case
of Eq the lines are best linear fits for the stress dependence
to obtain the deformation-potential constants (see Table I).
In the case of Eo the lines are just guides to the eye (see the
text). (b) Same as (a) but for X]][111].

4.285

o, 4.275

4.265 II
0 0

O

G O I3

500 1100 1700
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FIG. 13. E2 energies obtained from the parallel or per-
pendicular component of e(u) for X

~~
[111]. From the

two fitted lines and using the definition (E2 + 2E2 )
Di(E&)/~3(Sii + 2Si2)X', the hydrostatic deformation-
potential constant Di(E'2) of Table I was obtained.
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TABLE I. Deformation-potential constants for the Eq and E2 gaps of Si, compared with those obtained in other measure-

ments and theoretical estimates.

—9.8 + 1.3
—8+1

—8.7 + 1.3
—9.72 + 0.56

—9.31

D5

6.5 + 1.4
10+2
11+3

7.83 + 0.55
7.05

D3 (eV)

4.7 + 0.5
5+1

4.2 + 0.3
4.36 + 0.62

4.3

D3 (eV)

3.0 + 1.7
4+1

5.3 + 1.9
5.04+ 0.87

6.28

Di(&2)

2.6 + 1.1

Exp. conditions

(77 K) Electroreflectance
(77 K) Wavelength-mod. reflectivity

(RT) Ellipsometry
(RT) Ellipsometry

Pseudopotential method

Reference

29
27
45

present work
present work

features displayed by Eo are more involved, in particular
for the stress dependence of Eo obtained from e~~ (u) when

X~~ [100] [Fig. 12(a)]. There is a clear nonlinearity in the
energy dependence which was also observed at 77 K in
Ref. 27 [see Eo(77 K) in Fig. 12(a)]. Since the slopes
of Eq and Eo are of opposite signs and the gaps tend
to join, one might conjecture that this curvature arises
from a repulsive interaction with Eq. But, since Eq shows
no upwards curvature, interaction with possible forbid-
den exciton components of Eo (split by exchange interac-
tion) can also be conjectured. Microscopic calculations of
the excitonic excitation spectrum, 4 4z including dipole-
forbidden components, are not available but would be
desirable to clarify this point. A good starting point to
clarify this feature is to note that when using the exci-
tonic basis of wave functions to represent the optical tran-
sitions at k = 0, the splitting between the optically active
I qs modes and the coupling to the exchange split inac-
tive ones depends essentially on the difference between
the corresponding deformation potentials (which are dif-
ferent depending on whether X. is parallel to [100] or
[111]).Calculation of this deformation potential at k = 0
have been performed by the pseudopotential method in
Ref. 44. The trend obtained from the calculated values
is in agreement with this picture. One finds for X~~ [100]
(using the notation of Ref. 44 for the deformation poten-
tials that was introduced by Pikus~) b, —b„=3.5 eV and
for X[~[111]d, —d„0. This implies that for a [111]
stress the Eo exciton should not split nor couple to the
dipole-forbidden components. However, for a [100] stress
b, b„g 0 and sp—litting and coupling should result. This
agrees with the results of Fig. 12. Finally, for the sake of
completeness, we show in Fig. 13 the analysis of the E~
for the case of X~~ [111].Ez is expected to behave hydro-
statically since its origin lies in a broad region of the first
Brillouin zone. The origin of this critical point has been
assigned to large regions near k = (0.50, 0.25, 0.25) x2vr/a
and an analysis of the shear contributions to this peak
may require more extensive calculations than the ones
we are going to present in the following section. How-
ever, a hydrostatic deformation-potential constant from
the data of Fig. 13 can always be obtained regardless
of whether shear contributions are present or not. The
value so obtained is displayed in Table I.

III. THEORY

We have calculated using the empirical pseudopoten-
tial method 7 4o the three independent components of
the piezo-optical tensor P,~g~(w) in the same photon en-

40—
K

30—
40

10—
0

3
"2O-

0
1

I I I I

2 3 4 5
Photon energy (ev)

FIG. 14. Experimental (RAE) and calculated (EPM)
imaginary parts of e(cu) for 3C=O. Note the difference between
the measured and the calculated values around 3.5 eV. The
inset displays three different calculations of ez(u) (Hartree
approximation [Z(ur)], RPA [eapA(ur)], and RPA plus screened
exchange interaction axe(ur)). The exciton enhancement is
clearly seen in the latter.

ergy region as the experiment. The same procedure was
followed for Ge and GaAs in Refs. 5 and 6. A few details
of the calculation are given in this section.

The method used to interpolate the Fourier compo-
nents of the pseudopotential 7' was given in Refs. 5
and 6. The Fourier coefficients for the unstressed lat-
tice were obtained from Ref. 39. The lattice parameters
and elastic compliance constants at RT were taken from
Ref. 34. We used 2361 points within the full first Brillouin
zone (BZ) as in Refs. 5 and 6. The calculation has been
performed without spin-orbit coupling, which should be
much better justiGed for Si than in Refs. 5 and 6 for
Ge and GaAs. The external stress had to be taken as
high as 4 GPa, to avoid numerical problems with small
differences. The imaginary part of e(u) was computed
with Eq. (24) of Ref. 5 (see also Ref. 37). In Fig. 14 we
compare the calculated imaginary part of e(cu) for X=O
with the experimental one extracted from Fig. 1. As is
expected, s s s7 ss 4~ 4z the calculated imaginary part of
e(cu) in the region around 3.5 eV (Eo and Eq gaps) is
too small when compared with the experiment, as a result
of not having included excitonic interaction. 4~ 4z This is
illustrated in the inset of Fig. 14, where three difFerent
imaginary parts, calculated with different approaches,
are shown. 4~ 4z The curve labeled e(u) was calculated in
the one-electron approximation without local Geld cor-
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rections and corresponds, essentially, to our result. The
two other results are eRpA(u), calculated within the RPA
with local field corrections, and axe(a), calculated with
local field plus screened exchange correction (correspond-
ing to excitonic interaction). 4 Note the "excitonic" en-
hancement in the region 3.5 eV in the latter. Instead
of adding new parameters to our calculation of P,~i,i(u),
we performed it without excitonic enhancement and mul-
tiplied the final result by e,„~I(w)/e, 1,(u) so that the ex-
citon contribution is taken into account "by hand. " For
stress along [ill] we used an internal strain parameter
( = 0.564 (see Ref. 24). The calculated curves (imagi-
nary parts) are compared with the experiment in Fig. 15.
The agreement is remarkably good, especially consider-
ing the crude approximations involved. Similar results
were presented in Refs. 5 and 6 for Ge and GaAs. If
the values of Ref. 24 were corrected for exciton enhance-
ment (roughly a factor of ~ 2 for the 3.5-eV contribu-
tion), the disagreements with the experimental results

would have virtually disappeared. Without going into
details, we only mention in this respect that exciton en-
hancement affects P44(~) in this case more than the other
components: hence the discrepancy pointed out by the
authors of Ref. 24. Also the "scissors-operator" approach
assumes a rigid shift of the conduction band to fit the ex-
perimentally observed gap, formally achieved by adding
to the local-density-approximation Hamiltonian HILDA a
term representing the shift, i.e. ,

2

H + H~ + LgP, k

where Lp represents the energy shift of the conduction
bands and P, k projects the wave functions onto the con-
duction band at k. This approach is open to criticism
and seems to fail in representing the modulated response
above 3 eV where the contribution of the higher con-
duction bands cannot be neglected. The EPM method,
although empirical, seems to be successful in predict-
ing effects of different perturbations including effects of
the electron-phonon interaction over a broad range of
energies. 4s It has been proved to be quite reliable also
in the calculation of deformation potentials. 44 We per-
formed the calculation of the deformation-potential con-
stants of Ei for stress ~][100] [Eqs. (4) and (5)] and for
X~~[lll] [Eqs. (6)—(8)] and their k dependence along A
is shown in Fig. 16. The calculation for X~~[100] allows
us to obtain D& from the shift of the conduction band
A~ and D3 from the splitting of the A3. In the other
case, X~~ [111] [using the same ( employed in the calcu-
lation P,~i,i(w) in Fig. 15], the Ds and Di deformation
potentials can be obtained. 2 The interband deformation
potential Dz has been separated into the two contribu-
tions of the valence and the conduction bands. All the
values displayed in Table I are averages from k = 0 to
the zone boundary along A = (111).The agreement with
the experiment is excellent.
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FIG. 15. Comparison between theory (EPM, dashed
lines) and experiment (solid lines) for the imaginary parts
of the three independent components of P,~gI (u). The calcu-
lation has been performed as explained in the text (see also
Refs. 5, 6, and 24 for similar results).

FIG. 16. Deformation-potential constants for transitions
along A. For X~~ [100] the analysis of the valence-band split-
ting leads to the D3 plot in the figure. The case of X~~[111]
is represented by the deformation potentials D3 and D$ D3
(intraband term if Fig. 9) comes from A3 alone, but Di has
been separated into the interband contribution for Ai (con-
duction band) and A3 (valence band). The values displayed
in Table I are averages from k = 0 to the zone boundary along
A.
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IV. CONCLUSIONS

We have determined the piezo-optical tensor of Si us-

ing rotating-analyzer ellipsometry following our previous
works on Ge and GaAs. s s The results of this paper are
able to reproduce previous experimental results and also
compare well with calculations. From the experimental
point of view, the previous experimental works on the
piezo-optical response of Si in the visible are almost re-
stricted to Refs. 16 and 18. In the case of recent ab
initio calculations the reason for the lack of agreement
with experiments has been clarified. In addition, our
results solve some contradictions and errors in the exist-
ing literature concerning the analysis of piezoreflectance
data. The agreement in the low-energy tail of P,~g~(ur)
with previous experimental work is excellent. To our
knowledge, these are the first reliable data of P,~I,~(w)
in the visible and near-uv region obtained without artifi-
cial manipulation of raw data. In that sense, ellipsome-
try provides a powerful tool for the determination of the
piezo-optical response of semiconductors as we also have
already shown in Refs. 5 and 6. Open questions are the
stress dependence of Ec and the calculation of P,~I,t(u)
within the framework of a first-principles method includ-

ing excitonic contributions. A similar work on GaP and
InP is in progress and will be published elsewhere. 4

Note added in proof . The hydrostatic component
P~q(w) + 2P~s(w) shown in Fig. 3(b) was obtained
from measurements under [ill] stress. Nearly identi-
cal (within the experimental error) results were obtained
from the data for [100] stress thus providing an addi-
tional proof of self-consistency of the data. The same
applies to the Ge results of Ref. 5. In the case of GaAs
the Pqq(u) + 2Pqq(w) data of Ref. 6, obtained for [111]
stress, are believed to be correct. However, they disagree
somewhat with those obtained from [100] stress. This
topic is currently being investigated.
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