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Screening and exchange in the theory of the femtosecond kinetics of the electron-hole plasma
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This work deals with the dynamics of the nonthermalized electron-hole plasma in the subpicosecond
regime. We computed different collision rates (electron-electron, electron-hole, electron-phonon) and
discussed the relative efticiency of the different processes for the cases of static or dynamic screening of
the interaction. We also considered how the inclusion of the exchange affected the scattering amplitude
and the collision rates. Calculations were based upon GaAs. We conclude that dynamic screening is
crucial for electrons in the conduction band at a high plasma density [say, at densities above
(1—2) X 10' /cm ], whereas it generally plays a minor role at low density and when descibing hole dy-
namics. The excitation of heavy holes into the light-hole band by collisions with the conduction elec-
trons is discussed in heavily p-doped GaAs.

I. INTRODUCTION

The relaxation of nonequilibrium electron-hole plasmas
(EHP s) in the subpicosecond regime has been investigat-
ed for about 10 years in direct-gap semiconductors. Ex-
perimental methods using an optical excitation have
played a crucial part in these investigations since subpi-
cosecond pulses enable the direct generation of non-
thermalized EHP's. The first studies concerned the
modulation of the transmission close to the band edge.
These investigations have been continuously extended to
many direct-gap semiconductors [for instance, GaAs, 's
InP, GaA1As (Refs. 8—10)]. Time-resolved Raman spec-
troscopy has also been investigated [GaAs (Ref. 11)].
Time-resolved luminescence techniques appeared more
recently and are continuously being refined. ' ' An un-
derstanding of the optical properties of a strongly excited
EHP in terms of microscopic plasma theory may be ten-
tatively described as a three-step process involving the
following steps.

(1) Observation of some optical property of the excited
EHP (time-resolved absorption, luminescence, etc.).

(2) Analysis of the experimental data. This step most-
ly concerns the extraction of information on the distribu-
tion functions, the electron-hole correlations, the screen-
ing, etc., from the analysis of the absorption (or the
luminescence) line shape.

(3) Development of a plasma dynamics theory (if pos-
sible without any adjustable parameter) to account for
the subpicosecond kinetics of the critical parameters de-
duced during the two previous stages.

Our separation of steps 2 and 3 is somewhat arbitrary.
Step 2 is not simple. The interpretation, for example, of
transmission experiments close to the band edge must
take into account the electron-hole correlations, the exci-
ton screening, and the particle damping. An introduc-
tion to the optical properties of the EHP (in thermal
equilibrium) may be found in Refs. 19 and 20. Step 3 is a
standard problem of nonequilibrium statistical mechanics
(NESM) that has been extensively studied since the

pioneering work of Boltzmann in 1872. ' Many physi-
cists have contributed to the development of NESM,
especially the derivation of the Boltzmann equations, and
the discussion of their range of application. An extended
review of the subject can be found in R.ef. 22. Field-
theoretical methods have also been used.

Three main theoretical approaches prevail in the litera-
ture describing the EHP dynamics in semiconductors. In
a first approach, investigations start from the very gen-
eral equations of the nonequilibrium quantum statistical
mechanics (Balescu-Resibois formalism, ~s time-
dependent Green's functions ). This ambitious
approach may in principle describe both the coherent and
incoherent interaction of electrons with subpicosecond
optical pulses. But so far, it has (apparently) not succeed-
ed in really calculating the subpicosecond kinetics of ob-
servable quantities because the solution of the Green's-
function equations of motion lead to extremely arduous
numerical computations when correlations and screening
are included. The fundamental problem consists of
finding a compromise between the formal aspects of the
theory and the real computation capabilities. Neverthe-
less, these works are interesting because they suggest an
exact treatment. In a second approach, the investigations
start from Boltzmann-like kinetic equations and develop
complex but still tractable numerical computations.
These works are directly related to the first approach be-
cause the Master and Boltzmann's equations can be de-
rived from the theory of nonequilibrium Green's func-
tions within the framework of the so-called quasiparticle
approximation. The numerical results have been com-
pared to experimental data. ' Now this second ap-
proach is limited to the semiclassical regime, i.e., when
the plasma dynamics are controlled by collision effects
rather than by coherent quantum effects. Fortunately, it
turns out that this condition is often satisfied in the sub-
picosecond regime, when the plasma density is typically
larger than 10' /cm . In a third approach, the carrier
dynamics have been described by Langevin equations and
then solved by the Monte Carlo method. These methods
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are in principle equivalent to directly solving the
Boltzmann equations (second approach). However, they
require very long computation times to attain some accu-
racy. "

This work is essentially devoted to discussing plasma
dynamics in GaAs when the initial kinetic energy of the
electron is of the order of 100—200 meV. The EHP is
mostly confined in the I valley. Our first calculations of
plasma dynamics ' (within the framework of a two-
band model and static screening) predicted the observa-
tion of a clear hole-burning effect in GaAs in subpi-
cosecond regime at plasma density around
(6—7)X10' /cm when generating the EHP with 500-fs
pulses. Several experimental results show that the obser-
vation of this effect is not so pronounced (see for instance
Ref. 5). This means that our initial treatment underes-
timated the efficiency of carrier-carrier scattering. We
therefore wish to develop a more sophisticated model
that includes a dynamic screening of the Coulomb in-
teraction and the two valence bands.

The manuscript is organized as follows: We recall plas-
ma kinetic equations in Sec. II and emphasize the way in
which we screen the interactions. We show that inforrna-
tion on the sensitivity of scattering processes to dynami-
cal effects may be deduced from the calculation of the
dielectric function and from the inspection of the materi-
al band structure. We derive in Secs. III and IV the ex-
pressions for the different carrier-carrier scattering rates.
Several scattering rates are computed in Sec. V for con-
duction electrons both for static and dynamic screening.
We show the impact of the approximations. Computa-
tions are conducted for GaAs which has been by far, the
most studied direct-gap material to date. The following
conclusions stress the importance of the dynamic screen-
ing.

a. Intrinsic GaAs, photogeneration energy 60—70 rneV
above the band edge.

(i) Electron-electron scattering. The inclusion of a dy-
namic screening is essential for the computation of this
collision rate at densities above (1—2) X 10' /cm . At low
density, typically below 5X10' /cm, the dynamic and
the static screening approximations give similar results.
The consideration of the exchange term in the matrix ele-
ment of the electron-electron interaction gives rise to a
weak enhancement of the scattering rate.

(ii) Scattering by emission-absorption of bare LO pho-
nons or mixed modes. The two theories lead to similar
results. The relative scattering rate at the photogenera-
tion energy is quasiconstant around 5 ps ' for plasma
densities ranging from 10' to 10' /cm . The simple
theory of bare LO-phonon emission without screening is
reasonably good up to (3—4) X 10' /cm .

(iii) The static screening generally holds for H-H pro-
cesses (heavy-hole —heavy-hole collisions).

b. n doped GaA-s (hole density small compared to that
of electrons, i e , ph «p, ).. A. description of the plasma

dynamics reduces to a study of the thermalization and
the cooling of holes. Conduction electrons remain quasi-
thermalized at the bath temperature. The static screen-
ing approximation generally holds when describing hole-
hole collisions and LO-phonon emission.

c. Weakly excited p do-ped GaAs (electron density small
compared to that of holes, i e . p, «pl, ). In this case, the
description of the plasma dynamics reduces to studying
the internal thermalization and the coo1ing of the con-
duction electrons. Holes remain quasithermalized at the
bath temperature. The dynamic screening model of the
electron-electron and electron-LO processes is necessary.
In heavily p-doped material (ph ) 10' /cm ), the relaxa-
tion of the conduction electrons by direct excitation of
heavy holes into the light-hole band becomes the dom-
inant intraband relaxation process (C-HL process).

II. KINETIC EQUATIONS AND SCREENING

dt dt H dt L dt c dt

(lb)

dfI. dfl. df I. df I, dfL

dt dt L dt ~ dt c dt Lo
=gI. +

(lc)

db LO

dt

dbLo dbLo dbLo+ +
dt ~ dt I, dt

(ld)

where fc, fH, fL, b„o are the one-particle distribution
functions, respectively, for the conduction electrons, the
heavy holes, the light holes, and the LO phonons. gc,
gH, and gl are the generation rates under optical excita-
tion in the conduction band, and in the heavy- and light-
hole bands, respectively. The other terms of the right-
hand side represent the scattering rates due to the
different scattering processes. For instance (dfc/dt)~H
is the scattering rate in the conduction band due to the
collisions of electrons with heavy holes (C,H subscripts).
The first crucial point that must be clarified is the range
of application of these equations. It is well known from
the dynamic derivation of the Boltzmann equation
that one-particle distributions are related to many-
particle distributions within an infinite hierarchy of equa-
tions. Now, many-particle functions become functionals
of the single one-particle distributions, i.e., the system
loses memory, for time At ) t0, where t0 is the duration
of a single collision. Boltzmann's equations hold in this
limit. The duration t0 of a collision may be estimated

s25, 39

We use Boltzmann equations to describe the kinetics of
one-particle distribution functions. A distribution func-
tion is associated with each carrier band and with each
optical phonon type. The temporal evolution of the dis-
tributions is described by a system of coupled integro-
differential equations. If, for example, we consider one
conduction band, two valence bands, and LO phonons,
then we may describe the system using the following set
of equations:

~f, f, f, f, f,
dt dt c dt 0 dt L dt Lo
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with

0 /'qD th

4~e' ~f;«)
aE~, k, s

(2) sidered, the matrix element depends both on the input
and output wave vectors of the carrier (K and K+q) and
reads

IM;, (K,K+q, bE)l'=
I VLo(q)l'C;, (K K+q),

where qD is the Debye-Huckel wave vector and U,h the
average velocity of carriers. It turns out that the condi-
tion At ) to is satisfied after a few tens of femotoseconds
when the plasma density is larger than 10' /cm (see Ap-
pendix A). As a result, Boltzmann's equations often are
expected to provide a reasonable description of the kinet-
ics of the one-particle distributions in the subpicosecond
regime. The different scattering terms of the right-hand
side of Eqs. (1) may be case in a common form which
reads

where
I Vio(q)l =(4ire /q )( I/so —I/e )/(iricoLo/2) is

the standard matrix element of the Frohlich interaction.
The coefficients C; (K,K+q) are due to the overlap of
the cell periodic part of the initial and final Bloch func-
tions involved in the scattering process. The main
coefncients are Ccc for the conduction-conduction tran-
sitions, CHH and CLL for intravalence band scattering in
the heavy- or light-hole band, respectively, CLH and CH„
for intervalence band scattering. The overlap factors
close to the I point have been derived in Ref. 40. They
read

f;(k ) = —f;(k)S; (k )+ [1—f;(k)]S;+(k ) .
J

(3)

This decomposition simply describes the competition be-
tween the processes that scatter carriers out of the k state
(first term) and those that scatter carriers into the k state
(last term). The explicit form of factors S;*. depends on
the scattering process between the bands i and j. Let us
consider for example the emission of bare LO phonons.
We get for S;+.

S;,(k)= g fj(k —q) M;, ——v —+bio(q).+ —2~ 1 1

q, v=E

X5[bE; (q, k) vkcoLo], — (4)

where q and bE;J(q, k)=E;(k) —E, (k —q) are, respec-
tively, the wave vector and the energy exchanged in the
scattering process. One crucial aspect of kinetic equa-
tions concerns the structure of the scattering amplitude
M;. . Simple intuitive considerations suggest the use of
the matrix element of bare binary interactions. For the
emission of bare LO phonons that we have just con-

Ccc 1

CHH =CiL =(1+3cos y)/4,
3 sin'(X ) /4

where y is the angle between the vectors k and k+q.
Now bare interactions may lead to divergent integrals

S;i (for instance, for the Coulomb potential). This is
clear evidence that they are not satisfactory. As was ex-
tensively discussed in several textbooks, ' ' M; is in
fact related to the vertex function of the scattering pro-
cess. A possible approximation of the vertex consists of
screening the bare interaction VJ (q ) by using the longitu-
dinal dielectric function of the plasma. ' We get

I v, (q)l'

IE[q, bE; (q)]l

where bE~(q) is again the energy which is exchanged in
the collision. For electron-hole plasmas, the longitudinal
dielectric constant is best described in the random-phase
approximation (RPA) which reads.

e(q, fico) = 1—4 2 (K+q) —ti(K)
C p(K, K+q)

fico E(K+q) —E&(—K)—i rt
(8)

The subscripts a,P run over all the excited bands. In the
static limit A'co=0 and for small q, the RPA dielectric
function of the plasma reduces to following the simple ex-
pression:

2

s(q, o)=1+ qg)
(9)

where qD is again the Debye-Hiickel wave vector [Eq.
(2)]. Now, it must be clearly stressed that the utilization
of this static limit in the scattering amplitude [Eq. (7)]
only holds if the exchanged energy bE;J(q) is small com-
pared to that of the plasmon. Many works on the Mott
transition of excitons and on electron-hole liquids in
semiconductors have demonstrated that the static ap-
proximation strongly overestimates screening (for a re-

view, see for instance Ref. 19). In other words, the static
screening approximation underestimates the carrier-
carrier interactions. If the static approximation has been
systematically used in plasma kinetics problems, ' this
is for technical reasons, i.e., because the expression of the
dielectric function reduces to the simple form of Eq. (9)
that is compatible with the heavy computations involved
in the numerical treatment. The obvious difFiculty, con-
cerning the dynamic screening approximation, is that the
real part of the RPA dielectric function [from Eq. (8)] is a
diKcult integral. It can always be computed for a specific
study on screening (see, for instance, Ref. 43), but it is too
time consuming when it is involved in a more general
program of plasma kinetics. A possible compromise for
including dynamic screening in kinetic equations consists
of using the plasmon pole approximation (PPA) which is
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a simplified analytic version of the RPA. It has been pre-
viously used for studying plasmas and electron-hole
liquids in semiconductors. ' ' ' The expression of the
dielectric function in this approximation is

10
17 3

GaAs T=300K p=)0 /cm

E(q, A'co) =1—II, (q, fico) —IIh(q, h'co), (10) N mev

where II, and H& are the approximated polarization ker-
nels of the conduction and valence bands which read

co'i;(0)
II;(q, h'co) =

co —co i;(q)+co i;(0)—b, ;(q) 2ico—b, ,

Q 01

1

0.01 be mev

2

co~i,.(q ) =co~, ;(0) 1+
~D, i

(12)

co i;(0) is the plasmon energy at q =0 in the band i W.e
recall that co i;(0)=4ire p, /Eom. ; where p; and m; are
the density of carriers and the carrier mass in the band i,
respectively. The damping coefficient 6, is approximated
by the expression 5;=I co &,

- where I is of the order of
0.2—0.3. The following approximated dispersion curve
of plasmon is used in the PPA:

0.001

Wave vector (10'/cm)

FIG. 2. Computation of 1/~e(q, bE)
~

in the RPA for GaAs
at 300 K. p, =ph =10"/cm'. The damping b, ; [see Eq. (11)] is
determined using 6;= I co»; with I =0.3. The plasmon ener-

gy is Ac@» 14 meV.

100

10

17 3
GaAs T=300K p=10 /cm

Full RPA

20 meV

N
h,E~ meV

0.1
1

0.01

0.001

Wave vector (10'lcm)
FIG. 1. Computation of 1/~e(q, bE)~ in the RPA for GaAs

at 300 K. p, =pz =10' /cm . The plasmon energy is Ace» 14
meV.

qa; is the Debye-Hiickel wave vector for the band i. The
details of the valence bands are not included when com-
puting the polarizability [Eq. (11)],i.e., the valence bands
are described by a single parabolic band. In the limit
i(ico=0, the PPA [Eqs. (10)—(12)] reduces to the static
screening [Eq. (9)]. We plotted, in Figs. 1 and 2, the vari-
ations of the screening factor I /~ (s qb, E)~ [see Eq. (7)]
for GaAs at T=300 K in the presence of an EHP of den-
sity p=10' /cm . The RPA and the PPA are displayed
in Figs. 1 and 2, respectively. The plasmon energy
A'co i(0) equals 14 meV at p=10' /cm . The PPA obvi-
ously does not perfectly reproduce the RPA but the cru-

cial features of the RPA dielectric function are well ac-
counted for, as follows.

(1) If q ))qD then E= 1 (see Fig. 1). The consequence
for plasma dynamics is the following: If a scattering pro-
cess mostly involves the exchange of a wave vector larger
than the Debye-Huckel vector, the static and dynamic
screening approximation will give similar results. In that
case the screening model is not essential. This conclusion
generally holds at low plasma density (say, typically when
the density is below 10' /cm in GaAs) because the
screening wave vector converges to zero.

(2) If q ~qD, then (a) if b,E &)tiico„i, then E= l. Again
dynamic and static screening provide similar results. (b)
If b,E=fico i, then Re(c, )=0 so that I/~e~ &)1. The
consequence for plasma dynamics is the following: If a
scattering process mostly involves the exchange of a wave
vector smaller or of the order of the Debye-Hiickel vector
and also the exchange an energy close to that of the
plasmon, dynamic effects are expected to greatly enhance
the magnitude of the scattering rate. Then it becomes
crucial to use a dynamic screening. (c) bE &&fico~i, the
dielectric function reduces to the static expression. This
condition is fulfilled for instance by the lines correspond-
ing to b,E=2 meV (whereas iiico i= 14 meV) in Figs. 1 and
2. They are therefore almost identical with that obtained
from the exact static screening.

The PPA certainly provides an improved description
of the dielectric function with respect to the static ap-
proximation. The different curves in Fig. 1 display the
enhancement of the transition probability in dynamic
screening (with respect to the static screening) when the
exchanged wave vector and energy are respectively of the
order of the Debye-Hiickel wave vector (here
qD =10 /cm) and 20—40 meV. A quick look at the band
structure of GaAs (Fig. 3) shows that these conditions are
fulfilled for the relaxation of electrons high in the con-
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FIG. 3. Band structure of GaAs.

of the splitoff energy AE with that of the valence plasmon
occurs around the density p=2. 5 X 10' cm and leads to
a large enhancement of the transition probability when
the vector which is exchanged in the collision is of the or-
der of (or smaller than) the Debye-Hiickel wave vector
qD =5 X 10 /cm. Again a quick look at the valence band
in Fig. 3 shows that the electron-hole collisions accom-
panied by an intervalence band scattering of the hole
such as for the process 2 fulfill these conditions. This
electron-hole process is therefore expected to be sensitive
to dynamic effects in heavily p-doped samples. These two
examples demonstrate that an initial conclusion about the
sensitivity of the scattering processes to dynamic effects
can be reached from the calculation of the dielectric func-
tion and from the inspection of the band structure. Now
the final conclusion comes from the computation of the
full scattering rate including all the scattering processes.
We therefore review in the next sections the expression of
the main scattering terms that appear in the right-hand
side of Eq. (1).

duction band (process 3). The particular energy b,E=36
meV is that of the LO phonon. We therefore conclude
from this study of the RPA dielectric function that the
emission of LO phonons by electrons high in the conduc-
tion band is expected to be sensitive to dynamic effects.
We discuss now a second example of transitions sensitive
to dynamic screening effects. We plotted in Fig. 4 the
variation of 1/~ E(q, AE ) ~

in diFerent p-doped GaAs
when the energy exchanged in the collision is DE=70
meV. This energy is roughly that of the splitoff between
the heavy- and light-hole bands for a large wave vector in
the direction [1,0,0] (see Fig. 3). The factor 1/~ E

~
was

computed for several hole densities ranging from
10' /cm to 8X 10' /cm . When the density is lower
than 10' /cm, E= 1 because b,E))%co,. The resonance

18 3
=8x10 /cm

III. SCATTERING IN THE CONDUCTION BAND

A. Electron-hole scattering

Ei(k)= k
2m

1+ k

C

As we stressed in the introduction, plasma dynamics
computations based on one single valence band and on
the static screening approximation underestimate the
efficiency of carrier-carrier scattering processes. To im-
prove this model, we consider two valence bands and the
dynamic screening. The heavy-hole band is parabolic,
characterized by a single mass rnII. We use the following
algebraic expression to reproduce approximately the non-
linearity of the light-hole dispersion curve:

18 3
10 /cm Q2+ AEHL+ k

2mH

k,

(13)

18 3
p =2x10 /cm

h

18 3
p 1x10 /cm

h

RPA
15 3

GaAs T=300K p =10 /cm
e

0.01
10

Wave vector (10'/cm)
FIG. 4. Computation of 1/~s

~
in the RPA for p-doped CxaAs

at 300 K for di6'erent hole densities. The electron density is
constant at p, = 10' /cm'.

Around a critical vector k, =3X10 /cm in GaAs, the
light-hole band changes from a parabolic law (character-
ized by a small mass mL =0.082) to a curve of lower gra-
dient which becomes quasiparallel to the heavy-hole band
for k ) 5 X 10 /cm (see Fig. 3). The splitoff energy b,EHL
between the two bands is of the order 70 meV. The an-
isotropy of the light-hole energy in K space is not taken
into account by Eq. (13). We consider two classes of
electron-hole collisions. In the first one, the hole stays in
the same band (so-called in the following an "intravalence
process"). In the second one, the hole is scattered from
one valence band to the other one (so called in the follow-
ing an "intervalence process"). Such processes are
displayed in Fig. 3 for GaAs. The electron is scattered in
the conduction band (process 1). Four hole processes
may accompany this conduction transition (see labels
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la —ld in the valence bands), the initial state being either
in the heavy- or in the light-hole band. The interband
process (process 2) is characterized by the possibility of
exchanging a larger energy and a smaller wave vector
than for process 1. In this case, the hole scattering is
only possible from the heavy-hole band to the light-hole
band. Because of the small wave vector involved in pro-

cess 2, such interband transitions are expected to be sen-
sitive to dynamic effects of polarization (see the discus-
sion in the previous section). We first compute the elec-
tron scattering rate due to interband processes such as la.
The structure of the scattering rate is similar to that
displayed in Eq. (3). S;J. and S;+ are, respectively, re-
placed by

SciH(k)=2+ [1—f, (E c(k —q))] g fL(EI (k'))[1 fH(—EH(k'+q))]
k'

2

X CLH(k', k'+q) 5[E,(k)+EI (k') —E,(k —q) —EH(k'+q)]2~ Vo«)
fi s q, b.E

and

Sc+LH(k )=2 +f, (EC(k —q)) g fH(EH(k'+q))[1 fr (EL—(k'))]
k'

2

XCiH(k', k'+q) 5[E,(k)+EL(k') —E,(k —q) —EH(k'+q)] .2~ Vo(&)

s q, bE

(14)

(15)

Some points are worthy of note. (1) There is no exchange term in the scattering amplitude. This is a crucial
simplification with respect to intraband collisions as will be seen in Sec. III B. (2) Vo(q) is the Fourier transform of the
Coulomb potential, i.e., Vo(q) =4nelso. q C„H.(k, k+q) is the overlap coefficient already discussed [see Eq. (6)].

Following the calculation deferred to Appendix B, the expressions for the quantities Sc „H(k) reduce to nasty triple
integrals, namely,

Sc,LH(s)=K f dp I dq[l f, (E—bE—, )] z
p a(q, bE, )

Xd A, fI EI —(2mHz, )' 1 fH EL —(2m—H A, )'~ +b E, Ci.H(p X o ) (16a)

Sc „„(E)=Kf "dp J dq& f, (e bE, ),— 2
p s(q, bE, )

X I dA. fH eL —(2mHZ, )'~2 +bE,
D(c,p, o., y)

1 fL, &i —(2mH~—)' CLH(P ~ ~ )

(16b)

We must also include the second scattering rate due to
the interband process 1b as displayed in Fig. 3. Calcula-
tions are very similar to those of process la. Details are
also reported in Appendix B.

Notice that the intravalence scattering factors
Sc HH(k) (i.e., when the hole stays in the heavy-hole
band) can be easily derived from Eqs. (16) using the sub-
stitutions: subscript I.—+subscript H; c.L ~A, ;
C„H~CHH. The integration interval D(s,p, o, y) over A,

I

I

is determined by the simple condition A, ) (o. /
p) [q)&EP —

—,'(1+1/o. )p] .

B. Electron-electron scattering

The treatment of the electron-electron scattering (and
the hole-hole scattering) is difficult because of the ex-
change interaction. The scattering rates Sc z are similar
to those reported in Eqs. (14) and (15) and now read

Sc c(k ) = g [1—fc(E,(k —q))] g fc(E,(k'))[1—fc(E,(k'+q))]
k'

2' Vo(q ) Vo(k —k' —q) Vo(q )

E(q, bEd; ) e(k —k' —q, b,E,„) E(q, b,Ed; )
5[E,(k)+E, (k') —E,(k —q) —E,(k'+q)]

(17a)
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Sc+c(k)= gfc(E, (k —q)) g fc(E,(k'+q))[1 —f, (E,(k'))]
k'

Vo(q )

e(q, b,Ed;)

Vo(k —k' —q) Vo(q )

E(k —k' —q, bE,„) e(q, b Ed; )
5[E,(k)+E, (k') —E,(k —q) —E,(k'+q)] .

(17b)

Here bEd; =Ec(k)—Ec(k—q) and bE,„=Ec(k)
Ec(k—'+q) are the energies exchanged in the direct and

exchange processes, respectively. The calculation of Sc c
has been already carried out in the static approximation
and reduces to triple integrals. ' Now, the static screen-
ing approximation is in general not satisfactory for elec-
trons in the I valley. To our knowledge, the full compu-
tation of the terms S& c including both the exchange in-
teraction and the dynamic screening has not been con-
ducted. If the exchange contribution is omitted, the com-
putation (including dynamic screening) is similar to that
of the electron-hole collisions for parabolic bands (see
Sec. III A). In this approximation, the scattering rate for
electron-electron collisions can be derived from Eqs. (16)
using the substitutions: subscript L, ~ subscript C; sub-
script H ~ subscript C; 0 = 1, cL =A, , and
CLH ~CCC = 1. The integration interval D(E,p, o,y)
over A, is defined by the simple relation A, ) [q&v'e —v'p)2.
The computation of the electron-electron scattering rate
is, however, achieved with an accuracy that is not well
eharaeterized at high plasma density as will be seen
below.

C. Emission of mixed LO-phonon plasmon modes

The scattering rate due to the emission-absorption of
bare LO phonons has been already derived in Sec. II.
Use Eqs. (4) and (5) with Czc= 1. When the energy of

I

the plasmon is not small compared to that of the LO pho-
non (typically at plasma densities larger that 10' /cm in
GaAs), mixed LO-phonon plasmon modes are emitted by
the carriers. The derivation of the corresponding scatter-
ing rate is deferred to Sec. IV B.

IV. SCATTERING IN THE VALENCE BAND

A. Intravalence hole-hole scattering

We restrict our analysis to the scattering of holes in the
heavy-hole band. The computation of collision rates is
similar to that of electrons in the conduction band except
for the hole overlap coe%cients CHH which do not reduce
to unity and must be explicitly taken into account [see
Eq. (6)]. As a result, hole scattering calculations are
more complex than those for electrons. The general com-
putation of the hole-hole collision rate including both the
exchange interaction and the dynamic approximation
seems inextricable. Fortunately photogenerated holes are
often cold and cannot exchange both an energy of the or-
der of the plasmon and a wave vector smaller or of the
order of the Debye-Hiiekel vector. The static screening
therefore often holds for computing the hole-hole scatter-
ing rate. If the exchange term is omitted, because its in-
clusion even in the static screening is dificult, the scatter-
ing rate reads

SH~(k)=2K [1—fH«H(k —q))]CHH(k k —q) XfH«H(k'))[1 —fH«H(k'+q»]CHH(k' k'+q)
k'

2

X 6[EH(k)+EH(k') —EH(k —q) —EH(k'+q)] .
Vo(q )

E q, bE

(18)

The final expression of the scattering rate is very similar
to that of the electron hole. Notice that the considera-
tion of the two hole overlap coefficients CHH in Eq. (18)
typically reduces the scattering rate by a factor 10 with
respect to the result obtained in the approximation
CHH 1.

B. Emission of mixed LO-phonon plasmon modes

The scattering rate due to the emission absorption of
bare LO phonons has already been derived in Sec. II. For

I

holes, use Eqs. (4) and (5) with CHH =CLL = ( 1

+3cos g)/4 and CLH=CHL=3 sin (g)/4. When the en-
ergy of the plasmon is not small compared to that of the
LO phonon (typically at plasma densities larger than
10' /cm in GaAs), mixed LO-phonon plasmon modes
are emitted by the carriers or excitons [see for instance
Refs. 46—48]. The emission rate is as previously deter-
mined by Eq. (3). In the following, the mixed mode ener-
gies and the mixed mode occupation functions are denot-
ed cu and b, respectively. S;+ reads

2
+ 2m VLO(q ) 1 1S;+(k)= g f.(k —q) C,"(k,k —q)A (q) ——v—+b (q) 5[bEJ(k)—vA'co (q)] . (19)&,, ,=+,. ' eRp~[q ~.(q)1
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Equation (19) may be compared to Eqs. (4)—(7) that dealt with the emission of bare LO phonons. The energy of the
mixed modes fico (q) may be determined from the solution of the following equation:

~ (q ) [~pi(q)+co~Lo]~u(q )+~Lo~pi(q ) coLo~p&(
Ep

=0.

The coefficient A (q) in Eq. (19) is the renormalization
factor of the Frohlich interaction for the emission ab-
sorption of mixed modes. The expressions of A (q) in
the plasmon pole approximation read

A, (q)=

A2(q)=

coLo co, (q )
—co,(q )

~i(q ) ~i(q ) —~&(q)

coLo co~&(q )
—co&(q)

~z(q) ~&(q) —~',(q)

V. RELAXATION OF CONDUCTION ELECTRONS
IN INTRINSIC GaAs

As we stressed in Sec. III 8, there exists so far no fully
satisfactory computation of the C-C (and to some extent
H H) scattering -rate because the exchange interaction
and the dynamic screening have never been simultaneous-
ly taken into account. This problem is especially impor-
tant for studying the dynamics of the photogenerated
electrons in undoped GaAs when the C-C process be-
comes the dominant scattering process at plasma densi-
ties typically above 10 ' /cm . We studied in Fig. 5 the

100

i-GBAs

CO

~~
5$
C)
K

0 1 I I I I I IIII I I I I I IIII I I I I I IIII I I I I I III

0.01 0.1 1 10 100

plasma density (10"icms)

FIG. 5. Electron-electron scattering rate R„= ( 1/f, ) /(df, /dt ) I, at the photogeneration energy vs the
electron-hole plasma density. The electron distribution is cen-
tered around the photogeneration energy 60 meV with a
broadening of 20 meV at half height. Square data points, dy-
namic screening approximation (PPA) without exchange; tri-
angular points, static screening approximation without ex-
change; diamond data points, static screening with exchange.
Circular data points, electron scattering rate
Rc „o =(1/f, )I(df, /dt ) ILo by emission-absorption of bare LO
phonons.

I

efficiency of the C-C scattering rate by computing the rel-
ative scattering rate, i.e, the quantity R „=(1/f, ) I(df, I
dt)I„just at the photogeneration energy E~. This way,
we get information about the rate of scattering of the
conduction electrons out of their initial level. We chose a
Lorentzian distribution of carriers with a broadening of
20 meV at half height that was centered around the pho-
togeneration energy E =60 meV. The hole and electron
densities were equal (intrinsic photoexcited material).
Different models were compared. Square and triangular
data points were computed using the dynamic and static
screening, respectively. The exchange interaction was
omitted in both cases. In the low-density limit (typically
with p & 5 X 10' /cm ), these two calculations lead to
similar results because the Debye-Hiickel wave vector qD
is smaller than the wave vector exchanged in most of the
collision processes (for instance, qi, equals 3.5 X 10 /cm
at p=10' /cm ). In other words, the choice of the
screening model is not essential at low density. The dia-
mond data points were computed to include the exchange
term to the scattering amplitude in the framework of the
static screening approximation. It turns out that, at low
density (typically for p & 10' /cm ), the scattering rate is
very weakly enhanced (by 5 —10%) when the exchange is
included. We therefore conclude that (i) including the ex-
change is not essential at low density to compute the C-C
scattering rate; (ii) the static screening approximation
may be used. In the high-density limit [for
p) (1—2) X 10' /cm ], the dynamic enhancement of the
Coulomb potential becomes important and the scattering
rate in the framework of the dynamic screening without
exchange (square data points in Fig. 5) exceeds the other
ones (triangular and diamond data points). Notice that
the full computation including, at high density, both the
dynamic screening and the exchange is missing.

We also plotted the average scattering rate at the pho-
togeneration energy due to the emission absorption of
bare LO phonons [i.e., Rc Lo=(1/f, )(df, /dt ) ILo, circu-
lar data points in Fig. 5]. The scattering rate is quasicon-
stant for plasma densities ranging from 10' to 10' /cm,
except for a small enhancement around the density
(2—3) X 10' /cm due to the phonon-plasmon resonance.
The more sophisticated theory that considers the emis-
sion absorption of mixed LO-phonon plasmon modes
provides very similar scattering rates for plasma densities
lower that 10' /cm in intrinsic GaAs (photogeneration
energy 60—70 meV above the band edge).

We plotted in Fig. 6 the relative conduction-
conduction scattering rate R„versus the initial photo-
generation energy, for different plasma densities, namely,
p=2. 5X10' /cm, p=10' /cm, and p=4X10' /cm .
These curves provide an estimate of the internal thermali-
zation time of the conduction electrons which is of the
order of 1 or 2 times 1/R„. For instance, when the den-
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FIG. 6. Computation of the relative scattering rate
R„=(1lf,)l(df, ldt)I, in the conduction band vs the initial
photogeneration energy. The relative scattering rate is cornput-
ed at the photogeneration energy using the dynamic screening.
The broadening of the electron distribution at half height is 20
meV.

hole density (10"lcms)

FIG. 7. Computation of the different relative scattering rates
Rc LH=(1/f, )/(df, /dt) ~LH, Rc H~ =(1/f, )/(df, /dt) ~HH,

RcLo=(1/f, )l(df, /dt)~Lo, and RcM =(1/f, )l(df, /dt)~~ at
the photogeneration energy vs the hole density in p-doped
GaAs. All the processes are screened dynamically. Electrons
are photogenerated with an initial energy of 400 meV. The
broadening of the electron distribution is 50 meV. All scatter-
ing rates are computed using a dynamic screening.

sity is around 4X 10' /cm and the photogeneration ener-

gy around 50 meV, the internal thermalization time may
be estimated to be of the order of 110—160 fs.

VI. RELAXATION OF CONDUCTION ELECTRONS
IN p-DOPED GaAs

We showed in Sec. II that the e-h collisions accom-
panied by the excitation of a heavy hole into the light-
hole band could be dynamically enhanced in heavily p-
doped materials (say, for pI, )4X10' /cm3). We go now
one step further by computing and comparing the
different electron scattering rates just as the photogenera-
tion energy. We recall that R„-HH and Rz LH are the rel-
ative scattering rates when the hole stays in the heavy-
hole band [i.e., Rc HH=(1/f, )(df, /dt )IHH] or when the
hole is scattered between the heavy- and light-hole bands,
respectively. Rc LQ and R& ~ are the scattering rates due
to the emission of LO phonons or mixed modes, respec-
tively. The computed quantities Rc HH, Rc+H, R& IQ,
and R&~ enable us to determine on which time scale a
scattering process may modify the conduction-band dis-
tribution at the photogeneration energy. We chose a
Lorentzian conduction distribution with a broadening of
50 meV that is centered around the photogeneration en-
ergy E~ =400 meV (i.e., hot pumping). Holes are
thermalized at the temperature of 300 K. The electron
density is low, namely, 10' /cm so that the electron-
electron collision rate is small compared to R& LQ. Fig-
ures 7 and 8 display the relative scattering rates of the
conduction electrons computed for dynamic and static

screening, respectively. The following features should be
noted.

(1) At low doping [below (2 —3) X 10' /cm ], the screen-
ing model is not essential as previously deduced for un-
doped GaAs. The reason is again that the Debye-Huckel
wave vector qD is smaller than the vector that is ex-

M
CL

0)

~~
L
0)

10

-GSAs T,=300K

HHj

0.1

0 01 I I I I IIIII I I I IIIIIl I I I I IIIII I I I IIIII

0.01 0.1 1 10 100

hole density (10")(cm')

FIG. 8. Computation of the different relative scattering rates
Rc LH=(l/f, )l(df, /dt)~LH, Rc HH=(1/f, )/(df, /dt)IHH,
Rc,LO=(1/f, )/(df, /«)lLO and RcM=(1/f, )/(df, /dt)l~ at
the photogeneration energy vs the hole density in p-doped
GaAs. All the scattering processes are screened statistically.
Electrons are photogenerated with an initial energy of 400 rneV.
The broadening of the electron distribution is 50 meV. All
scattering rates are computed using a dynamic screening.
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changed in most of the collision processes. The emission
of LO phonons is by far the most efficient relaxation pro-
cess for conduction electrons.

(2) At high density the behavior of the electron-hole
processes are completely different in the static and dy-
namic screening approximations. Basically all the rela-
tive scattering rates increase sublinearly in a static
screening model because of the increase of the Debye-
Huckel wave vector reducing the matrix elements. The
dynamic treatment of the C-HH process does not strong-
ly increase the relative scattering rate of this process
(compare the triangular data points in Figs. 7 and 8). For
this type of collision between two particles of very
different masses, the scattering cannot involve, simultane-
ously, the exchange of a wave vector smaller or of the or-
der of the Debye-Huckel vector and the exchange of an
energy close to that of the plasmon. On the contrary,
these conditions are easily fulfilled by the C-LH process
(see the discussion at the end of Sec. II) which is very sen-
sitive to dynamic effects. The C-LH process increases
sublinearly and becomes dominant above 10' /cm in dy-
namic screening (square data points in Fig. 7). Rc tH
reaches 30/ps around 1.5X10' /cm and increases fur-
ther at higher densities. This superlinear rise with in-
creasing density is due to the dynamic enhancement be-
cause the energy DE=70 meV that is exchanged when
exciting a heavy hole into the light-hole band becomes
close to that of the hole plasmon (see the discussion in
Sec. II). Notice that to the contrary, the C-LH process
always remains a minor process in static screening (Fig.
8). This result demonstrates the great impact of dynamic
screening on the C-LH process.

(3) The density dependence of the scattering rate by
emission absorption of bare LO phonons (C-LO process)
is also completely different in static and dynamic screen-
ing models. For a dynamic screening, a peak is observed
when the hole density is around (5—6) X 10' /cm, corre-
sponding to the resonance of the LO-phonon energy with
that of the hole plasmon (diamond data points in Fig. 7).
The dynamic enhancement of the LO-phonon emission
and the C-LO process is responsible for a net increase of
the scattering of the conduction electrons in the I valley
at density above 5 X 10' /cm in p-doped GaAs.

(4) If we consider the scattering rate R c M by
emission-absorption of mixed LO-phonon plasmon modes
(circular data points, Fig. 7), we get a slight increase of
the scattering with respect to that of bare LO phonons
but the results of the two theories are similar.

VII. CONCLUSION

This work was devoted to discussing plasma dynamics
in relation to the screening and the exchange theories.
Computations were dedicated to GaAs when the
electron-hole plasma was generated with a limited initial
kinetic energy and mostly stayed within the central I val-
ley. We made a particular point of discussing the relative
efficiency of the different scattering processes in the con-
duction band. The following conclusions hold.

(i) Relaxation of conduction electrons in intrinsic
GaAs, photogeneration energy 60—70 meV above the

We are indebted to J. Kuhl, W. W. Riihle, X. Q. Zhou
(Max Planck Institute, Stuttgart), and K. Leo (Institute
for Semiconductor Electronics, Aachen) for many stimu-
lating discussions and for communicating their experi-
mental results prior to publication. We thank D. W.
Snoke for stimulating discussions on carrier-carrier
scattering at low density. We thank G. Bedford for a
careful reading of the manuscript.

APPENDIX A

We recall that the application of the Boltzmann's equa-
tion is expected to hold for time t ) to where

to = 1/qDU, (Al)

We estimate to in the following.
Case 1: Nondegenerate regime close to thermalization.

Here 1/qD =e„K~T/4vrpe and U,„=(8K~T/n. m )'
Condition (Al) becomes

1/2
1

2 —2 i/'Z
(qDv )

Pl C

12pe

band edge. (a) Conduction-conduction scattering. Dy-
namic screening is essential for calculating the C-C col-
lision rate at densities above (1—2) X 10' /cm . For den-
sities below 5 X 10' /cm, dynamic and static screening
theories provide similar results. The consideration of the
exchange term, that greatly complicates the calculations,
gives rise to a small enhancement of the scattering rate at
low density and therefore is not crucial. (b) Scattering
by emission-absorption of bare LO phonons or mixed
LO-phonon plasmon modes. The two theories lead to
similar results. The relative scattering rate at the photo-
generation energy is quasiconstant around 5 ps ' for
plasma densities ranging from 10' to 10' /cm. The
simple theory of bare LO-phonon emission without
screening is reasonably good up to (3—4)X10' /cm . (c)
The static screening generally holds for H-H processes
(heavy-hole —heavy-hole collisions).

(ii) Relaxation of conduction electrons in weakly excit-
ed p-doped GaAs (i.e., p, «pl, ). Holes remain thermal-
ized at the bath temperature. The plasma dynamics fol-
lowing an excitation reduces to the thermalization and
cooling of the electrons. The dynamic screening of the
CC, C-LO processes is necessary. The relaxation of the
photogenerated electrons by direct excitation of a heavy
hole into the light-hole band becomes the dominant intra-
band relaxation process (C-HL process) for
ph &(5—6) X 10' /cm . In heavily p-doped material, the
scattering rate Rc t H reaches 30/ps around the hole den-

sity ph =2 X 10' /cm and therefore competes with the
I ~L or I ~X intervalley transfers since R „ I = 10/ps
(Ref. 10) and R„x=30/ps.

Further comparisons between experimental data and
scattering rate computations are needed. We must stress,
however, that an accurate experimental determination of
the plasma density is crucial in order to compare theoret-
ical kinetics to experimental data without adjusting the
density.

ACKNOWLEDGMENTS
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1

2 —2 1/2
(qDU ) 4+pe

With typical parameters such as c, =10 and m =0.086 we
get to)&50 and 15 fs, respectively, for p=10' /cm and
p= 10' /cm .

Case 2: Monokinetic distribution. We assume that all
electrons have the same kinetic energy Ez. In that case,
1/qD =E Ez/2mpe and u, z =(2E /m )'~ . Condition
(Al) becomes

1/2

This condition is almost identical to that previously de-
duced in the quasithermalized regime.

APPENDIX B

I. Process 1a in Fig. 3

We derive in this appendix the Eqs. (16) for the
electron-hole scattering rate. Let us compute first
SCLH(k). Using the expression for the Coulomb poten-
tial, Eq. (14) becomes

64 3 4

Sc LH(k)=, , y [1—f,«c(k —q»] yf ««'»[1 f (EH(k'+q))]
q E(q, b,E, )

X C„H(k', k'+q)5[E, (k)+El (k')

—E,(k —q) EH (k'—+q) ] . (Bl)

We use the following condensed notations

f2e=E,(k), p= q, y=cos8,
2m

mH
A, =EH(k') = k', o=, y'=cos8' .

2mH m

(B2)

The energies hE, and EEI, that are respectively exchanged by the electron and the hole read

$2
bE, =E,(k) —E, (k —q)= qk cos8 —

q =2p&pe p, —
m 2mc

(B3a)

bEH =EH(k'+q—)
—EI (k') = qk'cos8'+ q + O' EL (k')—

mH 2mH 2mH
1/2

p
0

+~+X—e —(2m X)'"L g H (B3b)

As already stressed CLH(k', k'+q) equals 3 sin (y)/4 [see Eq. (6)], where y is the angle between k' and k'+q. CLH can
be easily expressed in terms of p, A, , o, y' because cos (y) may be written as

cos (y)= [k'.(k'+q)] cr A+2y'&o kp+y' p (&Ao +y'&p)
k'2(k'+q)2 crA, +2qr'&oAp+p (&'Ao+y'&p) +(1—p' )p

(B4)

Using Eqs. (B2)—(B4), we get

g2

2mc64 eSCLH(E)=, , g [1 f, (E bE, )], — '— , g fL, eL.
—(2mH&)' '

Eoh'V
~ p E(q, b.E, )

1 fH eL —(2mHZ, )'~ —+bE,
' 1/2

X —(1—cos y)5 2yv'pe —p —2p'3 2 pA,

4 C7

—~—A, +E —(2m A, )'~L g H

Introducing continuous coordinates for the summation over k we get
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4 216ire fi
C LH 2gy

1 2mH
g [1—f, (E—bE, )]

p e(q, b,E, ) fi

' 1.5

X —f v'X dk fL EL
—(2mHA, )' 1 fH—el —(2mHZ)'~ +bE,

—~—
A, +E —(2m A, )'~~

L g H

' 1/2
pA,X f dy' (1——cos y)5 2@&'pe p —2y'—

4 0

—~—A+a —(2m A)' =01
L g H

As already stressed, the condition of energy conservation
1/2

pX
2q &PE—p —2q'

(85)

and the condition —1(y (1 reduce the integration interval D(e,p, a, p) over A.. The integration is restricted to the
values of A, which satisfy the following inequality:

2

4pk,
2q &pc. p

——X—+ e~ —(2mH X)'"
0-

(86)

[The integration over p' is straightforward and contributes for a factor —', &o /PA, (1—cos y) where cos y must be com-
puted using (84) with y' given by Eq. (86). Equation (85) becomes

Sc LH(E) =Ef dp f dy[1 f, (e bE,—)]-
p e(q, bE, )

X f dA, fI eL —(2mHZ, )
D(c,p, cr, g)

1 fH EL —(2—mHA)' +bE, CLH(P k ~)

(87a)

S+ (E)=Kf dp f dy f, (E bE,)—
p E(q, bE, )

X f dk fH El —(2mHZ, )'~ +bE,
D(c,p, o., cp)

I

1 fL, EL —(—2mH)
1 1/2

CLH(P A o )

(87b)

where K=e mz/ireoh' m, =13.1X10 (mi, /Eom, ) with mz, m, relative masses, eo.. CGS, Sc LH in units 1/ps. The
dielectric function E(q, b,E ) is computed using the plasmon pole approximation [see Eqs. (10)—(12)].

2. Process 1b (Fig. 3)

The algebraic treatment of this process is similar to that of process la. The expression for the energy that is ex-
changed in the conduction band is not modified [Eq. (83a)]. In the valence band we get now [instead of Eq. (83b)]

1/2
—(2m X) ' —X+2q
1 1 2

L g H

The energy conservation becomes
1/2

pA,
2q &p.—p —2q

The final result reads

S,H„(E)=If f dp f dy[1 f, (E bE,)]- —
cHL & & i

( bE )
2

+~—eL —(2mHZ, )' +X=0 .
1

—bEH =El.(k') —EH(&' —q) =El (k') — k'+ qk'cos8' — qi
2mH mH 2mH

1 fi. —1 1/2

I

C ii(P, A, cr), ,X f d A, fH e~ —„(2mHZ, )'~' b,E, —
D(,c,,p, a, y)
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S,HL(E)=I(. f dp f dtpf, (e b—E, ) 2o —1 p e(p, b,E, )

X f dA, fL Et —(2mHZ, )'~
D(E,P, O, y)

1 fIt—sL —(2mH A, )'~ —b.E, C p(p, A, , cr) .

D(e,p, cr, tp) is here restricted to the values of A, which satisfy the following inequality:
2

2y&pE —p+
4pk 0

+A, —E —(2m A, )
1 1/2I g 0
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