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Strong self-trapping in semiconducting two-band systems
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Strong electron self-trapping is investigated at an energy gain exceeding (or close to) an interband gap
width. Interactions between states in self-trapping and "nonparent" bands are taken into account.
These interactions lead to changes in the occupation of the state in question: singly occupied or unoccu-
pied states become doubly occupied. The shape of the adiabatic potentials is investigated for different in-
itial occupation of the self-trapping state. A standard single-well potential can be to be transformed to a
double-well potential. The extra minimum describes a strongly hybridized practically doubly occupied
self-trapped state. The single-particle self-trapping energy and pair-correlation energy appear to depend
strongly on these effects. The value of the pair self-trapping correlation energy is shown to be limited to
about half of the gap width.

I. INTRODUCTION

Different aspects of the problem of self-trapping in
solids appear when the self-trapping is strong, such as in
disordered semiconductors. ' The heart of the problem is
the origin of the self-trapping process and the resulting
self-trapped states, or the reconstruction of the bare elec-
tron state under self-trapping. The energy gain in this
process, the self-trapping energy W, ( &0), for a single
particle is usually supposed to be small in the sense that

~ W, ~
&&E, with E the interband gap width, or the

mobility gap width in amorphous materials. In such
cases, it is reasonable to consider a single-band self-
trapping problem, so only the "parent" band states are
essential.

There are, however realistic situations for which this
supposition is violated. For instance, in the harmonic ap-
proximation

I W, I
=@'/2k

is comparable with E in glassy semiconductors with
E =1—3 eV. This is because disorder in glasses gives
rise to a high concentration of atoms in soft
configurations with small random spring constants
k « ko = 10—30 eV/A, while the electron-atomic
configuration-coupling parameter Q is close to the typical
value g =3 eV/A. ' Furthermore, self-trapping of a sing-
let electron pair in such a soft configuration turns out to
be more favorable energetically than '.h~c of a single elec-
tron because the self-trapping energy (per particle) is con-
siderably larger,

~ W2 ~
/2=2~ W, ~

))U, in the harmonic
approximation,

' U, denotes the Hubbard electron repul-
sion with typical values U, (0.3 eV in semiconductors.

Another example is electron self-trapping in a crystal
with a narrow gap between bands consisting of states of
the same parity, at Es &

~ W, ~.

In both examples interband interactions are expected
to be important for the self-trapping, since the matrix ele-
ments with the valence-band states of the electron state
under self-trapping (named for brevity the "self-
trapping" state) are finite, either due to random fields (in
glassy semiconductors), or to fulfilled selection rules (for
narrow-gap semiconductors). Hence, the self-trapping
problem considered here is essentially a two-band prob-
lem.

The purpose of this paper is to develop a theory of
strong self-trapping (pair self-trapping, particularly) in
two-band systems for which interband interactions be-
come essential. The self-consistent Green's-function ap-
proach for a Haldane-Anderson-like Hamiltonian, in a
mean-field approximation, is applied to the problem un-
der consideration.

The following specific features of self-trapping in two-
band systems are most essential: (i) the repulsion of a
true (renormalized) energy level of an electron "self-
trapping" state from the valence-band edge or mobility
edge' and (ii) an increase of hybridization of the "self-
trapping" electron state with the valence-band states.
The latter gives rise to an increase in occupation of ini-
tially singly occupied or free "self-trapping" states up to
almost double occupation, resulting in an essential gain of
the total energy of the system. Therefore, the pair self-
trapping appears to be a highly favorable process despite
the fact that repulsion of the "self-trapping" state from
the valence band limits the energy gain.

Of course, the growth of atomic elastic energy due to
the related atomic displacernents also can prevent
penetration of the true electron level into the valence
band. A competition between this energy increase and
the energy gain associated with increasing hybridization
of the "self-trapping" state can give rise to the appear-
ance of a double-well structure of adiabatic potentials for
zero and single initial occupation. One of the two mini-
ma describes the standard self-trapped state of the system
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for which the hybridization with the valence-band states
is not essential and can be neglected, in contrast to the
extra minimum for the strongly hybridized self-trapped
state.

The forms of the adiabatic potential and the existence
of an extra minimum in particular depend strongly on the
value of the single-polaron shift

~ W, ~, i.e, on the atomic
spring constant, k, for a fixed electron-atomic
configuration-coupling parameter, Q. The single
minimum related to the polaronlike state exists for small
values of

~ W& ~
(

~ W& ~ ((Es ), while the other minimum,
describing an essentially hybridized state, appears for
larger

~ W, ~

—Es and becomes the lowest-energy
minimum for

~ W& ~
comparable with Es. In other words,

the harmonic approximation becomes irrelevant here.
Therefore, the self-trapping in two-band systems has

essentially different features compared to those in single-
band systems.

We discuss the model Hamiltonian in Sec. II. Its non-
self-consistent and self-consistent solutions for different
occupations of the electron levels are found in Secs. III
and IV. Energy characteristics of self-trapping in two-
band systems are calculated in Sec. V. Conclusions are
given in Sec. VI.

II. MODEL

We discuss electron self-trapping in a two-band system,
using the following total Hamiltonian of the system:

W, =4)(x))—@,(xo),
and for a singlet electron pair,

W~ =@2(x~ ) —4~(xo ),
as well as the pair correlation energy,

U=4~(x~)+ &o(xo) 24 &(x& )

(6)

can be calculated. Here x„denotes the ground-state
equilibrium atomic displacement which can be found
from the equation

(extended) states ~a; ) and Eq ' denotes an energy of the
bare (at Vz =0 and Q =0) state

~
d ). The last term in Eq.

(5) just describes the interband interactions under con-
sideration, and V;& denotes the matrix elements between
the "self-trapping" state and valence-band states,

I V,, I

—
I V, I

r'&X, with
I V, I

-1 eV."
In what follows we try to reach the synthesis of the re-

sults of both the single-band self-trapping problem and
the Haldane-Anderson approach for taking into account
the contributions of the interband interactions for non-
self-trapped states.

The two-band self-trapping problem is analyzed fur-
ther by studying adiabatic potentials 4„(x) of the system
for different initial occupations n (n =0, 1,2) of the state
~d ). The related self-trapping energies for a single elec-
tron,

H„,= V„(x)+A',(x)+8, „(x) .

Here

d@„(x)

8x
=0

P„=kx'y2

is the classical elastic energy for atomic motion along a
single essential configuration coordinate x. Indeed, in
what follows we discuss atomic systems characterized by
a single motion mode. This is shown' to be the case for
the self-trapping in the soft atomic configurations men-
tioned above and can be a plausible (though simplified)
approximation for self-trapping in narrow-band semicon-
ductors.

Electron-atomic configuration interactions are approxi-
mated by a standard linear dependence on x:

Qx y d'.d". , — (4)

All of these energies, particularly the correlation energy,
are important characteristics of the system and will be
found for different values of atomic spring constants.

III. SYSTEMS WITH NEGLIGIBLE
HUBBARD REPULSION

One of the main dif5culties in investigations of the
problem described by the Hamiltonian (2)—(5) is associat-
ed with accounting for the Hubbard repulsion [the third
term in (5)]. Therefore, following Ref. 6 we use here a
mean-field approximation which results in energy renor-
malization of the solution of the Hubbard interaction-free
problem. With this in mind, we start with the model
Hamiltonian:

as usually applied to the self-trapping problem. ' Here
~ ~ ~

the generation, d, and annihilation, d, operators are
referred to the state ~d ) under the self-trapping. It
should be noted that terms ~x,x,x in expansion (4)
can be taken into account and appear not to be essential.

The electron subsystem is characterized by the
Haldane-Anderson Hamiltonian

+Eq'gd d + —,'U, g d d d.d ~

H„,= P'„(x )+H

where

+ g (V;za; d +H.c.),
i, a

E~ '(x ) =E~ Qx—

=
—,'kx + g e, &; 8; + gE~ '(x)d d

(10)

+ g(v,&d; d +H. c.), (5)

where e; stand for the bare (at V& =0) spectrum of band

is the single-band electron energy level (at V;& =0) and
the Hubbard repulsion is ignored.

This Hamiltonian is solved by introducing a Green s
operator, G, according to
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[Ez(x ) H—]G =I, (12)

where Ez(x) is the true electron level. The matrix ele-
ments of 0 for the Hamiltonian (10) and (11)can be easily
found as follows:

Ggg = (d I ld ) = [E~ E„' '(—x ) —X(E„)]
6;;

E& —c,

with

(13a)

(13b)

p(e) I Vg(e, ~) I'd E
X(co)=g

l

(14)

the self-energy part of the Green's operator and p(s) the
density of states of the two-band system. In fact, integra-
tion in (14) is reduced to that in the bands of extended
states (see below). The true electron level is a pole of Gzz
and can be found from the following equation:

FIG. 1. Dependence of the effective interaction A(c) and
Re(X( c, ) ) on energy. Cross points of the straight line,
c—Ez (x), with Re(X(c, )) correspond to the related energies E~
and E&.

Eq —E~ '(x) =X(Eq ) . (15)

The resulting adiabatic potentials can be written as fol-
lows:

4„(x) =—kx +—g Im I co Tr [0' '(co, x ) ]dco,
2

(16)

where the integration is taken over the occupied electron
states only. We analyze the case of zero temperature,
keeping in mind that the thermal equilibrium distribution
function introduced in (16) for finite (not too high) tem-
peratures T does not essentially change the results of the
analysis presented below. This follows from the magni-
tudes of typical self-trapping energies (in the range

I

-0. 1 —1 eV) which are much larger than the tempera-
tures involved.

The integral in (14) can be calculated, if one knows the
energy dependence of the effective interband interaction:

b, (E,co)=p(E)l Vq(s, co)l

Here we can use for the sake of simplicity a rectangular
model for b, (E,co) (see Fig. 1) and neglect unimportant in-
teractions with the "parent" (conduction) band states.
Such an approximation of b, (E) results in the following
energy dependence of the self-energy part (see Fig. 1):

—b, in[co/(co+DE, )] at co& b,E, —
X(co)= b ln[(co+ b,E„)/( —co) ]+imAat b,E.„&co &0—

5 ln[(co+hE, )/co] at co &0,

(18a)
(18b)

(18c)

with EE„ the valence-band width. Taking into account the standard expression (16) for TrC,

TrC =Tr6' ' — lnG&z,(0) Gf
(19)

with Px the Green operator of the interaction-free system ( Vz; =0) andA (0)

TrG"'= y.
1

CO F;
(20)

one can rewrite the expression for the adiabatic potentials as follows (see Appendix A):

4„(x)=—,'kx +E&,'„z —g b,E, ——g f —+arctan
CT

U

co —Eq '(x) —Re(X (co))
dc@+ g E~~ .

o', occupIed
(21)

Here Eb,'„z (a reference point for energy) is the total ener-

gy of the valence-band states for interaction-free systems.
The poles E, ( b E+ = b,E„E+ )0) describe the-—
level split off the bottom of the valence band (see Fig. 1)

and are not essential here because they are small com-
pared to other characteristic energies. The fourth term
in (21) corresponds to a decrease of the valence-band en-
ergy due to its repulsion from the electron level in ques-
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tion. The last term in (21) describes the energy of the
true states occupied in the gap.

4'„'(x)=@„(x,Ed '(x) ~Ed (x ) )

—U, (e,. )(e„. ) . (25)

IV. SYSTEMS WITH HUBBARD REPULSION:
SELF-CONSISTENT SOLUTION

The mean-field approximation for electron-electron in-
teractions, as well-known, results in a renormalization of
the Hamiltonian H of Eq. (10):

8„,= f „(x)+H(Ed '(x)~Ed (x))

—,'U, y &e„.&&a, &;
o'W o

(22)

the single-band energy Ed '(x) defined in (11) should be
replaced here by the elfective single-band energy Ed (x).
These effective energies for different spin projections can
be found self-consistently from the following equations:

Ed + =Ed '(x)+U, (R' d ), (23a)

E„". =E„"'(x)+U,&6„.+& . (23b)

The average values of number operators 8'd =d d are
defined as

&e,.(x)) = f lm—[G,' (~,x)]dc@ .1
(24)

Integration in (24) should be carried out over the occu-
pied states only, and the respective substitution Ed (x)
for Ed (x) in Gzd'(co), introduced by Eq. (13), must be
performed.

The corresponding expression (21) for the adiabatic po-
tentials can be rewritten as follows:

For further analysis it is worth noting that a mean-field
approximation results in a Hamiltonian (22) bilinear in
the operators &; and d . This feature provides that
electron-electron interactions, of course, do not change
the energy of the system of which all the levels in ques-
tion are originally doubly occupied, ' i.e.,

Im co Tr ' '
co, x de

=Im f co Tr[GD '(co, x )]den . (26)

An associated property is that also for such systems

(6;. ) =—Im f G; '(co, x)den=1, (27)

because the interactions cannot change the occupation of
the states in this case.

It should be stressed also that interactions of the "self-
trapping" state with conduction-band states are inessen-
tial for the problem in question. Indeed, the electron lev-
el of the "self-trapping" state moves from the conduction
band to the valence band so that interactions with the
conduction-band states become unimportant as compared
to those with the valence-band states. Therefore, in what
follows we neglect interactions of the state ~d ) with the
conduction-band states and, in fact, analyze the electron
subsystem consisting of electron filled valence-band states
and the state ~d ) with a variable occupation (n =0, 1,2).
In this case the properties (26) and (27) lead to the follow-
ing relations:

(0) 1 0 7T co —Ed' '(x) —Re(X(co) )

m
—~E, 2

d co+Ed —Eb,„d +Ed (28)

—f Im[Gdd ~(co,x ) ]de = 1 ——f Im[Gd~d ~(co,x )]de = 1 —
yd (29)

with

T

dX
d N ~=Ed

(30)

A. Initial zero occupation

the parameter characterizing a degree of the hybridiza-
tion of the state ~d ).

Expressions (28)—(30) essentially simplify the following
analysis.

N ( )= ,'k +E','„——2[E —E„' ( )]—U, (&„)
(31)

The most interesting third term in (31) corresponds to the
interband interactions. It describes a decrease of the
valence-band state energy because of the repulsion off the
"self-trapping" state. This decrease, as follows from Eq.
(28), exactly equals the growth of the "self-trapping" lev-
el energy due to its repulsion from the valence band, as
rejected in Eq. (31).

The occupation of the state ~d ) can be found from Eq.
(24) when integrating over the valence band only,

It is clear in the case of zero initial occupation of the
"self-trapping" state ~d ) that integration in (16) should
be carried out only over the valence-band states. There-
fore, the last sum equals zero in (21). Then, using the re-
lation (28), one can easily get that

(&d +) =(nd ) =—f Im[Gqd'(co, x)]de

=1—yd. . (32)
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AAE,

Ed (Ed + b,E„) (33)

The effective energy level Ed (x) and the true level Ed
from Eq. (31) can be found from the solution of Eq. (15)
and the set of equations (23) which transform to the fol-
lowing:

Ed Ed (x—)=kin[Ed l(Ed +DE, )], (34a)

Here we take into account the property (29) and the sym-
metry for different spin projections.

The parameter yd in Eq. (32) can be estimated within
the frame of the simple model dependence of b, (e) ac-
cording to Fig. 1,

).50

Q3 1.00

0.50—
I—
O
CL

Q. OO

I—
CQ
W —0.50
C5

Ed (x ) =E„' '(x)+ U, (1 y„(E—d ) ) . (34b)

Ed (x)=Ed '(x)+ U, . (35)

2.00—

G3

1.00—

0.00

—1.00—

—2.00
I I—2.00 —1.00 0.00 'I .00 2.00

SINGLE- BAND ENERGY LEVEL (eV)

FIG. 2. True and effective energy levels as functions of the
single-band energy level Ed '(x) for zero (solid lines} and single
(dashed lines) initial occupation of the state Id ) at b. =0. 1 eV,
AE, =5 eV, and U, =0.3 eV.

These equations are solved numerically, the results being
presented in Fig. 2. As is seen from Fig. 2, the interband
interactions are unimportant, when a single-band level
Ed '(x) is far from the valence band, Ed '(x))&b, . Ad-
mixing of the valence-band states to the state

I
d ) in

such a situation is negligible, yd ——1, and
Ed —Ed~(x ) =Ed—'(x). The situation dramatically
changes when a single-band state approaches the
valence-band top, so the true level Ed repulses off the
valence band at Ed '(x) (A. The initially free state Id ) is
occupied now due to hybridization and becomes doubly
occupied (yd ~0) for further drop of Ed '(x) ((0),
when IEd( ~(x)I ))b, . The true level in this case is practi-
cally stopped near the valence-band top, Ed ~0, while
the effective one obeys the following relation:

—1.00
—1.00

I I !
0.00 1.00 2.00

DISPLACEMENT
3.00

FIG. 3. Adiabatic potential of the system with an initially
empty state Id ) as a function of the dimensionless displacement
z = kx /Q for different polaron shifts (6=0. 1 eV, b E, =5.0 eV,-(0)
U, =0.3 eV, and Ed -Eg =2.0 eV).

The effects described strongly inhuence the form of the
adiabatic potential C&o(x). The results of the calculations
of @o(x) according to (31) are presented in Fig. 3. The
form of the adiabatic potential strongly depends on the
rigidity of the atomic potential or on the value of the po-
laron shift

I W& I
defined in (1). This results from the com-

petition between the increase of elastic energy with atom-
ic displacement [the first term in (31)]and the energy gain
due to interband interactions [the third term in (31)],
which can result in a double-well structure of the adiabat-
ic potential. Indeed, the minimum of elastic atomic ener-

gy is realized at zero displacement. The deviations of x
from this value give rise to an increase of elastic energy as
well as to some energy gain because of the occupation of
the "self-trapping" state due to interband interactions.
This energy gain is inessential at small deviations of x,
when energy levels Ed and Ed (x) are far from the top
of the valence band, but it strongly increases at large dis-
placements when Ed approaches the valence-band top.
The "self-trapping" state becomes practically doubly oc-
cupied in this situation. This energy gain must be com-
pared to the loss of elastic energy for such displacements.
If the rigidity of the atomic potential is high enough (see
below), then the increase in occupation of the "self-
trapping" state does not change essentially the form of
the adiabatic potential so that it has only a single
minimum at xo=xoi ——0. But in the case of soft atomic
potentials (large values of polaron shift, I

8',
I
-Eg) the

situation changes drastically. The energy gain resulting
from the strong hybridization of the "self-trapping" state
with the valence-band states now overcomes (at large dis-
placements for which the true level reaches the valence-
band top) the elastic energy growth. This gives rise to the
appearance of an extra minimum of @o(x) at
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xo =x =2~~/~~/k. Further decrease leads to the lo
of the extra minimum

ea s to t e lowering
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lowest-energy state (see Fi . 3 .
is qualitative picture is su orted
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lb d 1

M

ing equation derived from ~9~

rom the follow-
rom ( ) (see Appendix B):

1.00
Q3

0.50—

O
CL

0.00—
kx —2Q[1 —

yd (x)]=0 . (36)

AE,
(I p(xpi —0 ) = —2b, ln (37)

Its solution for a different
l
W ~j

'
11 t. t d F'g. 4(A).

is c early seen from this figure that E . (36) h

11 lw l)
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Q or which the single-band level E' '
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—Re( X((0) )

dco
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Using the relation (26) for both spin projections one can
get

'(x)= 'kx —+E' ' +E' (x)1 2 band do. +
—[E„E'— (x)]—U, (R' )(h' ) .

(42)

The electron subsystem characterized by spin projection
o. + is insensitive to the interband interactions and gives
the standard contribution [third term in (42)] to the total
energy of the system like in a single-band problem. The
electron subsystem with spin projection cr —containing
an empty state contributes to (42) as the fourth term simi-
lar to the case investigated of zero initial occupation.
This term describes the decrease of valence-band energy
due to the repulsion off the "self-trapping" state

I
d ) .

The average occupations of the states I do ) can be cal-
culated using relation (27):

2.00

Q3

~ 1 50

O 1.00
CL

0.00
0.00

I I

1,00 2.00
D I S P LAC E MENT

3.00

(e. )=1,
(e. )=I—y',.

(43)

(44)

with yd satisfying Eq. (33) at o =o —.Equation (43)
simply rejects the total 611ing of states with o. =o.+.

The effective energies Ed ~ (x ) are found self-
consistently from the following set of equations:

Ed +(x)=E~ '(x)+U, (1—
yd ), (45)

Ed (x ) =Ed '(x )+ U, . (46)

kx —Q —Q(1 —
yd (x ))=0 . (47)

The true energy levels Ed can be found from Eq. (34a).
The dependence of Ed + on the single-band energy level
position Ed '(x) is very similar to the case of zero initial
occupation, while the dependence of Ed differs very
much, as is clearly seen from relations (45) and (46) (see
Fig. 2). This is a consequence of symmetry breaking for
levels with different spin projections in the case under
consideration.

The adiabatic potential NI +'(x) can be investigated
once the true level Ed is found (see Fig. 5). Its form
and evolution with growing I W, I

are similar to those in
the case of zero initial occupation. The double-well
structure of the potential NI +'(x) is due to an increase
of occupation of the "self-trapping" state from single to
practically double because of admixing of the valence-
band states with spin projection o.— to the "self-
trapping" state ld ). The main difference of the case
under consideration from that discussed above is that the
extra minimum now appears for still smaller values of
IW, I

than in the case of zero initial occupation. The
reason is that the atomic displacement from the equilibri-
um position x» -—Q/k to x&z -—2Q/k, as well as the loss
of the elastic energy, is smaller than the displacement
from xp& -—0 to xp2 —-2Q/k at zero initial occupation.
Indeed, equilibrium displacements x

& &
and x,2 referred to

the standard minimum and to the extra one, respectively,
are found from the equation (see Appendix B)

FIG. 5. Adiabatic potential of the system with an initially
singly occupied state Id ) as a function of the dimensionless dis-
placement z=kx/Q for different polaron shifts (6=0.1 eV,
AE, =5.0eV, U, =0.3 eV, Ed Eg 2 OeV).

The equilibrium displacement equals x, =x» —-Q/k for
large enough values of spring constants k, when inter-
band interactions are inessential (yd ——1). The extra
minimum appears at x, =x,z-—2Q/k for smaller k when

yd (x)~0. A comparison of the energies of the mini-
ma,

EE„@'+'(x ) =E,—I Wt I

—~ » (48)
g

and 4I +'(xt2) —4 p(xp2) [see Eq. (39)], gives rise to the
following expression for

I Wt *
I

for which the extra
minimum becomes the lowest-energy minimum:

AE,
IW*, I=—E, +»n "+U, &IW*, I. (49)

The energy I

W"
, I for which the extra minimum appears

can be estimated in a similar way as in the case of zero in-
itial occupation:

I

W", I
=

I W& I

—y "b, y"-1.

C. Double initial occupation

interactions, as follows from the property (26), do not
influence the original adiabatic potential @2(x). In fact,
the energy growth due to the repulsion of the state ld )
off the valence band is exactly compensated by the energy
gain resulting from the repulsion of the valence-band
states off the "self-trapping" level [see Eq. (28)], so that

@2(x ) ——,'kx +Eb, '„d —g Ed —U, (50)

In the case of double initial occupation of the "self-
trapping" state, all of the states in the system under con-
sideration are filled and (8;. + ) = (8'; ) =1 for both the
band states and the state ld ). This means that interband
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with Ed defined in (46) and (45).
Therefore, the adiabatic potential for double initial oc-

cupation has a standard single-well structure similar to
that in the single-band systems. Equilibrium displace-
ment equals xz = 2Q /k (in harmonic approximation) and
the ground-state energy C&z(xz) depends on the polaron
shift like in Eq. (39). '

V. SELF-TRAPPING AND CORRELATION ENERGIES

The interband interactions discussed above essentially
inAuence the basic energy characteristics of the self-
trapping in two-band systems: the single-particle self-
trapping energy W, and the correlation energy U [singlet
pair self-trapping energy 8'2 is not influenced because of
unchanged C&z(x )]. Within the frame of the single-band
approach these energies are defined as'

3.00

2.00—

CL
LLI

1.00

D
0.00—

LLI

D
—1.00—

—2.00
0.00

Zp

ZQ

0,50 'I .00 '1 .50 2.00
POLARON SH FT (eV)

3.00

—2.00

CL
—1.00

—0.00
Ck

CQ

——'I .00
C3

—2.00
2, 50

Wi=Wi= —Q /2k,
U= U=28", + U, .

(51)

In two-band systems the situation is rather different.
The double-well structure of adiabatic potentials @o(x)
and 4&', '(x) and the changes in the ground-state positions
with increasing W, I

(from x„, to x„z at n =0, 1) change
the relations (51) and (52) and lead to the nonmonotonic
dependence of U on the polaron shift (see Fig. 6).

For sufficiently rigid atomic potentials at
IW& & IWi* [see (49)] the interband interactions are
practically unimportant, and all of the related energies
satisfy the relations (51) and (52). At
I Wi *

I
&

I W, I
&

I
W*,

I
[the energy I

W*,
I

is defined in
(40)], the ground state of the system with the initially
singly occupied state Id ) becomes related to the extra
minimum at x iz

——2Q/k. The result is that

and

Wl Nl(x iz ) @l(xoi ) Eg —41 W& I
+ U, (53)

U =4z(xz )+C&0(xo, )
—2C&,(x,z )

=4IWi I

—U, 2Eg . — (54)

Um;„= —
3Eg + —,

' U, , (55)

and then rises as o-4I W, I, up to zero at IW, I
=

I
W*, I,

remaining zero for larger I W, I
(see Fig. 6). A principal

Further increase of
I Wi I

results in the change of the
ground-state position (xo, ~xoz =x,z) for 40(x ) at

I W, I
)

I
W*, I, so that U =0 in this region, while W, is

defined by Eq. (53) as before. For such large values of
I Wi I

both initially free and singly occupied states Id ) be-
come doubly occupied, so that their energies practically
coincide with each other, @z(xz ) =@i(xo& ) =+'0(xoz ),
and the correlation energy obviously equals zero.

Therefore, the correlation energy in two-band systems
depends really nonmonotically on

I W, I. It decreases ini-
tially as ~ —2I W, I, reaches a minimum at

I W, I

FIG. 6. The dependence of the pair correlation energy U and
the equilibrium dimensionless displacements z; on the polaron
shift value

I

W'&
I

at b =0. 1 eV, bE„=5.0 eV, U, =0.3 eV, and

Ed ——Eg =2.0 eV.

moment here is that the correlation energy is limited by
the value U;„of the order of half of the gap width.
Many fundamental electron properties of glassy semicon-
ductors follow from this fact. '

VI. CONCLUSIONS

Electron self-trapping in essentially two-band systems
and its basic features (as compared to the self-trapping in
single-band systems) are considered in detail. It is shown
that interband interactions, i.e., interactions between a
state split off the conduction (or valence) band and states
of the "nonparent" valence (or conduction) band, are im-
portant in the formation of self-trapped electron (or hole)
states, for strong enough self-trapping. The interband in-
teractions lead to a strong hybridization of the state un-
der the self-trapping with "nonparent" (valence) band
states and to respective changes in the occupation of the
initially singly occupied or empty states. These effects
determine the shape of adiabatic potentials which can
change their structure from single well to double well.
An extra minimum of the adiabatic potential corresponds
to a practically doubly occupied self-trapped state. This
state becomes the ground-state for sufficiently soft atomic
configurations.

The effects described here result in changes of the re-
lated self-trapping energies. The most important conse-
quence is a nonmonotonic energy dependence of the pair
correlation energy on the rigidity of the atomic
configuration. The value of the correlation energy ap-
pears to be limited by approximately half of the gap
width.

It should also be noted that anharmonicity of the soft
atomic configurations can probably change some of the
quantitative results presented above. We hope to investi-
gate these effects elsewhere.
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APPENDIX A

Using expression (19) one can rewrite the second term in Eq. (16) in the following form:

—Qlm f co Tr[C' '(co,x)]de

=Ebo'„d+ —g Im f to in[Odd'(to, x ) jdco
a dQ)

=Eb,'„d+ g E+ +—g f co Im in{co—Ed '(x ) —Re(X(to)) —im.b, Jdco+

Introducing a phase, P(to), as

co —Ed '(x) —Re(X( to)) im—b =ae'~'

or in the equivalent form

o ~ occupied

(A 1)

(A2)

P(to) = ——+arctan
2

co Ed '(x—) —Re(X(co))
(A3)

helps to integrate in (Al):

—g f coIm In[to Ed '(x}——Re(X(co))—imhjdco
0 (o)
—~E. dc@

1 o dP 1
to d co = 26E,———g —+arctan-~E, de ' ~ -~E„2

co —Ed '(x) —Re(X(co) )
dto . (A4)

Expressions (Al) and (A2) can be easily reduced to Eq.
(21).

APPENDIX B

Taking the derivative of the adiabatic potential +o(x)
in Eq. (31) gives rise to the following expression:

r

and substituting this into Eq. (Bl) results in

d@0(x ) de d( &d=kx+2(1 —
yd ) —U,

dE,'"=kx+2 (1—y2d ) . (83)

d C&o(x ) dEd=kx —2
dx dx

(81)

Here we used relation (33} and the result of taking the
derivative of Eq. (34b).

In the case of single initial occupation of the state ~d )
the derivation of Eq. (42) leads to

Taking into account that, as follows from Eqs. (33) and
(34),

d@~(x) dEd ' dEd=kx+2 (84)

dEd dEd
ado (82) Substitution of Eq. (82) with o =cr —in Eq. (84) gives

rise to Eq. (47).
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