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Generalized Glauber states for the Jahn-Teller coupling of Fe?" in ZnTe and ZnS

J. Rivera-Iratchet, Manuel A. de Orue, and M. L. Flores
Departamento de Fisica, Universidad de Concepcion, Concepcion, Chile

E. E. Vogel
Departamento de Ciencias Fisicas, Universidad de La Frontera, Temuco, Chile
(Received 30 September 1992)

A method based on generalized Glauber states is developed to deal with the Jahn-Teller effect on mag-
netic impurities in II-VI semiconductors, and is successfully applied to ZnTe:Fe?". The method is also
applied to ZnS:Fe?" which reaches stability for a lower number of vibrational quanta N, in order to have
a basis for comparison with another method. It is found that the present method is more powerful than
a previous one based on Born-Oppenheimer functions. The low-energy vibronic functions remain as
stable solutions for all values of the coupling parameter. In the case of ZnTe:Fe’*, good agreement with
both experimental results and previous theoretical calculations is obtained for a Jahn-Teller energy of
250 cm~!. In the case of ZnS:Fe?™ where no manifestation of vibronic coupling has been observed, an
upper limit for this energy is found. Possible extensions of this work and their expected difficulties are

also discussed.

I. INTRODUCTION

There is abundant and convincing experimental infor-
mation showing that the Jahn-Teller effect JTE) is clear-
ly present in the physical properties of magnetic impuri-
ties in II-VI compounds.! The role of this effect on the
optical properties of Fe?" in several compounds possess-
ing zinc-blende structure has been well established.?

An early proposal about the importance of the JTE on
the excited states of the impurity ion and on the low-
temperature infrared-absorption spectra is due to Slack,
Ham, and Chrenko.> More recently, this hypothesis has
been complemented with techniques that allow the con-
struction of bases of vibronic functions starting from the
Born-Oppenheimer approximation.*~?

Calculations based on these techniques lead to good ex-
planations for the zero-phonon lines (ZPL’s) of Fe?* in
ZnS, ZnSe, ZnTe, and CdTe and show that the so-called
Jahn-Teller energy (Eyy) is larger than the acoustic-
phonon energies in these materials and comparable to the
splitting of the excited levels produced by the crystalline
field and spin-orbit interaction (E;;=200-300 cm™!).
For such a comparison we believe that the JTE is an im-
portant interaction in these systems and not just a mere
perturbation. This observation is also supported by the
size that the Hamiltonian matrices must achieve in order
for the solutions to reach stability. This is also in
correspondence with the successive increase in the total
vibrational occupation number N considered in the
definition of the vibronic basis. Generally speaking, it is
necessary to reach values of N of about 10 in order for
the first energy difference not to disagree by more than
1% with the one obtained for a basis defined with a total
vibrational occupation number N +1.7

All of the analysis above indicates that these systems
can also be described in terms of vibronic bases con-
structed in the opposite limit, namely, in the limit where
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the JTE is larger than both the spin-orbit coupling con-
stant and the vibrational quantum. In such a case the
vibronic contribution to the Hamiltonian can be con-
sidered as the dominant interaction and the solutions are
reached from the supposedly distorted system. This is
precisely the basic hypothesis of the present paper.

The main goals of this work are the following: (i) to
construct a basis of vibronic functions starting from the
static case;!%!! (ii) to incorporate the coherent or Glauber
states'? in a way that allows us to handle the problem in
an algebraic way; (iii) to perform a general presentation
for the case of Fe’t in any of the already-mentioned II-
VI compounds; (iv) to analyze the behavior of the solu-
tions, both from the general and asymptotic points of
view; and (v) to apply this method to the particular cases
of ZnTe:Fe?* and ZnS:Fe?™".

From now on we shall refer to the method developed
here based on generalized Glauber states as MGG. On
the other hand, we shall refer to the previously estab-
lished method based on Born-Oppenheimer states as
MBO.

In Sec. II we present the theoretical aspects of the
model. We include the solution to the static case, so the
vibronic basis can immediately be constructed from there
on. A brief review of some of the properties associated
with Glauber states is also included. A general discus-
sion concerning the solutions is then performed.

In Sec. III we discuss the results obtained using MGG
for the cases of ZnTe:Fe’* and ZnS:Fe’', comparing
them with the same results evaluated by means of
MBO.>” Since one of the goals is to compare both
methods, the values of the fixed parameters (other than
Ey;) are taken to be the same as those previously report-
ed for ZnTe:Fe?" and ZnS:Fe?".>7 On the other hand,
progressive calculations (increasing N in steps of one) are
then performed for ZnS:Fe?t. The rather fast conver-
gence to stable solutions, shown by this system, will allow
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us to study the behavior of the numerical results encoun-
tered using MGG.

Finally, in Sec. IV we present a global analysis and ob-
tain conclusions about the method developed here. The
advantages and disadvantages of MGG and the interpre-
tation of the solutions thus found are brought out. The
predicted energy differences and intensities of the spectral
lines are compared with experimental data and theoreti-
cal calculations for ZnTe:Fe?’*. General features of this
coupling for the system ZnS:Fe?' are also presented.
The discussion is closed with the evaluation of the possi-
bilities of applying this method to other II-VI compounds
with Fe as substitutional impurity.

SE—y,+y,tys+tvstys (—a ta,te+t, +t,),
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II. THEORY

The ground level of the ion Fe?* is a 3D level. The
crystalline field corresponding to compounds possessing a
zinc-blende structure splits this level into a ground multi-
plet E and an excited multiplet °T,.'"> We shall use
lowercase letters to refer to the states of the lower multi-
plet, while uppercase letters will be used for the states be-
longing to the upper multiplet. In terms of the irreduc-
ible representations corresponding to the point group T,
at the impurity site, the following reductions are possible:

STy—T+ T+ 3420, +20s (— A4, + A, +E+2T,+2T,) . (1b)

Both Greek-letter notation and Mullikan’s notation will
be used for irreducible representations of the group T ,.

The splitting among the different levels implied by the
branching rules takes place once the spin-orbit interac-
tion is considered. Optical transitions are possible be-
tween levels corresponding to different multiplets. In
particular low-temperature absorptions connect the
ground state of the lower multiplet with those levels in
the upper multiplet that possess the appropriate symme-
try for electric-dipole transitions. It is a well-established
fact that after considering the Jahn-Teller interaction the
ground state corresponds to the singlet ¥, (a;).'*!> The
components of the electric-dipole operator transform as
functions corresponding to the I's (T,) representation of
group T;, which means that the levels in the upper multi-
plet responsible for low-temperature absorptions must be
of total symmetry I's (T,). The energy of the first of
these lines (that of lowest energy) will be denoted by A
and all other possible ZPL’s will be referred to this one
by means of the energy difference A; with respect to the
threshold absorption line. So, if the energy of a particu-
lar level is E;, then A; given by A; =E; — A represents the
energy difference associated to level i (notice that A;=0).

In the present paper we shall seek functions originating
from the upper multiplet possessing a total symmetry I's,
and having nonzero component for pure electronic states
(or zero-phonon states) in order to look for correspon-
dence with the experimental results.

Both in the early applications of this approac as
in the most recent ones,” % a weak JTE has been pro-
posed that allows us to construct the zeroth-order vibron-
ic basis in the Born-Oppenheimer limit. This is an ap-
propriate method when the vibronic coupling is weak and
can be considered as a small perturbation.

When the JTE is comparable or even larger than the
splitting due to spin-orbit interaction, the results ob-
tained by this method reach stability only when the vib-

h,14’16

ronic basis gets large enough to include vibronic func-
tions originating in vibrational functions with a high
number of total vibrational quanta N. Practical limita-
tions arise in order to deal with numerical calculations
that require handling a large Hamiltonian matrix along
with a variation of parameters. On the other hand, there
are also theoretical limitations, since it is not possible to
study the analytic continuation of the solutions towards
the region of strong coupling, where this method
diverges. The above-mentioned difficulties can be over-
come if the vibronic states are defined in the strong-
coupling limit, namely, with the system supposedly dis-
torted due to JTE. In this extreme case the coupling
Hamiltonian and the elastic component of the vibrational
Hamiltonian are assumed to dominate the equilibrium
configuration in what is called the static case. Solutions
found in this way are the core of the vibronic functions
constructed in the strong-coupling limit, as will be shown
below.

As in the applications of the method based on Born-
Oppenheimer wave functions,*”° we consider coupling to
vibrations corresponding to the doubly degenerate modes
with normal coordinates Q4 and Q,, and generalized mo-
menta P, and P, sharing a common frequency . Both
Qy and Q, on the one hand, and P, and P, on the other,
transform as basis functions for the irreducible represen-
tation E of the point group T,.

In terms of #w (the vibrational quantum) and creation
(a:r,) and annihilation (a,) operators (with v=0,¢),!” this
component of the total Hamiltonian can be expressed as:

H,=#olalag+ala,+1]. )

The coupling between these vibrations and the elec-
tronic functions localized around the cation impurities
can be described by means of the linear Jahn-Teller Ham-
iltonian,
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Hyy=K[(a}+ayg)Dy+(al+a,)D,], (3)

where Dy and D, are normalized operators in the elec-
tronic space, with well-known normalized representa-
tion,'® while K represents the magnitude of the coupling
which is related to Eyy by the relationship

K= \/‘ﬁa)EJT . (4)

The electronic component of the Hamiltonian contains
the spin-orbit interaction (AS-L) which must be con-
sidered in the full description of the splitting of the upper
multiplet. The electronic operators associated with this
interaction must have a representation which is con-
sistent with that of the operators D, and D, indicated
above.!?

We begin now to construct a vibronic basis of total
symmetry I's, corresponding to the upper multiplet, in
the limit of strong Jahn-Teller interaction. As a starting
point we choose the solutions obtained after solving the
static case, which corresponds to the equilibrium estab-
lished between the linear distortion given by Eq. (3) and
the restoring force given by the classical harmonic-
potential term of the vibrational Hamiltonian. In doing
so we follow the approach and the notation used by
Judd.'®

We will tackle now the solution of the static case for
the E X T, coupling.! The coupling E X T, (which is also
needed to form our vibronic basis) is solved in an analo-
gous way, so we shall omit its presentation. Actually
these two couplings are well known and they lead to ex-
act analytic solutions when only the Jahn-Teller effect is
considered. Since we want now to incorporate the spin-
orbit interaction, the total Hamiltonian will no longer be
diagonal in this representation. In order to define our
starting wave functions in a rather precise way, we briefly
go over the static case and infer from that a basis of vib-
ronic functions in terms of Glauber states.

The complete vibrational Hamiltonian can be written
as

H,=[P3+P2]1/2m)+mae?[Q3+Q2%]/2, (5)

where m is the effective mass of the two-dimensional har-
monic oscillator in the plane Q,Q.. The second term on
the right-hand side corresponds to the potential energy
U.

The coupling Hamiltonian can be expressed in terms of
the generalized coordinates Q4 and Q, using the normal
definitions for creation and annihilation operators:

HJT=(2mCl)2EJT)1/2[Q9D9+QED£] . (6)

The uncoupled electronic functions transforming ac-
cording to the irreducible representation I's (T',) of point
group T, can be denoted by |x ), |y ), and |z).

The functions that describe the solutions for the static
case are denoted by [¢) and satisfy the eigenvalue equa-
tion

(Hyr+U)ly)=Egly) , (7)

where Eg is the eigenvalue and |¢) is an eigenfunction
that can be generally written as a linear combination of
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the electronic functions with coefficients ¢, ¢,, and c;
that depend on the static equilibrium conditions

l[¥)=c(lx)+c,ly)+ecslz) . (8)

By means of well-known techniques,!° it is found that
there are three equilibrium points on plane Q,Q,. that
lead to nonzero solutions for Eq. (7), as shown in Fig. 1.
These points can be identified by position vectors in this
plane, which in polar notation (Q,a) can be written as

Q,=(Q0,27/3), Q=(Qp,47/3), Q3=(Q0,0), (9
with Q, given by

172
2E
0,= L (10)
mo
For each one of these three points the energy is
Es=—E;=—mao*Q3/2 . (11)

The complete eigenfunctions for the static case |¢,),
with i =1,2,3 combine the electronic functions |i) given
by Eq. (8) and the directional functions W(a;) corre-
sponding to the three equilibrium points. Such direction-
al functions can be given in terms of & functions, Gauss-
ian functions, or any other normalized distribution with
maxima for values of a=27/3, 47 /3, and 0. Other po-
tential candidates are Glauber or coherent states as dis-
cussed below. The solutions to the static case can be
written as

l¢,)=Ix)¥(27/3),
|¢,) =y )W(47/3)=|y ) W(—27/3), (12)
l¢3)=1]z)W(0) .

It can be shown that these three functions form a basis
for the irreducible representation I's (T,) of the point

FIG. 1. Plane defined by the coordinates considered in the
vibronic coupling. Both Cartesian (Qy, Q. ) and polar (Q,a) no-
tations are illustrated. The equilibrium points for the static
solutions found in the text are given by the position vectors Q,,

Q27 and QS'



47 GENERALIZED GLAUBER STATES FOR THE JAHN-TELLER ...

group T,.

Let us move now to the dynamic properties of the sys-
tem. The distorted tetrahedron oscillates around any of
the three equilibrium positions. The frequencies are as-
sumed to be the same as if the system would not be dis-
torted, since the curvature of the vibrational potential
has not changed with the displacement introduced by the
static component of the linear Jahn-Teller Hamiltonian.

Functions ¥(a;) must be complemented in order to
cope with the dynamics of a two-dimensional quantum
harmonic oscillator displaced to one of the three equilib-
rium points. This is achieved by means of coherent or
Glauber states.!?> The use of these functions to deal with
the JTE has been already established in a general way so
we will not justify any further their introduction at this
point.! 11

The Glauber functions possess the directionality and
normalization properties required for the functions
Y(a;). Moreover, since they also represent the dynamic
properties of the coupled system, such functions lead to
the entire excitation spectrum upon action on them with
creation and annihilation operators. As we explain
below, the following form for the Glauber functions
satisfies all of these conditions:

|G;)= exp(—k2/2)exp(k;-a")[00) , (13)

where |00) is the usual ground state for a harmonic oscil-
lator with occupation numbers 74 and n, both zero. We
adopt a vector notation so the dot product contained in
the argument of the exponential function can be explicit-
ly written in the form

ki'aT:kiea£+kisaZ : (14)

where vectors k; are defined in the following way:
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k,=(—k/2,V3k/2)=QVmw/2%,
k,=(—k/2,—V3k/2)=Q,Vmw /2% , (15)
k;=(k,0)=Q;Vmaw /2%,

with the condition

mo
2%

Functions defined by Eq. (13) are eigenfunctions of the
appropriate annihilation operator, namely,

a,|G))=k,|G,), 17

K=K=ki=k’="203 . (16)

where v runs over 0 and €. By using this property it can
be shown that

1 fori=j

exp(—3k2/2) for i) . (18)

(Gi|Gj)=
This is the manifestation of normalization and direc-
tionality properties. In fact in the limit of extremely
large JTE, that is to say k-—>c, we have that
(GiiGj)—MS,j.

The static directionality functions W(a) are replaced by
the corresponding Glauber functions in order to describe
dynamic properties of the system. Namely,

x)=1x)G)), Iy)=I»)Gy), lz)=Iz)IGy), 19

where the underline notation identifies the displaced or-
bitals. It can be shown that these three functions form a
basis for the irreducible representation I's (7,) of the
point group 7.

In this manner we can describe the coupling between
the vibrational modes E and the 15 states corresponding
to the multiplet °T, presented above. In Table I the 15

TABLE 1. Eigenfunctions of the 15 states belonging to the upper electronic multiplet °T,. N designates the normalization factor,

while g=V'3.

Irreducible

representation Function N? [6x) [ex) [xx) [yx) lzx) 16y) ley) Ixp) lyy) lzp) 16z) lez) Ixz) lyz) lzz)

r(4)) l4)

I (E) [6)
|E)

U,
V)
(W)

|U,)»
2%
[w,)

[x,)
Y,
Z,)

|X,)

|Y,)
|1Z,)

1

r,(1y)

L, (1Y)

= AR DN N W
—

s (T,)

5 (T3)

Ll Bk S S BN S )
—_

1 1

—1 2
-1
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functions corresponding to these states are expressed
with respect to components of the kind |SL ), where S
represents the spin state, while L represents the displaced
orbital. All of the functions in Table I represent zero-
phonon states, namely, the total occupation number N is
zero (N =ny+n,=0).

Starting from functions in Table I we can generate
higher-order vibronic functions by allowing powers of the
creation operators, namely, (aL)"g(aI)ns, to operate on
them. However, the set of functions obtained by means
of this direct method turns out to show a high degree of
overlapping.

It is advantageous to define creation (and annihilation)

operators per distortion site in the following way:
g_iT(,:az-—k,-g, aJr=aT—kiE . (20)

In terms of acting on the particular function at site i,
this is equivalent to

al|G)=(a},—a,)|G,),

21)
T1G,) =(a —a,)|G;)

—lE

(Annihilation operators are defined in an analogous way.)
These operators satisfy the following commutation
rules:

=0, (22a)
(22b)

lal.a},1=0, [a;.a

f1—
[inij ]"8:']'8

jul=

v v,u=0,¢ .

The powers of these operators are defined in the way
(al—k,)"
Vin,!

with the purpose of preserving the norms of the excited
vibronic functions.

We shall refer to the states generated by means of
powers of displaced creation operators as generalized
Glauber states. The different but equivalent ways of
defining coherent states are discussed in the introductory
chapter of a book on the subject by Hecht.'®

Since the triplet of functions of total symmetry I's al-
ways remains degenerate it is enough to consider just one
of these three functions. We have chosen the third one of
these functions denoted by Z in Table I, due to its simpli-
city.

It is also possible to generate functions of total symme-
try I's by letting the creation operators act on functions
of symmetry I'y,. (This coupling is usually referred to as
EXT,.) The third component of functions of symmetry
I'y is denoted by W in Table I.

The following notation is defined for the zeroth-order
symmetrized vibronic functions: |ng,n, Z,;t) for the
functions originating from T, electronic orbitals and
|ng,n, W,;t) for the functions originating from 7', elec-
tronic orbitals, where o =1, 2, in accordance with Table I
and ¢t =z,w, showing the total symmetry of vibronic func-
tion. Although this last symbol is determined by the pre-
vious ones, it is convenient to show it explicitly.

For the zero phonon there are two z states: 0,0 Z;; z)

(a)"G)= IG,) , (23)
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and |0,0 Z,; z); also, there are the two similar w states.
For N =1 there are four z states and four w states, as fol-
lows:

11,0 Z;z)=(a},+k/2)|0,0 Z;2) ,

10,1 W;z)=(al—a,)0,0 W;;w),
11,0 Zy;z)=(a},—k)|0,0 Zy;z) ,
0,1 Wz;z)=a*|o 0 Wyw),
(24)
10,1 Z;;w)=(a} —a,)[0,0 Z;;z) ,

|1,0 Wl;w)=(ag+k/2)|0,0 Wl;w> ’
0,1 Zz;w>:a"|o 0Z,z),

[1,0 Wy w)= k)|0,0 Wyw) .

For continuing this process to a higher occupation
quantum number N, we need to consider the commuta-
tion properties of the creation and annihilation operators.
Most of the cases are quite stralghtforward except for the
case of the operator (a, —a,), in the way presented in Eq.
(21), that requires more extenswe manipulation. The fol-
lowing two relations are useful:

(al—a,)'="3 (=1 |. |(a])*Ha, ), (25)
j=o J
and
(az—ag)”’(ai—ae)"

- . m!n! t_, ym+n—2j
B m—jnn—jn %) - (26

All of the above-mentioned algorithms have been com-
bined algebraically, leading to expressions that are han-
dled by computer programs in order to perform numeri-
cal calculations. In doing so we make full use of the
properties of Glauber states such as the one given by Eq.
(17). It is extremely convenient to express the products
of operators in the so-called normal form.!! That is to
say that the final expression must contain all creation
operators on the left-hand side (so as to get eigenvalues
towards the left), while all annihilation operators must be
on the right-hand side (so as to get eigenvalues towards
the right).

The occupation number N defines the range of the
Hamiltonian matrix to be diagonalized, which imposes
practical limitations due to the sizes of computer memory
and computational times involved. We look for the
minimum value of N that leads to stable enough solu-
tions, that is to say, solutions that do not vary by more
than 1% as N increases in steps of 1. In the results to be
reported below we found that N =20 is enough for the
stability of the solutions reached by means of MGG ap-
plied to ZnTe:Fe?*t, while a faster convergence is ob-
tained for ZnS:Fe?*.

We turn our attention now to the asymptotic behavior
of the solutions in the limit of strong vibronic coupling
(Ejp>>|Al). The degeneracy of the resulting levels can
be obtained by means of group theory. Let us start from
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the 15 electronic functions corresponding to the upper
multiplet. They can be branched in accordance to the
reduction given by Eq. (1b). The vibrational states corre-
spond to the excited manifold described by the symmetric
povg\?rs of the irreducible representation E, namely, to
(E)™.

The symmetric powers of the irreducible representa-
tion E can be found in most group-theory books. They
are reduced in terms of the irreducible representations
A, A,, and E. (Let us notice that the irreducible repre-
sentation 7', is not included.)

The vibronic functions can also be organized by means
of the irreducible representations of group T, after per-
forming the corresponding Kronecker products up to N
vibrational quanta, namely,

(EVNXOT, > (EWNH(EWN T+ 2AENX T, +2ENXT, .

27
Is7 @ ae) 7
rys @
r2; r2@
Ts6 @ (14) ¢
rda 2
;e
rss G ° (12) 5
'3 @
'4; FIS—_ ’50 ﬂ_)_._\ °
La @ o oy
I‘42 (l)__... \\ °
31 \:
3 @ \° ____®3
Tl (l)__qc \°
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I‘4 — \:o
\°:
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2\ T s 1
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\
rs —— _L r'so M ___A @ 0
Weak Strong

FIG. 2. Schematic of the vibronic energy levels of symmetry
I's (T,) for both weak- and strong-coupling limits. The split-
ting due to spin-orbit interaction and the vibrational quanta are
illustrated on the left-hand side. The following column corre-
sponds to the labeling of the Born-Oppenheimer vibronic func-
tion. The last column on the right corresponds to the number
of vibrational quanta for the generalized Glauber states. The
number of vibronic multiplets with I's symmetry are indicated
in parentheses in both cases. The dashed lines show the
correspondence for zero-phonon states, while the circles show
the correspondence for the one-phonon states. The crossing of
vibronic levels is clearly realized.
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Let us focus our attention on the last two terms in this
equation. With the aid of tables for group T,,'® we can
build vibronic functions up to any desired order. As a
way to illustrate this, we show the reductions of the
Kronecker products up to N =S5, showing only the irre-
ducible representations 7T'; and T,, which act as breeders
for higher-order vibronic states of total symmetry T',:

(EX°XT,—T,, (E°XT,—T,,
(E'XT,—»T+T,, (EXT,—»T+T,,

(EV*XT,—2T,+T,, (EXT,—T,+2T,,

(28)
(E¥*XT;—2T,+2T, , (E)*XT,—2T,+2T,,

(E*XT,—3T,+2T,, (E)*XT,—2T,+3T,,
(E’XT,—3T,+3T,, (E)’XT,—3T,+3T, .

If we consider the factors 2 affecting the last terms in
Eq. (27), we can obtain the degeneracy of the vibronic
levels in the limit of strong coupling. The successive de-
generacies for T, (I's) irreducible representations in the
Kronecker product contained in Eq. (27) are 2,4,6,8,. . .,
2(N +1), for N =0,1,2,3,. . ., N, respectively. This is il-
lustrated on the right-hand side of Fig. 2, where we also
show the degeneracies corresponding to the weak-
coupling limit on the left-hand side of the figure.

III. RESULTS AND DISCUSSION

Let us first review the main characteristics of the ab-
sorption spectra. In the case of ZnTe:Fe’" a complex
structure is observed.?! The spectrum presents a sharp
rise at 2475 cm ™! that forms a shoulder, then another ab-
sorption takes over, maximizing at 2491 cm™ decending
to another shoulder, and then sharply decreasing at 2510
cm~!. This was already interpreted as the superposition
of three unresolved zero-phonon lines of comparable
transition probabilities.’

For ZnS:Fe?’' there is only one zero-phonon line.
Even when the experiment is performed at very low tem-
peratures, no additional weak lines are observed. This
means that the admixture of zero-phonon component to
the higher-energy vibronic levels is very weak. The
Jahn-Teller effect is negligible for this system. In spite of
this, we shall apply our method to ZnS:Fe?™, since a
weakly coupled system provides a good basis for compar-
ing the results obtained by both methods. The advantage
of ZnS:Fe*" is that it has a large vibrational quantum
which leads to stable results for low values of N.

We now diagonalize the Hamiltonian matrix in a basis
of vibronic functions that can be increased to consider
higher values of N. The elements of the Hamiltonian ma-
trix defined by the functions constructed according to
MGG can be calculated numerically in terms of parame-
ters such as 10|Dgq|, A, #w, and E;;. However, the latter
will be our only independent variable. The other three
parameters remain fixed and their values will be taken as
those used in previous applications of the alternative
method, MBO, to the system ZnTe:Fe**.> This
equivalence in the numerical constants will favor a com-



10 170

parison between both methods.

The spin-orbit parameter |A| is taken as 100 cm™ !,
which corresponds to the free-ion value. The crystal-field
parameter 10|Dg| takes the values 2672 cm™ ! for
ZnTe:Fe’', and 3158 cm™! for ZnS:Fe?’'. The value
10| Dg| for each compound is fixed once the threshold ab-
sorption line A and the spin-orbit A are known. To
second order in A the following relationship holds:2%2!

138 A?
10|Dg|=A+3|A| 5 10|Dg| ’ (29)
where A is 2476 cm ™! for ZnTe:Fe?*, and 2945 cm ™! for
ZnS:Fe?*. It turns out that calculations of the kind
presented here are not very sensitive to the precise value
of 10|Dgq| and some authors do not distinguish between
this parameter and A.

The vibrational quantum %o must lie within the range
of the acoustic frequencies of the host crystal. To match
the previous calculations using MBO we take the values
#w=50 and 100 cm ! corresponding approximately to
the frequencies of the phonons T A2(K) for ZnTe and
ZnS, respectively.?2~2* These points of the Brillouin zone
have proved to give good adjustment when using the
functions built up from the weak-coupling limit for all of
the cubic II-VI similar systems.’

The Jahn-Teller energy remains now as the only free
parameter and will be varied up to 500 cm ™ 1. In present-
ing the results we refer to energy differences of the vib-
ronic levels with respect to the lowest one, as defined
above. The energy differences A; for the six lower vib-
ronic levels are shown in Fig. 3, corresponding to N =20,
which is good enough for the stable results as discussed
below.

The spacing among the three observed lines is found in
Fig. 3 for E;r approximately 250 cm ™!, which is marked
by an arrow in the figure. It is also interesting to notice
that the numerical results check well with the pure vibra-
tional levels for both weak and strong coupling. Both en-
ergies and degeneracies are obtained by the numerical
calculations. This asymptotic behavior deserves addi-
tional discussion, which will be developed below for the

ZnTe:Fé*
N=20
A=2476 cm?
A=-100 cmt

T’Iw =50 cm!

100

1 1

1
0 200 T 400

1

1 I
600 E.TT (em™) 800

FIG. 3. Energy differences as a function of the Jahn-Teller
energy for the six lower vibronic energy levels of symmetry I's
for ZnTe:Fe?*.
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FIG. 4. Energy differences for the three observed vibronic
lines as a function of the higher total vibrational number N used
to form the Hamiltonian matrix. Actually the function
(N —1)/N is used as an independent variable. All physical pa-
rameters remain fixed at the values reported for ZnTe:Fe?*.

case of ZnS:Fe?", which presents less mixing and has a
similar level scheme.

Before proceeding any further we would like to show
evidence that these results are indeed stable. In Fig. 4 we
present the energy differences for the three leading lines
(those that are actually observed) as a result of diagonal-
izing the same problem for matrices with increasing total
vibrational quantum number up to N =21. Namely, we
now fix Eyr to the value 250 cm ™! in all of these calcula-
tions. It is convenient to plot the energy differences with
respect to (N—1)/N, which creates an accumulation
point at 1.0 for the limit of an infinitely large Hamiltoni-
an matrix. We have found that A,(IN =20) differs by less
than 1% with Ay(N =21).

Next we want to calculate the oscillator strength for
the three leading absorption lines after the parameters
have been fixed (E;r =250 cm ™! and N =20). These re-
sults are presented in Table II, along with the results ob-
tained using MBO and a qualitative appreciation of the
experimental intensities. In this table a résumé of the
three energy differences is also presented for comparison.
It follows from Table II that the oscillator strengths cal-
culated by means of MGG agree with those of MBO and
with the experiment. Nevertheless, it must be noticed

TABLE II. Résumé of the characteristics for the three lead-
ing zero-phonon absorptions from three different sources: ex-
periment (Ref. 3), calculations based on MBO (Ref. 7), and cal-
culations based on MGG (present calculations). Both energy
differences with respect to the first line (A,) and relative oscilla-
tor strengths f,/f, are listed. (Relative intensities are normal-
ized with respect to the less intense transition f,.)

Experimental MBO (N =11) MGG (N =20)
A, 0 0 0
A, 13-16 15 14
A, 30-34 31 32
f1 /fz a 2.5 24
fz /fz a 1.0 1.0
f3 /fz a 2.2 2.2

“Experimental intensities are of the same approximate strength.
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that MGG requires a larger vibrational occupation num-
ber (N =20) compared to MBO (N =11).

Two additional comments to Table II are in order.
First, the stability of the oscillator strengths was also
studied in the same way as for the energy differences
shown in Fig. 4. It was found that for N =20 the leading
transition probabilities are stable for the values reported
in Table II. Second, a Gaussian-line-shape analysis based
on the energies and intensities calculated by means of
MGG was performed. A profile quite similar to the ex-
perimental curve was obtained. Since the present results
do not differ substantially from those obtained by means
of MBO, the present line shape is almost indistinguish-
able from the one shown in Fig. 4 of Ref. 7 for the same
values of the half widths used in that calculation.

The application of MGG to the case of ZnTe:Fe?*
gives good quantitative account of the absorption lines
present in the spectrum. The values for both energy and
transition probability for each line are very similar to
those obtained independently by means of MBO. Howev-
er, a larger vibrational number had to be used by MGG
in order to reach stability. To understand this basic
difference between the two methods, next we apply MGG
to the case of ZnS:Fe?" and compare it with the previous
available results obtained by the application of MBO to
this system.’

The reason for choosing ZnS:Fe?™ is apparent from a
careful examination of Fig. 2. The lower the vibrational
quantum 7iw, the more numerous are the crossing points
between spin-orbit levels and pure vibrational levels. In
this graphical picture, crossing implies the admixing of
wave functions. Stability will be reached only after con-
sidering the admixtures of all the relevant wave func-
tions, which means a fairly large total occupation number
N if necessary. Of all the II-VI compounds, it is ZnS that
presents the largest acoustic frequencies and that can lead
to less admixture and faster convergence to stable values
for energies and oscillator strengths. There are no extra
zero-phonon lines to be accounted for in the spectrum of
ZnS:Fe’™; we use this simple system to get a deeper un-
derstanding of MGG as well as to perform a comparison
between the two methods.

In Figs. 5(a), 5(b), and 5(c) we present the energy
differences for the six low-lying energy levels of the excit-
ed multiplet of ZnS:Fe?* as a function of E;; for N =5,
10, and 15, respectively. Several comments should be
made. Oscillatory instabilities are apparent for N =5.
The wiggles get attenuated and move to higher Eyp as N
increases. The splitting of levels in the strong-coupling
limit gets more pronounced as N increases, and the onset
of the splittings moves to higher E; as N increases. As
N increases, the region of higher unstability (wiggling)
moves from left to right in Fig. 5. In other words, for
each value of Ej there is an optimal N for which stabili-
ty is reached. The larger E;r happens to be, the larger N
must be used to reach stability.

Figure 5 might be interpreted as indicating a splitting
due to spin-orbit interaction as Ejp— o and N-— oo.
However, this is not so. To show this let us recall the
way spin-orbit matrix elements are calculated. A general
matrix element has the following form:

10 171
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FIG. 5. Energy differences for the six low-energy levels cor-
responding to ZnS:Fe?* for three different values of the total vi-
brational quantum number: (a) N =5; (b) N =10; (c) N =15.
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(ngn ¢i;r/IAS-Lingn ¢;;r;)
=(r/IAS-L|r;}(G;1G})8,. 8.
"6 g'e

where (G;|G;)= exp(—k?/2), due to the fact that angu-
lar momentum operators are off diagonal in this represen-
tation. In the limit as E;p— oo, then kK — o, matrix ele-
ments vanish. This means that the spin-orbit interaction
gets completely quenched in the extreme strong-coupling
limit and no splitting can be expected in this limit no
matter how large the Hamiltonian matrix can be.

In Fig. 6 we superpose the results of both methods for
parameters appropriate for ZnS:Fe?*. The continuous
lines represent the results of the present calculation using
MGG, while the dashed lines represent previous calcula-
tions using MBO obtained for N =14.°> Just for purposes
of this comparison we match here the number N =14
also for the present calculations.

The agreement between both methods for low-energy
levels and weak coupling (lower-left portion of the figure)
is readily seen. As the coupling gets stronger MBO
diverges catastrophically, while MGG converges to the
asymptotic behavior with some wiggling that can be
suppressed by means of a larger vibrational quantum
number N. This is an important result of the present

ZnS
N=%
D=2845cm”!
A=-100 Cm"‘
+fiw=100 cm”

— GLAUBER
~—>"" BORN-OPPENHEIMER

8:-0 T
0 200 400 600 800

1000FaT

(em™)

FIG. 6. Comparison of the results obtained by the two
methods corresponding to ZnS:Fe?". The same parameters are
used in both calculations. The lower 12 vibronic levels are in-
cluded. Continuous lines represent the results reported here
(MGG), while dashed lines correspond to a different method
(MBO). Numbers in parentheses on the right-hand side corre-
spond to the expected number of I's representations in accor-
dance with Eq. (28).
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work in the sense that the alternative method based on
generalized Glauber states gives results that can be con-
tinued through parameter space regardless of the magni-
tude of the interaction.

For higher-energy levels the wiggling in the results of
MGG shows even for low values of Eyr as can be noticed
from A, in Fig. 6. For practical purposes this is not an
inconvenience since transitions to those levels have never
been observed. In any case, calculations for ZnS:Fe?™
were continued all the way to N =25, showing a better
agreement of MGG with respect to MBO in the upper
left portion of Fig. 6.

A secondary result from this analysis is that the calcu-
lated oscillator strengths for ZnS:Fe?" indicate the pres-
ence of just one zero-phonon line (as found in the experi-
ment) for E;p <200 cm™!. For Ej;>250 cm ™!, a second
line will begin to appear. This allows us to set an upper
limit for Ejr at 200 cm ™! in this system. Unfortunately
no further quantitative analysis is possible for ZnS:Fe?™.

IV. CONCLUSIONS

The method based on generalized Glauber states
presented here gives good quantitative explanation of the
infrared-absorption spectrum of ZnTe:Fe?’'. Both the
energy differences and relative intensities found in the ex-
periments can be accounted for. The coupling strength
can be expressed in terms of a Jahn-Teller energy of 250
cm™!. The representative coupling phonon corresponds
to points TA2(K) of the Brillouin zone with a vibrational
quantum of approximately 50 cm ™.

Three zero-phonon absorption lines of approximately
the same intensity were found. When a Gaussian-line-
shape analysis was performed, good agreement with the
experimental curve was achieved.

The results of MGG are almost indistinguishable from
previous results obtained by means of a different method
based on the diagonalization of a Born-Oppenheimer
basis. For the particular systems considered here, MBO
shows the advantage of requiring a smaller Hamiltonian
matrix to get the same results as obtained by MGG.
However, for other systems where the coupling strength
could be larger, MGG would certainly prove to lead to
better results since they always remain finite as compared
with the rapid divergence shown by MBO as the coupling
strength increases.

The success of MGG in dealing with ZnTe:Fe?" as re-
ported here comes in addition to the already-reported ap-
plication of the same technique for the case of
ZnSe:Fe?™, where also the zero-phonon spectrum was ac-
counted for.”® In this case E;; was found to be 230
cm ™!, which is in good correspondence with the value re-
ported above for the present system.

MGG is not just an alternative method to deal with the
Jahn-Teller coupling. For certain systems that present
very large values for the Jahn-Teller energy, this method
can be the most appropriate one.

The extension of the method to systems that present
weaker coupling such as ZnS:Fe?* does not represent any
difficulty. However, the presence of just one zero-phonon
line does not allow one to impose conditions to solve for
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E,;. However, the certainty of just one zero-phonon line
allows us to set an upper limit at 200 cm ™! for E .

On the other hand, the extension of the method to sys-
tems presenting lower vibrational frequencies (and even-
tually larger coupling) faces difficulties in the numerical
computation. In fact we tried to apply the method to
CdTe:Fe®*, taking #io=40 cm~!. However, for N =19
the numerical calculations begin to show erratic behavior
for certain intermediate values of Eyy (disconnected in-
tervals between 150 and 350 cm™!). Unfortunately,
N =19 is still too low to satisfy the stability conditions
required for the solutions. At present we are looking for
the appropriate software to get around this difficulty.
This discussion can be pushed a bit further in the sense
that this is likely to be a general limitation for MGG
whenever the coupling phonons have much less energy
compared with the splitting due to spin-orbit interaction.

A very interesting fact emerges by looking at the low-
coupling limit. The vibronic basis that originated from
the virtual static distortion leads to results that corre-
spond exactly to the analytical splitting due to pure spin-
orbit interaction. In other words, the generalized
Glauber states constructed above remain as good wave
functions in the weak-coupling limit, even when the
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spin-orbit interaction is introduced. A situation some-
what related to this has been reported for Glauber states
that are not eigenfunctions of the total Hamiltonian in
the absence of spin-orbit interaction.?®?’

Previous observations indicate that Glauber states can
be used in the complete parameter space, a technique
leading to reliable results at both the weak- and strong-
coupling limits. In the intermediate region, convergence
is not guaranteed and some additional effort has to be
made in order to obtain stable results. In our case this
was done by diagonalizing matrices involving all states
that correspond to a large number of vibrational quanta.
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