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We show how the ultrasoft pseudopotentials which have recently been proposed by Vanderbilt
can be implemented efhciently in the context of Car-Parrinello molecular-dynamics simulations. We
address the difFerences with respect to the conventional norm-conserving schemes, identify certain
problems which arise, and indicate how these problems can be overcome. This scheme extends the
possibility of performing first-principles molecular dynamics to systems including first-row elements
and transition metals.

I. INTRODUCTION

Molecular-dynamics (MD) simulations have been
widely used in many difFerent fields, which range from
physical chemistry to solid-state physics, to study the mi-
croscopic behavior of temperature- and time-dependent
phenomena. ~ A great deal of work has been carried out
using classical potentials to account for the interactions
between atoms. The main drawback of these interaction
potentials is that they are usually derived semiempiri-
cally from particular bonding situations, and can fail to
give an appropriate description when the chemical envi-
ronment is changed. Because of this transferability prob-
lem, it is sometimes desirable to have a MD scheme in
which the variations of the electronic structure are ac-
counted for during the simulation. In an important pa-
per, Car and Parrinello2 proposed a method to perform
molecular dynamics in which the electronic structure is
described in the density-functional local-density approx-
imation (LDA).s'4 In this scheme, the ionic forces are
determined directly from the electronic structure of the
system independently of any empirical parameter, and
are therefore highly accurate over a wide range of bond-
ing situations. The Car-Parrinello (CP) method has been
successfully applied to a large variety of systems provid-
ing detailed information on electronic as well as struc-
tural properties.

In spite of the generality of the underlying idea, the
Car-Parrinello method has primarily been applied in its
original version, i.e. , using plane-wave basis sets with
periodic boundary conditions in conjunction with pseu-
dopotentials (PP's). There are many advantages of such
a basis set. The mathematical formulation is particu-
larly simple. The basis set is independent of the ionic
positions, giving an unbiased uniform description of the
simulation cell and preventing undesirable Pulay terms5
from appearing in the calculation of the ionic forces.
Plane waves easily allow the use of fast Fourier trans-
forms (FFT's) to transfer quantities from real space to
Fourier space and vice versa. Another advantage is the
possibility of testing the accuracy of the results by in-
creasing the energy cutoff, which defines the highest ki-
netic energy of the plane waves in the basis set.

The treatment of the electronic structure causes a con-
siderable increase in the computational effort, such that
the size of the system which can be afforded is generally
much smaller than for classical simulations. The number
of plane waves depends on the size of the system and on
the energy cutoff required for a sufBciently accurate de-
scription of the electronic structure. This energy cutoff
is a property of the PP, and can sometimes afFect the
feasibility of a CP simulation.

In the original CP version norm-conserving PP's
(Refs. 6 and 7) have been used in their fully separable
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form. s In such a PP scheme, the pseudo-wave-function
matches the all-electron wave function beyond a cutofF
radius which defines the core region. Within the core
region, the pseudo-wave-function has no nodes and is
related to the all-electron wave function by the norm-
conserving condition which ensures that both wave func-
tions carry the same charge. In the spirit of reduc-
ing the energy cutofF, several improvements have been
proposed. However, despite these improvements, the
energy cutoff needed to describe the localized valence or-
bitals of first-row elements or transitions metals is still
frequently too high to allow MD simulations of extended
systems.

Recently, Vanderbilt has proposed a new PP scheme in
which the norm-conserving condition has been relaxed.
In this scheme, the pseudo-wave-functions are allowed
to be as soft as possible within the core region, yield-
ing a dramatic reduction of the cutofF energy required to
describe them. Technically, this is accomplished by in-
troducing a generalized orthonormality condition, which
modifies the conventional approach significantly. In order
to recover the full electronic charge, the electron density
given by the squared moduli of the wave functions is aug-
mented in the core regions. Thus, the electron density
can be subdivided in a smooth part extending through-
out the unit cell, and a hard part localized in the core re-
gions. Note that the augmented part appears only in the
electron density; this distinguishes the current scheme
from others, such as the linearized augmented plane wave
(LAPW), in which similar ideas have been applied to the
wave functions.

In this paper we address the consequences of the gen-
eralized orthonormality condition in the context of Car-
Parrinello simulations. The calculations are affected in
several ways. First, a new term appears in the Kohn-
Sham equations which is dependent on the wave func-
tions and must thus be updated at every time step.
Second, the orthonormality condition depends upon the
ionic positions. As a consequence, the manner in which
this condition is imposed during the ionic motion and the
expressions for the ionic forces are substantially modi-
fied with respect to the norm-conserving case. Finally,
the hard contribution to the electron density must be ac-
counted for without losing the advantage of the low cutofF
energy required for the wave functions. In some cases this
problem can be ameliorated by a careful generation of a
pseudodensity to represent the hard contribution. Oth-
erwise it can be solved using a real-space approach which
takes advantage of the fact that the augmented parts of
the electron density are localized. We will show that,
in spite of the more complex formulation, the present
scheme is well suited to handle extended systems con-
taining first-row elements or transition metals.

The paper is organized as follows. In Sec. II we re-
call the general properties of the Vanderbilt ultrasoft PP
scheme. In Sec. III we implement the PP in a Car-
Parrinello molecular-dynamics scheme, addressing vari-
ous consequences of the generalized orthonormality con-
dition. Section IV explains how the implementation is
divided between real and reciprocal space. We give a
brief summary in Sec. V of various applications that

the method already has allowed, and conclude in Sec.
VI with a discussion of perspectives and future direc-
tions. The Appendix contains an alternative derivation
of the constraint contribution to the ionic forces. Al-
though the method has never been described in full, var-
ious accounts of specific applications have been presented
elsewhere.

II. VANDERBILT'S ULTRASOFT
PSEUDOPOTENTIAL SCHEME

A. Kohn-Sham equations

In Vanderbilt's ultrasoft PP scheme, the total energy
of N„valence electrons, described by the wave functions
P, , is given by

&cot [{4i },{&I)] = ) .(4'I —&'+ &xL I4, )

+—1
2

, n(r)n(r')
Ir —r'I

&Nz, = ) .D' ' lp )(p
nm, I

(2)

where the functions PI as well as the coefficients DP~~

characterize the PP and differ for different atomic
species. In the following we will for simplicity consider
only one atomic species. The p„ functions are centered
on site I, and thus depend on the ionic positions through

P„(r) = P„(r —R,l) . (3)

Here P„ is an angular momentum eigenfunction in the
angular variables, times a radial function which vanishes
outside the core region; the indices n and m in Eq. (2)
run over the total number Np of such functions. In the
ultrasoft PP case, often two reference energies, and there-
fore two radial functions, are required for each included
angular momentum channel. This leads to a number Np
which is generally twice as large as for a corresponding
Kleinman-Bylander norm-conserving PP.

The electron density in Eq. (1) is given by

n(r) =). I&'(r)I'+ ).&.' (r)(&'lp.')(p' l4'), (4)
nm, I

where the augmentation functions Ql (r) = Q„(r—
R,I) are also provided by the PP and are strictly local-
ized in the core regions. Thus, while the electron density
in Eq. (4) is still quadratic in the wave functions, it is now
separated into a soft delocalized contribution given by the
squared moduli of the wave functions, and a new hard

+E„,[n] + dr V&',"(r)n(r)

+U({&1))
where n(r) is the electron density, E„, is the exchange
and correlation energy, and U({RI)) is the ion-ion inter-
action energy. The PP contains a local part V&'~" (r) =
Pl V&',"( lr —R,II) (Ref. 17) and a fully nonlocal part
given by
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contribution localized at the cores. The ultrasoft PP is
fully determined by the quantities Vi'~" (r), DP~, Q„(r),
and P~(r). The algorithm used to generate these quanti-
ties is described in Ref. 13 and is briefly reviewed in Sec.
II B.

The relaxation of the norm-conserving condition is
achieved by introducing a generalized orthonormality
condition

&~. l
S(ERI)) l~, ) = b„,

where S is a Hermitian overlap operator given by

S = 1 + ).q I&.')(&'
I

nm, I

(5)

and where q„~ = J dr Q„~(r) The. orthonormality con-
dition (5) is consistent with the conservation of the chargejdr n(r) = N„. Note that the overlap operator S is de-
pendent on the ionic positions through the IPr), Eq. (3).

The ground-state orbitals P, are those which minimize
the total energy (1) under condition (5),

bE... = e, SP, (r),

where e, have been introduced as Lagrange multipliers.
Because of the fact that the augmentation part of the
charge density depends on the wave functions,

I

)
= 4 (r')b(r' —r) + ) .Q' (r')P'(r)(&' l4')

i nm, I

(7)

(8)

where p„,(r) = bE„,[n]/bn(r). The other terms can be
calculated similarly. We obtain

alp;) = ~, sly, ),
where

~ = —&'+ V.ir+ ) .D' lP')(O' I.
nm, I

Here V,g is the screened effective local potential,

V.~(r) = b„, = Vi."."(r)+ dr'. ..I+~-(r)bEtot n(r')

(12)

All the terms arising from the augmented part of the elec-
tron density have been grouped together with the nonlo-
cal part of the PP, Eq. (2), by defining new coefficients

additional terms appear in the Kohn-Sham equations
from the density-dependent terms in the total energy (1).
As an example, we consider the exchange and correlation
energy. Using Eq. (8) we obtain

6E„,[n],6E„,[n] bn(r')

6P;(r) bn(r') bP;(r)
= ~-(r)4'(r)

+ ) P (r)(P IP, ) dr' p„,(r')Q (r'),

D„=D„+ dr V,ir(r)Q (r) . (13)

B. Pseudopotential generation algorithm

In this section we give a concise description of the spe-
ci6c PP generation algorithm introduced in Ref. 13.

As in other PP methods, an all-electron (AE) calcula-
tion is erst carried out on a free atom in some reference
configuration, leading to a screened potential VAE(r).
Then for each angular momentum l, a set of reference en-

ergies ei is chosen (r = 1, N, typically 1 & N & 3) to
cover the energy range over which good scattering prop-

Note, however, that the D~m are just parameters which(o)

characterize the PP, whereas the new D„depend on the
wave functions through V,s, Eq. (12), and have to be up-
dated in the self-consistency procedure. (The treatment
given here of the screening of the D matrices is consis-
tent with that of Ref. 14, but differs from, and should be
considered to supersede, is that of Ref. 13.)

At this stage, the difference with respect to the norm-
conserving case resides in the presence of the S operator,
the wave-function dependence of the D„, and the fact
that the number Np of t91 functions is twice as large.
The calculation of the D„~, Eq. (13), can be carried
out in real space and produces only a modest overhead
(see Sec. IV B). The presence of the S operator requires
the calculation of the (P~llg, ), which, however, are also
needed for the nonlocal PP, and thus do not require any
additional computation.

The number of operations needed to calculate one
scalar product of this type scales like the number of plane
waves Np, and the number of these scalar products is
given by N tNpNb „d, where N t is the number of atoms,
Np is the number of P„ functions per atom, and Nb „d
is the number of Bled states. Since N~ and Nb „d both
scale like N~t, this part scales like N~~, and for large
systems it is typically the most time-consuming part.
(When also the ioruc forces [see Eq. (43)] are calculated,
similar scalar products (dPI/dRIIP, ) are required, just
as in conventional norm-conserving schemes. ) Thus, for

large systems in which the computational cost related
to these scalar products is dominant, one can deduce
that the ultrasoft PP scheme becomes advantageous com-

pared to the norm-conserving (NC) scheme when N~ )
2', where we have taken Np = 2N&N . In terms of

energy cutoff E, , the criterion is E, ) 1.6E,
which is easily satisfied for erst-row elements and transi-
tion metals.

Very recently King-Smith, Payne, and Lin23 have

shown that it is possible to evaluate the scalar products
between the wave functions and the P„ functions in real
space by taking advantage of the fact that the Pl are
localized. In this way, this part of the calculation scales
like N tNb „d, i.e. , like N ~. Although in principle the
full calculation would still scale like N~, because of the
orthonormalization procedure, the cost of a previously
dominant part of the computation would be considerably
reduced, allowing the study of still larger systems.
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C. Construction of the pseudoelectron
charge density

20

(r) ) cLM+&M(~)Q (r)
LM

(26)

where cLM are Clebsch-Gordan coefBcients, YLM are
spherical harmonics, and Q„' d gives the all-electron ra-
dial dependence of Q„and is independent of L and M
by construction. The number of possible I channels in
Eq. (26) is finite because of the fact that a nonlocal PP is
required only for the lowest angular momentum channels.

The Q '~~ in Eq. (26) are then replaced by L-dependent
counterparts Q+

(&) = ).cl.M&~M(&)Q (r), (27)
LM

which satisfy the condition that for each L-component
the Lth moment of the electron charge density be con-
served,

In norm-conserving PP schemes the electron density is
defined as in Eq. (4) where only the first term is kept on
the right-hand side. Thus, the energy cutoff E '"' re-
quired to describe fully the electron density is four times
the energy cutoff E, of the wave functions

Edens 4E wf (25)

This direct relationship between the cutoff for electron
density and wave functions does not hold in the ultrasoft
PP scheme because of the presence of the augmentation
functions Q„ in the electron density (4). In this scheme,
it is therefore appropriate to introduce two independent
energy cutoffs: one for the soft part of the electron den-
sity, E,' = 4E, , and a second and generally much
higher one E, '"' to describe the augmentation functions

nm'
It is often possible to reduce the charge cutoff E,~'"' by

replacing the functions Q„~ by pseudocounterparts. is'is
In this construction, the Q„are modified within an
inner core region (defined by r;„) The . charge density
described by the pseudo Q„~ preserves all the charge
moments, so that the electrostatic potential beyond r;„
remains unchanged. This is achieved by decomposing the
Q~~ according to angular momentum L as

10—

0
0 1

r (a.u. l

FIG. 2. I-dependent Q" (r) for the case of the 3d orbital
of Cu. The original Q' is given by the solid curve. The
pseudo Q for L = 0, 2, 4 have been obtained with inner cutoff
radii r;„of 0.6, 0.8, and 1.2 a.u. , respectively.

of all the Q+ using an energy cutoff of about 200 Ry,
as can be inferred from Fig. 3 where we show the Fourier
transforms of the functions obtained in Fig. 2.

In order to construct optimal pseudo Q (r) (where we
have dropped the indices n and m), we expand them in
polynomials of r inside r;„as

Q'( ) = 'p ( )

where

when r (r;» (29)

pl. (r) = C, + C2r'+Csr'+ (30)

G Ql (G) dG, (31)

with the number of terms ensuring sufFicient smoothness
of the polynomial. We want Q (r), i.e., pl, (r) as smooth
as possible. Therefore, following lines similar to Rappe et
al. , we insist that the Fourier coefFicients above a cer-
tain cutoff' wave vector G, should be as small as possible.
Thus, we minimize

L
Tin

rdrr Q„(r)=
L
I11

r drr Q„' (r), (28)

where I-dependent inner cutoff radii r;„have been in-
troduced. Since the high Fourier components of Q„~
are mainly related to the high-I components, it is con-
venient, for a given cutoff E,d'"', to use smaller r;„ for
low-L components. In this way, a relatively better de-
scription of the lowest moments of the electron charge
density is maintained. In Fig. 2 we show the pseudo
Q„ for L = 0, L = 2, and L = 4 obtained from Q„" d

for the case in which n and m correspond to the same
reference energy in the d channel for Cu (corresponding
to the wave functions in Fig. 1). The core cutoff radius
in this case is 2 a.u. , whereas the inner cutoff radii r;„
range from 0.6 a.u. (L = 0) to 1.2 a.u. (L = 4). With
this choice of r;„ it is possible to give a good description
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FIG. 3. Fourier transforms of the Q given in Fig. 2.
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where

Qr(G) = r drQ (r)jr, (Gr) (32)

cumvented using the fact that the Q„~ are localized in
real space. The details of our method for accomplishing
this will be discussed later in Sec. IV.

and jl. is the spherical Bessel function of order L. The
minimization should be done subject to the constraint
(27) and subject to the following continuity requirements:

III. MOLECULAR DYNAMICS

A. Lagrangian formulation and ionic forces

p(r;„) = pAE(r;„),
p'(r ) =p'AE(r )

p (r )=pAE(r )

(33)
Following the CP approach, the electronic wave func-

tions and the ionic coordinates evolve according to a clas-
sical Lagrangian

50

-50—

'
~
4

'~

4
'~

where the primes indicate radial derivatives. This treat-
ment gives us a very smooth charge density with smooth
and continuous first and second derivatives, features
which are especially important in the context of gradient-
corrected LDA schemes. 2o In Fig. 4 we demonstrate the
success of this approach for the case of oxygen, specifi-
cally for Q~ with L = 0 and n, m = 2p. Figure 4 shows
how the Fourier coeKcients of the pseudo Q„behave
as a function of G when optimally generated according
to the above scheme, in comparison to the original Q~
and pseudo Qn~~ generated in a fourth-order polynomial
just to give the correct charge and dipole moment and
the continuous first derivative of the charge. It is clear
that the reciprocal-space convergence is much improved
using the present approach.

We have found that in many cases, including that of
oxygen, replacement of the Q„~ by pseudodensities using
the above two refinements (use of L-dependent r;„nad/ ro
optimally soft construction of the Q+) allows us to ob-
tain an excellent description of the charge density with
E,d'"' = E,s~r~. In these cases, condition (25) is restored,
and the solution of the Kohn-Sham equations (10) can
be obtained in the usual way by fast Fourier transform-
ing between a single pair of real-space and reciprocal-
space meshes, just as is done with conventional norm-
conserving PP's. However, in some cases, and in partic-
ular for transition metals such as Cu, even the pseudo
Q„require E, '"' ) 4E, f. In these cases, the problem
of having a large number of plane waves can still be cir-

2 = p) drlP(r)l + z ) MIDI
I

—Et.t((4*,~1)), (34)

subject to a set of constraints

((4, , R,)) = (4, Isla, ) —s,, = o. (35)

Here p is a fictitious mass parameter for the electronic
degrees of freedom, MI is the mass of the atoms, and Et, ~

and S are as given in Eqs. (1) and (6), respectively. The
orthonormality constraints (35) are holonomic, and do
not cause energy dissipation during the MD run. They
may be incorporated by introducing Lagrange multipliers
A,~ into the Euler equations of motion,

pP, =—,' + ) A,~ Sp~,
2

OEt(&g BS
Pr =MrRr = — +).A,, P, P~) .

I I
U

(36)

(37)

During a MD run, the Lagrange multipliers are to be
determined dynamically using the method of Ryckaert
et al. , as discussed in Sec. III B. For the special case
of equilibrium, the vanishing of Eq. (36) reduces (with
A,~

= e,6,~) to the electronic Kohn-Sham equations (7)
or (10), and the vanishing of Eq. (37) corresponds to the
vanishing of the ionic forces FI. An alternative deriva-
tion of the force expression in Eq. (37), particularly ap-
plicable to direct minimization approaches, is given in
the Appendix.

We now derive explicit expressions for the two terms
on the right-hand side of Eq. (37), which correspond to
the contributions from the change in the Hamiltonian
and from the change in the orthonormality constraints,
respectively. The latter contribution appears because of
the Rl dependence of the overlap operator S; note that
it is absent in the case of norm-conserving schemes, in
which the orthonormality condition does not depend in
any way on the ionic positions. The first term on the
right-hand side of Eq. (37) must be obtained keeping
in mind that the electron density also depends on R,l
through the Qr and Pl. Introducing the quantities

100
G2 (Ry)

200 300

p' = ).(4'lP.') (P' l4'), (38)

FIG. 4. Fourier components of optimal pseudo (solid),
nonoptimal pseudo (dashed), and original (dotted) Q„ for
oxygen with L = 0 and n, m = 2p. Vertical scale is arbitrary.

= ) .A" (&~I&.')(&' 14') (39)
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with derivatives

= ) . (0* ")(0' l0'*) +(0'll.')( 4')

dU
da

dV ion
dr ' ' n(r)dRI

dr V,s(r) ) ™
p„

-d&' (r) I
nm

B(u' I""= ).A' &
" (&' I&')

U

+(0'~lP.')(~R 0*)

(40)

(41)

nm nm

where D„~ and V,ir have been defined in Eqs. (13) and
(12), respectively. The last term of Eq. (43) corresponds
to the constraint contribution [last term of Eq. (37)j.
Note that because the basis set consists of plane waves,
the wave functions do not depend on the ionic positions
and no additional Pulay-type corrections are needed. 5

and noting that

0B'n(r) ) . I ( )
Bp~m d+nm(r) I (42)

we arrive at the expression

B. Evolution of orthonormality constraints

Here we discuss in some detail the discretization of
the equations of motion (36) and (37) using the Verlet
algorithm, with special attention to the treatment of the
RI dependence of the orthonormality constraints. For
the electronic wave functions we obtain

At 2

P, (t+ At) = 2$, (t) —P, (t —At) — '."—) A„(t+ At) S(t)P, (t) (44)

where S(t) means that the operator S is evaluated for ionic positions RI(t). Similarly for the ionic coordinates,

RI(t+ At) = 2RI(t) —RI(t —At)—(At)~ BE,o, —) A,, (t + At) P, (t) P, (t)
BS(t)

U

(45)

(P,(t+ At)lS(t+ At)lP, (t+ At)) = b,, (46)

The orthonormality condition has to be imposed at each
time step

I

upon S(t + At) through Eqs. (47)—(49), and thus upon
R.I(t + At). Consequently, in principle it is necessary
to solve iteratively for Rr(t + At). We do this by first
estimating the new A(t + At) using two previous values,

Fulfilling this constraint leads to the following matrix
equation for the Lagrange multipliers A = At2A*(t +
At) lp:

A,', '(t + At) = 2A;, (t) —A,, (t —At), (50)

A+ AB y Bi At + ACA' = 1, (47)

where a dagger indicates the Hermitian conjugate (be-
cause of the Hermiticity of S, A = At) and where

A,, = (Q, lS(t+ At)lg, ),
B' = (S(t)4'*(t)IS(t+ At)14')
C' = (S(t)4*(t)IS(t+At)IS(t)4'(t))

with

(48)

(49)

In norm-conserving schemes the identity operator is
found in place of S, which leads to a simpler form of
Eq. (47) presented in Ref. 22. In the ultrasoft PP case,
the solution of Eq. (47) is somewhat problematic because
Eq. (45) is not a closed expression for RI(t + At). The
problem is that A(t+ At) appearing in Eq. (45) depends

and using this to find the new Rli i(t + At), which is
correct to O(At4). Then Eq. (47) is solved (see below)
in a similar way as in the norm-conserving case, giving
a new set of A, (t+ At), with which the whole proce-(&)

dure is repeated, and so on until convergence is achieved.
Fortunately, it turns out in practice that the ionic posi-
tions are very well determined by Eq. (50), so that the
procedure almost always converges on the very first itera-
tion. Thus, the operations described above are generally
executed only once per time step.

In order to solve Eq. (47), we generalize the iterative
procedure used in Ref. 22 because the unmodified proce-
dure does not always converge. In the norm-conserving
case, the matrix B converges to the identity matrix for
vanishing Lt. This is not the case in the ultrasoft PP
case. However, when the matrix B is decomposed into
Hermitian (Bh) and anti-Hermitian (B~) parts,

B = Bg+B,
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it is straightforward to see that B vanishes in the limit
of small At. The first iteration A&0& can now be obtained
from

(52)

where the C-dependent term has been neglected because
of higher order in At Eq. uation (52) can be solved ex-
actly introducing the unitary matrix U, which diagonal-
izes Bh, , UtBh, U = D, where D,~

= d;b,~. The solution
to Eq. (47) can be obtained by iterating

P(n+1) B + B P(n+1)

= 1 —A —A~"lB —BtAi"l —A&"lCA~"l, (53)

where at every step the new A("+ ) are obtained in the
same way as A&ol had been obtained from Eq. (52).

When imposing the orthonormality condition (46),
Eqs. (47)—(49) require the calculation of an additional
set of scalar products of the type (P„IP,) as compared
to the norm-conserving ease. However, the additional
computational overhead for these additional products is
modest, since the operations of the form (BP„/BRIINN, )
are more numerous.

IV. RECIPROCAL- AND REAL-SPACE
IMPLEMENTATION

A. Double-grid technique

As long as the electron density can be described with
a cutof E, '"' = 4E, , molecular-dynamics simulations
can be performed without further modifications with re-
spect to norm-conserving schemes, except for the use of
appropriate forces for electronic (10) and ionic variables
(43). As discussed above, this condition is not always sat-
isfied in the ultrasoft PP scheme. In the case of Cu, for
example, in which a large part of the charge of the tightly
bound d orbitals is incorporated in the Q,~, E, '"' turns
out to be significantly higher than 4E, . Also in the
case of first-row elements, such as F,24 the p electronic
states might be so localized that condition (25) cannot
be satisfied. In order to permit an optimal choice for
E, and E, '"', it is convenient to develop a scheme in
which these two parameters can be chosen independently
of each other.

In the calculations, fast Fourier transforms (FFT's) are
used to transform physical quantities from C space to r
space and vice versa. Some products are diagonal in r
space, and thus should be calculated in r space. Products
of this type occur twice: P;(r)P, (r) in the calculation of
the electron density (4), and V,&(r)P, (r) which appears
in (10). The FFT grid must contain all plane waves de-
termined by the energy cutoff E,' = 4E, in order to
fully describe the results of those multiplications. On
the other hand, in order to describe the Q„, a grid de-
termined by the higher cutoff E, '"' is required. A pos-
sible solution consists in using a single grid determined
by the cutoff E, '"'. However, the number of FFT's per
time step which have to be performed for the calculation

of r-space products scales like the number of electronic
states Nb~„d, whereas only a few FFT's (independent of
Kb „~) per time step involve the electron density. We
have therefore introduced two different FFT grids, a
coarse and a dense grid, determined by cutoffs E, and
E, '"', respectively. In this way, the FFT's for the r-
space products are calculated on the coarse grid with
the same numerical effort required in a norm-conserving
scheme when using the same wave-function cutoff E,
The numerical cost of the few FFT's on the dense grid is
negligible in a simulation of a large system. The connec-
tion between the two different grids is established in C
space. All the quantities defined on the coarse grid can
be transferred to the denser grid, taking the plane-wave
components which are absent on the coarse grid to be
vanishing.

We illustrate this technique, following the calculations
stepwise. In the actual calculations, the electronic de-
grees of freedom are the coefficients P, (C ) of the plane
waves

(54)

where 0 is the volume of the simulation cell and G, f

the largest G vector compatible with the condition 2 Ik+
C I2 (E,~f. Due to the large simulation cell the Brillouin
zone is often sampled using only the I' point. An advan-
tage of this choice is that the wave functions ean be taken
to be real. In the following we will drop the k index.

The scalar products (P~ IP„) and their spatial deriva-
tives are evaluated in C space

Gwf
C

(55)

=
2 ).O'I&'(C)I'

i,G
(57)

The soft part of the electron density n, f&, given by the
first term on the right-hand side of Eq. (4), is obtained
in r space using FFT's on the coarse grid. Then it is
transformed to G space using a coarse-grid FFT. The
electron density is now augmented with the contribution
arising from the QI

i,nm, l
(58)

The G vectors required to describe the augmented part
are given by the condition —G2 & E,d'"', G, '"' being

The kinetic energy is diagonal in G space and can also
be directly calculated

Gwf
C
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@-= ) Vi."."(G)n*(G)
G

as well as from the Hartree energy

(59)

n*(G)n(G)

G+0
(60)

The Ewald summation method has been used to correctly
cancel the G = 0 component in Eq. (60). The electron
density is then transformed to r space on the dense grid,
where the energy E„,and the potential p,„,are evaluated.

The potential V,p, Eq. (12), is needed on the dense
grid to calculate quantities such as the D„, Eq. (13),
and on the coarse grid to calculate V,irg, in the Kohn-
Sham equations, Eq. (10). The first two terms of U,ir
are added in G space on the dense grid. Then the re-
sult is transformed to r space using a dense-grid FFT,
where the previously calculated p,„,is added. The V,g is
now known in r space on the dense grid where it will be
used for the D„.The potential V,g is also needed in r
space on the coarse grid. The connection between the two
grids is in G space: V,g is first transformed to G space
on the dense grid, then transferred to the coarse-grid G.
space by truncating components incompatible with E,'
and then backtransforming to r space using a coarse-grid
FFT.

In this way the dense-grid FFT is used only four times
per time step, which is negligible compared to the number
of coarse-grid FFT's, which scales as the number of states
Nb „d.

B. Fourier interpolation scheme

We now focus on the augmentation functions Q„~,
which are peculiar to the ultrasoft PP scheme. These
functions appear in the calculation of the electron den-
sity, Eq. (58), in the integrals which give the D„~'s, Eq.
(13), and in similar integrals involving dQ„~/dRi which
appear in the ionic forces, Eq. (43). The Q„~ need a high
cutoff E,~'"' and, if these calculations were carried in G
space on the dense grid, a significant increase in the com-
putational cost would occur. It is therefore important to
take advantage of the fact that the Q„~ are localized in
the core regions. When these integrals are calculated in
r space, the associated computational cost is reduced by
the ratio of the volumes of the core region and of the
simulation cell O. In this way, the computational cost
related to this part becomes very modest.

The advantage of working in G space is that the Qr~
can easily be evaluated for any atomic position by calcu-
lating a simple phase factor (Fourier interpolation),

the largest of such vectors. In fact, the Qi „are first
evaluated in r space on the dense grid, and then trans-
formed with a dense-grid FFT to G space to be added
to the soft electron density n, g& in Eq. (58). The n(G)
thus obtained is used to evaluate the contribution to the
total energy from the local potential

~ dens
C

(G) = Q (&) (61)

V. APPLICATIONS

To date, the ultrasoft PP's have already been
used in several different systems for both erst-row

ements14, i5,24, 25 and transition metals 16 The pseu-

When the energy and the forces are both calculated in
G space, the forces are the analytical derivatives of the
expression for the energy, ensuring that the constant of
motion (e.g. , the energy in the Newtonian dynamics) be
conserved during the evolution. The accuracy of such
a real-space interpolation is therefore extremely critical
to guarantee an accurate and stable molecular-dynamics
simulation.

We have been able to combine the advantages of the lo-
cality of the Q„and the Fourier interpolation scheme,
by introducing a small box for every ion. These boxes
are taken to be large enough to contain the core regions,
where the Qi are nonvanishing. The FFT grid of the
boxes locally coincides in r space with the dense grid.
Generally the Q„~ are obtained using phase factors sim-
ilar to (61) to take into account the displacement of the
ions within their boxes. But when the ion crosses one
of the grid planes, the box is displaced discretely by one
grid unit to follow the motion of the ion. The advantage
of working with these small boxes is that the energy cut-
off of the plane waves associated with the box grid is the
same as for the dense grid, whereas the number of plane
waves is reduced by the ratio of the volumes of the box
and A.

In the case of the electron density, Eq. (58), the Npz

terms corresponding to the indices n and m are first
summed for every ion. Then, the result is transformed to
r space of the box grid using a box-grid FFT, and then
transferred to r space on the dense grid. When these op-
erations have been completed for all the ions, this hard
part of the electron density is transformed with a dense-
grid FFT to C space. The integrals involving V,g in the
second term of Eq. (13) and the third term of Eq. (43)
are performed by transferring V,ir from the dense-grid r
space to the box-grid r space, transforming with box-grid
FFT's to G space, and summing in the box-grid G space
in the same way as in Eqs. (55) and (56). The overall cost
of the box-grid FFT's is negligible. Note that the above
procedure has a total cost that scales only linearly with
the size of the system, instead of quadratically as would
be the case if the dense-grid FFT were used to perform
the interpolations.

Because of the fact that the calculation is performed in
part in the Fourier space of the dense grid (e.g. , Hartree
energy and potential) and in part in that of the box grid,
this method provides ionic forces which are exact deriva-
tives of the total energy only when all the Fourier expan-
sions are perfectly converged. When this is not the case,
the discrepancies appear as little jumps in the constant of
motion whenever an ion crosses a grid plane. These devi-
ations can easily be eliminated by taking a large enough
E, '"'. The increase of F, '"' only modestly affects the
overall computational cost.
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TABLE I. Transferability tests of Vanderbilt pseudopotential in molecular environment. The
equilibrium bond length d, vibrational frequency cu, and binding energy Eb;„p of an oxygen dimer.

Approach

V (r,=1.8 a.u.)

Ewf
C

(a.u. )

20
25

G

(a.u.)
2.52
2.51

(cm ')
1690
1650

Ebind
(eV)

8.7
8.8

V (r,=1.5 a.u. ) 20
25
30

2,35
2.36
2.36

1610
1650
1660

9 4
9.5
9.5

V (r,=1.2 a.u. ) 20
30
50

2.51
2.33
2.32

1210
1600
1610

9.1
9.7
9.6

BHS 40
85
125

2.39
2.30
2.28

1180
1500
1630

9.0
9.6
9.8

dopotentials were first tested in the case of small oxy-
gen molecules. ~4 We compare the binding energy, equi-
librium bond length, and the vibrational frequency for
02 as calculated with ultrasoft PP's of different cutoff
radii r, and with a Bachelet-Hamann-Schliiter (BHS) PP
(Ref. 7) in Table I. As can be inferred from Table I, the
results obtained with the two PP's are close, but those
obtained with the ultrasoft PP converge at much lower
energy cutoffs E,~ The po. ssibility of describing oxy-
gen with such low cutoffs has made possible the study of
larger systems, such as small water clusters and ice.
In the latter case, velocity autocorrelation functions were
extracted from MD simulations and used to obtain in-
formation about the phonon soft-mode behavior near a
structural phase transition in high-pressure phases of ice.
These studies also showed that the weak hydrogen bond
requires gradient correctionsis 20 to the I DA to be in-
cluded if an adequate description of structural properties
is to be obtained.

Ultrasoft PP's have also been shown to be capable of
treating a transition metal such as Cu. In this case, be-
cause of the extremely localized nature of the 3d orbitals
it has been necessary to use the double-grid technique
in conjunction with the Fourier interpolation described
in Secs. IV A and IVB, respectively. Comparison with
fully converged calculations for Cu2 obtained with norm-
conserving PP's (Ref. 26) shows that Cu can be accu-
rately described with E, = 18 Ry and E, '"' = 200
Ry. s The relatively low E, r and a technique introduced
by Blochl and Parrinello to treat metallic systems have
made possible a Car-Parrinello MD simulation of liquid
Cu. In the method of Blochl and Parrinello, two Nose-
Hoover thermostats are introduced which couple sepa-
rately to the ionic and electronic degrees of freedom. The
former is used to keep the system at a constant physical
temperature, whereas the latter is used to prevent the
electronic degrees of freedom from acquiring too much
energy. The liquid has been simulated by 50 atoms in
a simple cubic cell at the experimental density. After
preparation of the sample in a liquidlike configuration,

-290—

-300

bQ

I
I r JJ

/
r

-310

-320
2000

time steps
4000 6000

FIG. 5. Total potential energy (solid), sum of potential
and ionic kinetic energy (dashed), and constant of motion
(thin) for 6000 time steps (1 time step= 0.24 fs) of a Car-
Parrinello simulation of liquid Cu.

the system has been allowed to evolve for about 2 ps.
In order to illustrate the stability of the MD simulation,
we plot in Fig. 5 the total potential energy and the sum
of the potential and ionic kinetic energy as a function of
time for part of the motion. The horizontal line is the
constant of motion " and does not appear to drift within
less than 0.012 meV/ps, which is negligible on the time
scale of the simulation. This simulation has allowed us
to extract static and dynamical properties in very good
agreement with experiment. For more details, we refer
to Ref. 16.

The ultrasoft pseudopotentials are also being applied
to several systems in the context of static total-energy
and force calculations. For this purpose, a steepest-
descents version of the electronic minimization is typi-
cally used while the ionic degrees of freedom are held
fixed. Applications to such diverse systems as BaTiOs
(Ref. 29) and point defects in ZnSe (Ref. 30) have been
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carried out. In the case of the BaTi03 calculations par-
ticularly, we have found that the ultrasoft pseudopoten-
tial scheme has an added advantage because it allows for
two shells of the same angular momentum to be included
as valence shells. For example, Ba 58 and 6s shells were
both included, as were Ti 3s and 4s shells, by setting
the two reference energies in Eq. (16) equal to the corre-
sponding all-electron eigenvalues. High-quality conven-
tional pseudopotentials containing only a single valence
s shell are difficult or impossible to construct for these
atoms. In both applications, relaxed structures were
easily obtained by using the computed ionic forces as a
gul(ie.

VI. CONCLUSIONS

Because of the reduced number of plane waves re-
quired, the present scheme based on ultrasoft PP's
makes it possible to extend first-principles molecular-
dynamics simulations to systems containing first-row ele-
ments and transition metals, which could not be afForded
using norm-conserving pseudopotentials. It should al-
low the study of relaxation processes in transition-metal
molecules or defects, oxidation processes, surface recon-
structions, and the properties of liquid and amorphous
materials. The present formulation also allows the com-
bined use of ultrasoft pseudopotentials for some of the
atoms and standard norm-conserving pseudopotentials
for the other ones. Such an approach would be particu-
larly useful for the study of transition-metal or first-row
defects in semiconductors.

where Et t is as given in Eq. (1), and the P, are a new
set of 8-orthonormal functions

14") = ) (& '~')g'l4'g) (A2)

constructed from the P, via

(A3)

(A4)

We rewrite Eqs. (1) and (4) in the form

&t.t = ) .(0;IH""14,) + &H .[n] (A5)

and

n(r) = ) .(0, l~(r) 14,) . ( 6)

Here

We imagine P, = P, before the virtual displacement,
and calculate the partial derivative BEt t/BRI holding
&P, (but not P, ) constant. While the P, do not generally
continue to satisfy the constraints (5) after the virtual
displacement, the P; do by construction, and therefore
we can associate the above derivative with the physical
force,
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APPENDIX: ALTERNATIVE DERIVATION
OF IONIC FORCES

Here we brieBy give an alternative derivation of the
expression for the ionic forces FI given in Eqs. (37) or
(43) of Sec. III A, and in particular the last term which
corresponds to the contribution from the orthonormality
constraints. The present derivation makes no reference to
the Lagrangian formulation, and is therefore more natu-
ral in the context of direct minimization approaches such
as conjugate-gradient schemes.

In the main body of this manuscript, we took the point
of view that Eq. (1) specifies the total-energy functional
even when the P, depart from the constraints (5). Here
we introduce a difFerent generalized functional

H ion g2 + ~ion
loc

+ ). D."'+ dr@'. (r)Vi."."(r) IA)(&'
I

nm, I

~(r) = lr)(rl+ ) .Q.' (r)I&.')(&'
I

nm, i
(A8)

The notation is essentially that of Ref. 14. The mini-
mization of (A5) leads to the secular equation

HIP) = ) A,, Slg, ), (A9)

cia, (r) 1 . OS
an

=
2 ~ - ~' aa. ~*)~'i'i (A10)

where A,~
= (P, IHIP~), and the screened H is given in

Eq. (11).
Using the fact that A,~

= b,~ before the virtual dis-
placement, we find

&t t((4'), (RI) ) = &tot( (4,((4', RI)) ), (RI) ),
(Al)

Now the contributions to BE«tfBRI which do not in-
volve the R,I dependence of the P, are
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r o)E„, ). dH"" 6Et„dn(r)
)9RI),. dRI 6n(r) dHr

djj loll dK(r)
dRI d,'Rr

while Eq. (A10) leads to additional terms

(A11)

(A12)

After a few lines of algebra, it becomes evident that Eq. (All) generates the second, third, and fourth terms of Eq.
(43), while Eq. (A12) corresponds to the last term of Eqs. (37) or (43).
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