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Interface scattering and resistivity of fiber-reinforced metal-matrix composites
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An analytical approach to assessing the contribution to the resistivity of metal-matrix composites re-
sulting from electrons scattering from the surface of the embedded phase is described. Results are
presented for conduction along the fiber axis which do not imply any substantial enhancement of resis-
tivity at low temperature, contrary to earlier predictions (but consistent with recent experiments). The
scattering effect on conduction transverse to the fiber axis is investigated using an extension of the model
originally proposed by Rayleigh. The magnitude of the scattering correction is found to be comparable
to that in the longitudinal orientation, and does not account for the abnormally high transverse resistivi-

ty reported for B-Al composites containing 60% boron fiber by volume. A possible explanation and
remedy for the discrepancy is discussed.

I. INTRODUCTION

The theory of composites attempts to assign to a multi-
phase (heterogeneous) material an effective physical prop-
erty like conductivity, given the properties of the com-
ponent (homogeneous) phases, and their morphology.
More sophisticated treatments also address special con-
siderations that arise specifically from the mixed
phase —the decrease in conductivity expected from car-
rier scattering at the phase boundaries is one example.
Such effects clearly demonstrate that a composite speci-
men is more than just the sum of its parts, and have led
to important new classes of materials.

This work is motivated by two developments, one ex-
perirnental and the other theoretical. The former are
measurements for the resistivity of various B-Al cornpos-
ites from room temperature down to the boiling point of
liquid nitrogen. For samples containing more than about
48% boron fiber by volume, the temperature variation of
resistivity is anomalous and decreases at a rate slower
than expected for the metal matrix. And in one case
(60%%uo fiber content), the transverse and longitudinal resis-
tivities actually obey diferent temperature laws. ' This
behavior, inexplicable in terms of the component proper-
ties alone, clearly signals some sort of interface effect.
Indeed, the data are qualitatively consistent with an addi-
tional contribution to the sample resistivity arising from
scattering at the fiber-metal boundary.

A theory for interface scattering in metal-matrix com-
posites was given recently by Roig and Schoutens. At
very low temperatures (below 10 K), they predict a rise in
resistivity, which, however, does not appear to be in ac-
cord with experiment. Furthermore, their resistivity cal-
culations are limited to the longitudinal configuration,
where current Qows parallel to the fiber axis. In Sec. II
and III that follow, we reexamine the theoretical problem
of interface scattering in metal-matrix composites, and
present results for both the longitudinal and transverse
cases. These results are examined in the light of previous
theoretical work and the resistivity data for 8-Al com-
posites.

Our treatment builds on a companion publication

where we have shown that scattering at the fiber-metal

boundary can be seen as producing a local conductivity
o (r), which grows steadily to become the matrix (metal)
value o.o far from the fiber surface. The specific form of
o (r) is shown in Ref. 4 to be

g (r)=o.o 1 — [E2(z)—Eg(z)] ',3
II

o g~

3
o i(r) =o.o 1 — Eq(z) . —

for current fiow parallel (~~) and normal (l) to the inter-
face, respectively. Here the E„are exponential integral
functions of argument z=d(r)/A. , where A, is the mean
free path in the bulk, and d (r) is the distance from the
field point r to the interface along a surface normal. This
characterization of interface scattering in terms of an
effective local conductivity is well suited to composite
calculations. In this paper we will use Eq. (1) to obtain
an expression for the conductivity of fiber-reinforced
metal-matrix composites which includes the effects of
scattering at the fiber-metal boundary.

Since the composites in question are highly anisotrop-
ic, current Aows more readily along the nominal-fiber
direction (longitudinal case) than normal to it (transverse
case). As noted above, the effects of interface scattering
on the longitudinal conductivity have been studied be-
fore, but with suspect results; corresponding results for
the transverse conductivity have not, to our knowledge,
appeared previously.

II. THE LONGITUDINAL CONDUCTIVITY

We envision applications to continuous fiber-reinforced
metal-matrix composites which have a well-defined and
regular geometry (the B-Al system is such an example).
Accordingly, we consider here one of the so-called lattice
models, consisting of a regular square array of noncon-
ducting circular cylinders (the fibers) embedded in an
infinite host (the metal matrix). Figure 1 shows a
representative cross section of this material. Each prirni-
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f (Az +a)[E&(z) E—4(z) ]dz

=2k, [E4(z c)
—2E6(z, )+ —,', ]

+a [E,(z, ) —E3(z, )+—,
' ] .

2b ==

We have not found a way to carry out the remaining
integral over 0 exactly, but progress can be made in the
extreme limit A, «b. This limitation is fully consistent
with Eq. (1), where a mean free path much smaller than a
fiber diameter was assumed. We appeal to the integral
representation for the functions E„

E„(z)=f e (6)

FIG. 1. Lattice model for a fiber-reinforced metal-matrix
composite having well-defined and regular geometry. The fibers
are represented by circular cylinders with radius a arranged in
square order; 2b is the separation between fiber centers.

to write the integral of a typical term in Eq. (5) as

f"E„(z,)d8

at/A, f ~/ btsece/A—,d8t"

tive cell (square) has edge length 2b and contains a fiber
of radius a at its center. In the longitudinal orientation, a
uniform field E exists everywhere parallel to the cylinder
axis, and current flows normal to the plane of the figure.
Yet on account of interface scattering, J(r) is nonuniform
over the cell cross section and the apparent longitudinal
conductivity o.

&
of the specimen becomes

o't ma=1-
4boo

f d8 f (Az+a)[E~(z) E4(z)]dz, —
4~b'

(3)

where z, (8)=(b sec8 —a)/A, delineates the outer bound-
ary of the cell in z space. Since the volume fraction of
fiber in our model is p =ma/4b, the fi.rst two terms on
the right-hand side of Eq. (3) comprise the matrix volume
fraction, and give the conductivity expected from the rule
of mixtures; the remaining term can be regarded as the
correction to p —say 5p —resulting from the effects of
boundary scattering. To compute 5p we first do the in-
tegrals over z with the help of the identities

dE„(z ) = —E„,(z),
dz

~E~ ~ f~ ~l( )d~ =
~ f„~ll(r)"~

The integrals in Eq. (2) are taken over the cross section
A, with area A, for a single cell (square). The symmetry
of the square can be used to reduce the integrals to the
first octant. Then, in polar coordinates (r, 8) centered on
the cylinder axis we see that d(r) =r —a and Eq. (2) be-
comes

e
—(bt/A, )u dQ

0 (u +1)&u (u +2) (7)

For A, «b the main contribution to the last integral on
the right-hand side comes from the lower limit. Putting
u =0 in the denominator (but not under the root) and ex-
tending the upper limit of integration to infinity gives

E (z )d8=v'77k/b f e ,
(' ' j'

0
n c

1 tnn+1/2

In writing the second line of Eq. (8) we have used the in-

tegral to define new functions cf„closely related to the
exponential integral functions E„[cf.Eq. (6)]. Indeed,
the 8„obey similar recurrence relations [replace n in Eq.
(4) with n+ —,'] but, unlike Eo, which is an elementary

function, 8o is related to the complimentary error func-
tion:

—zt dt
8o(z) = e " —=V'n/z erfc(&z .

) .
1 V t

oo
ma m.a 1=1-
4b 4b 10m

15 A,+
a 8 a

(10)

It follows that o.
i can be expressed entirely in terms of

elementary functions and the complement of the error
function. However, the only simple result is that which
obtains if we also insist on A, « b —a:

zE„(z)=e '= nE„+,(z)

to get

(4)
This last restriction on A. effectively limits Eq. (10) to low
fiber concentrations and/or moderate temperatures. To
transcend this limitation we must compute the conduc-
tivity as o.i/o. 0= 1 —p —5p with
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5p 3A, 7T +&~A/b . [8~(z)—83(z)] .
ma 16

6A,+ z ~
+&mA, /b [())4(z)—2d(6(z)] . .

ma 60

III. THE TRANSVERSE CONDUCTIVITY

Figure 2 shows 5p/p as a function of k =2a/A, com-
puted from the more accurate Eq. (11) for fiber volume
fractions p =0.3 and 0.6. The indistinguishability of the
two curves above k =30 indicates the simpler Eq. (10) is
valid in this regime. For smaller values of k the scatter-
ing correction eventually saturates, in contrast to the (er-
roneous) predictions of Ref. 2.

In the application to B-Al composites, fiber diameters
are often several hundred micrometers while the mean
free path at ordinary temperatures is less than 1 pm.
Thus k —100 for these systems and decreases with de-
creasing temperature (increasing A, ). Inspection of Fig. 2
shows that the scattering correction is typically less than
1% of p but, interestingly, actually tends to be a smaller
percentage at the higher volume fractions. This feature is
absent from previous theories, though consistent with the
data on B-Al composites. In particular, Tse' has com-
bined longitudinal conductivity data for B-Al composites
with the rule of mixtures to deduce resistivity values for
the metal matrix. The calculated values tend to run
higher than expected, but agreement improves noticeably
when the volume concentration of fiber reaches the 60%
level.

BVO=V [a(r)VV]= — ro) . +
r Br &Br r2 c)g

(12)

To begin, we make no distinction between o.
~ and o.

~~,

' sub-
sequently, the results will be modified to account for the
tensor character of P as given by Eq. (1).

Since the conductivity o(r) has the same value at all
points r equidistant from the fiber axis, we imagine divid-
ing the cell of Fig. 1 into annular regions of width Ar.
Within the ith such ring o. is nearly constant at the value
cr", accordingly, the electric potential V" in this ring
satisfies Laplace s equation, and is given in polar coordi-
nates by

work to include a matrix with continuously varying con-
ductivity to account for the effects of interface scattering.

For the computation of the transverse conductivity o.„
we take the applied field in the plane of Fig. 1 along the
top (or bottom) edge of the representative cell. From the
symmetry of the arrangement, it follows that the left and
right cell boundaries are equipotentials, while those at the
top and bottom are lines of Row. Even without interface
scattering, the current density in the matrix J(r) is
nonuniform, ' the scattering effect complicates the prob-
lem further by giving rise to a matrix conductivity o (r)„
which rises steadily in any radial direction from the cen-
tral cylinder. We assume (T(r) saturates at the bulk value
O.

o before the representative cell boundary is reached,
thereby preserving the individuality of each cell.

Now J(r) must satisfy the steady state condition
V J=O. In terms of the electric potential V(r), this is

In finding the transverse conductivity of the specimen
we follow closely the classic work of Rayleigh, who
solved a similar problem. Below we generalize Rayleigh's

[g(')r +B(')r ]cosng .
n odd

(13)

0.026-

0.024-

0.022-

0.02-

The sines of 0 and its multiples are excluded by the
reAection symmetry about 0=0, and the cosines of the
even multiples by reAection symmetry about 0=~/2. At
the boundary separating adjacent rings the potential must
be continuous:

0.018-

0.016-

g (i)rn+B(i)r —n g (i 1+) n r+(Bi +) (rn (n~0)„r n r n n r n

g(i) g(i+)) ( 0)
(14)

0.014-

0.012-

0.01-

Across this same boundary, the normal component of
J(r) must also be continuous:

(i)[ g (i) n —) B(i) n —)]-
n r 71 ~ r

=o" "[nA'+"r" ' nB'+"r " ')(n—&0)n n n
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k = 2a/X

FIG. 2. Scattering correction to the longitudinal conductivi-
ty o.I as a function of k=2a/k for composites with 30% and
60% fiber by volume. The composite conductivity is
01/cro= 1 —p —5p.

We now regard 3„",B„"as values taken in the ith ring
by continuous functions A„(r) and B„(r), respectively,
and pass to the continuum limit, where the number of
rings increases without bound and their width simultane-
ously shrinks to zero. After some manipulation, we find
in place of Eqs. (14) and (15) the equivalent difFerential re-
lations
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aAO =0,
ar

aw„1 a [r "B„(r)—A„(r)] (n &0),ar 2g ar (16)

aB„
ar

[r'"A„(r)—B„(r)] (n%0) .
2g ar

1 ag. 1 ag~ n gi gll ~nr "+B„+-
g ar g& ar r g& g r2"—B

depends upon n, as well as on the (unknown) ratios
9t„(r)=B„/A„. These ratios, in turn, are themselves
found from Eqs. (16). After further manipulation, we
find

[r "—9t„]+n [r "+9t„]
2

(n&0) . (19)

In writing this result we have introduced the scattering
lengths A, 2(r) defined by

1 ag~ 1 1

Ai(l') l7i Br A2(r) r O'i
(20)

For interface scattering A, z(r) rise sharply from their
minimum values at the fiber surface to become infinite in
the bulk; with no interface scattering A& 2 are everywhere
infinite, and Eq. (19) prescribes 9t„constant, as expected
for a matrix with uniform conductivity ( A„,B„constant).

The boundary condition on St„ follows from requiring
the normal component of current density to vanish at the
(nonconducting) fiber surface r=a. On account of Eqs.
(16), the normal component of J is simply proportional to
crj(r) [A„r" ' B„r " ']. At t—he fiber surface this will
be zero only if 9t„(a)=a ". [This result also can be
recovered from Eq. (15), now taking the ith ring to lie just
beneath the fiber surface. ] The matrix problem then
reduces to one of solving Eq. (19) for 9t„(r), subject to
9t„(a)=a ". Once 91„(r) is known, Eqs. (16) can be in-
tegrated immediately to get explicit results for A„(r) and
B„(r) separately, in terms of their values at the fiber sur-
face.

Before proceeding with the solution for 9t„(r), we
should pause to establish exactly what will be needed for
the calculation of the transverse composite conductivity.

In this limit, the electric potential everywhere inside the
metal matrix is given by

V(r, 8) = Ao+ g [A„(r)r"+B„(r)r "]cosn8, (17)
n Odd

with A„(r) and B„(r) obeying Eqs. (16). It is a straight-
forward exercise to show that Eqs. (16) and (17) are fully
consistent with the steady-state requirement Eq. (12) for a
scalar conductivity o (r)

To accommodate the tensor conductivity of Eq. (1), we
retain the prescriptions of Eqs. (16) but allow Eq. (12) to
fix the correct effective scalar conductivity cr(r). The re-
sult

S4—A3(b)=Bi(b) +
(2b)

s,—As(b)=Bi(b) 6+(2b)6

S6
B3(b) 6+. . .

(2b)

s,
Bs(b) +. . .

2 ' (2b)'

In effect, Eqs. (21) express the boundary conditions im-
posed by the surrounding (square) lattice. The lattice
sums S„are pure numbers characterizing the lattice
geometry.

To obtain the transverse conductivity, we apply
Green's theorem

BV BU
an an

(22)

to the contour bounding the shaded region in Fig. 3.
Within this region V satisfies Laplace's equation, as does
U if we take U=x =r cos8. On the circular (inner) part
of the contour, only the terms with n = 1 in Eq. (17) con-
tribute, and we find for this part of the integral 2mB&(b).
For the square (outer) part, there is no contribution from
the top or bottom edges, since a V/an, a U/an both van-

Figure 3 is an exploded view of the lattice showing little
more than one primitive cell. Since the scattering effect
is presumed confined to the inscribed circle, the shaded
regions are charge free, and the electric potential at any
point such as P obeys Laplace's equation; more precisely,
V~ is given by Eq. (17) with A„(r),B„(r) evaluated at
r=b. Along with Rayleigh, we make the following ob-
servations.

(i) V~ arises from two kinds of sources, those (at
infinity) responsible for the applied field, and the distribu-
tion of charge surrounding each lattice site. The latter
produces a potential at P with the periodicity of the lat-
tice. Superimposed on this lattice potentia/ is the applied
field contribution, which varies linearly as P moves up
and down the field direction. As a result, the potential at
a point equivalent to P in the cell to the immediate left of
the one shown differs from Vz only by E X2b, where E is
the applied field strength. Indeed, the potential any-
where in the matrix can be referred to this second cell,
and is again given by Eq. (17), with r measured from the
new center. Referred to the new cell, the coefficients A„
and B„will be unchanged, except for Ao, which acquires
the additive constant E X2B.

(ii) The terms in Eq. (17) which are singular at r =0
represent the contribution to Vz from sources within the
central cell; conversely, the nonsingular terms arise from
sources in the surrounding cells, together with those at
infinity, as discussed above. It follows that the
coefficients A„(b) in the central cell, after correcting for
the potential of the applied field, can be expressed in
terms of the B„(b) originating with all other cells. Ac-
cording to Rayleigh

S2 S4E —A, (b) =B,(b) +3B3(b)
(2b) (2b)

+5B5(b) +s,
(21)
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FICx. 3. Exploded view of the lattice showing a single
representative cell. The scattering effect is presumed confined
to the inscribed cylinder, leaving the shaded regions charge free.
The potential at any point such as P obeys Laplace's equation.
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ish there. For the remainder, we note that o of 8 V/Bn ds
is the total current I across the cell, while U and V
change by 2b and E X2b, respectively, over the dimen-
sion of the cell. Putting it all together, we find

FIG. 4. Scattering correction to the transverse conductivity
0., as a function of k =2a/A, for composites with 30% and 60%
fiber by volume. The correction is surprisingly small, and com-
parable to that found in the longitudina1 orientation.

2mB, (b)+2b 2b (E X2—b) =0 .I
Op

(23)

The transverse conductivity of the specimen is I/E X2b,
ol

Op

2n.B,(b)

(2b) E
(24)

ot 1=1—2m
(2b) 9t, '(b)+S2 —3(2b) 9t3(b)S4Op

(25)

Equation (25) is accurate up to and including the quadru-
pole term, and requires %&—as well as %3—evaluated at
r =b. Inclusion of the next (octupole) term would neces-
sitate 9t5(b), etc.

For the ratios 9t„we return to Eq. (19) and introduce
the deviates 59t„(r)=9t„(r)—a ", subject to 59t„(a)=0.
Without interface scattering Mt„(r) is everywhere zero;
accordingly, we linearize Eq. (19) in the (small) quantities
6%„. This linearized version can be integrated in terms
of the integrating factor

1 n rn+a n dr
lnIn =a "

n
a A + a2n r2n

2
(26)

The ratio B,(b)/E is found from Eqs. (21). In lowest ap-
proximation, S4,S6, . . . are neglected to get
(2b) E/B&(b)=(2b) /9t&(b)+S2. A much better result
obtains if we keep S~ (S6=0 for square order); then
(2b) E/B, (b) =(2b) /9t, (b)+S2 —3(2b) 9t3(b)S4 and

to get

Mt„(r) „~, I„(pa )
p dp

2 2n I„(r)

I (pa ) ( 2n+ 1)2

4 & I„(r) A2(pa )
(27)

lnI„= lno ~(r) —lno ~(a)+0 1

59t„2, o ~~(z')1— -dz'+ 02na'" k o a (z) k'

(28)

The surviving integral for 5%„has already been encoun-
tered in our study of the longitudinal conductivity. For
this, the transverse case, we evaluate the result at r =b to
get

To make further progress, we introduce z =d (r) /A,

=(r —a)/A, , the natural variable for interface scattering
in this cylindrical geometry, and observe that, since the
main contributions to the integrals come from the lower
limit, Eqs. (26) and (27) afford asymptotic developments
for lnIn and 5%„, respectively, in inverse powers of
k =2a/A. :

59t (b)= a " z-4n 2n
n

z — [E~(z) —E3 (z) +—,
' ]

3

1 ',E4(z)——
z =(,b —a)/A,

(29)
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There is one feature of our result which deserves spe-
cial mention: in some composite applications %„(b) can
be negative, leading to a transverse conductivity for the
composite which may become higher than the matrix
value alone. This seemingly paradoxical result evidently
stems from a complex redistribution of current How
within the sample, and is intimately related to the tensor
character of the effective conductivity: indeed, for scalar
functions cr(r), A2= ~ and Eq. (19) prescribes ratios
9t„(r), which increase monotonically from their values at
the fiber surface.

Figure 4 shows the scattering correction to the trans-
verse conductivity given by Eqs. (25) and (29), as a func-
tion of k =2a/A for samples containing 30% and 60%

fiber by volume. (Recall that for typical B-Al composites,
k —100 at room temperature and decreases with decreas-
ing temperature. ) At 60% fiber concentration, interface
scattering has the expected effect for k in excess of about
50; below this value anomalous behavior sets in, with the
sample conductivity exceeding the matrix value when
k ~44. At the 30% fiber level, the onset of anomalous
behavior does not occur until k —16, a value not likely to
be reached experimentally —at least for the 8-Al com-
posites, where grain sizes are thought to limit the mean
free path to less than about 10 pm.

Again, the only simple result for the transverse con-
ductivity is that which obtains in the case k « b —a:

1+ '
8~k

2p

+p —3p tr (0.03235020) 1+
(30)

Significantly, Eq. (30) does not predict the anomaly dis-
cussed in the preceding paragraph, indicating that the
strange effect is not only tensor related, but also manifest
only when A. -b —a, i.e., at very low temperatures and/or
high fiber content. (For both curves shown in Fig. 4, the
scattering correction drops to zero at b —a =3k.)

Finally, over the entire "normal" range, we see that the
scattering correction to the transverse conductivity is
quite small, and does not differ appreciably from the
values found in the longitudinal orientation. In this
respect the treatment has failed to provide a quantitative
explanation for the abnormally small transverse conduc-
tivity (high resistivity) observed in the B-Al composites
containing 60% boron fiber.

IV. SUMMARY AND CONCLUSIONS

The methods exhibited here represent sophisticated
analytical efforts to assess the effect of interface scattering
on the conductivity of metal-matrix composites. Our
work is subject to two important limitations: (1) The
effective conductivity for scattering, Eq. (1), used in our
computations is valid only for fiber diameters large com-
pared to the bulk mean free path. This sets a lower limit
on k ( —1), below which the predictions of our model are
unreliable. (2) Every fiber is assumed to scatter indepen-
dently of its neighbors, implying that the scattering effect
of each fiber is confined to its representative cell and does
not "spill over" into adjacent cells. This sets a lower lirn-
it on (b —a ) /A, in our model (again, —1 ), and tends to be
the more restrictive of the two conditions. We note,

I

however, that this limitation is shared by all existing
theories.

In the longitudinal orientation, Eq. (10) would appear
to cover most cases of practical interest; the more com-
plicated Eq. (11) is essential only in applications involving
low temperatures and/or high fiber volume fractions.
The scattering correction to the longitudinal conductivity
tends to be small ( ~ 1%); in no instance do we find the
abnormally large values predicted by previous theory
(though not observed).

Results for the transverse orientation are understand-
ably more difficult to obtain, and more complex. The
simpler Eq. (30) should be applicable in many situations,
but does not incorporate the predicted anomaly associat-
ed with the tensor aspects of conduction in metal-matrix

composites. The scattering correction to the transverse
conductivity is surprisingly small, and comparable to that
found in the longitudinal orientation. As such, the model
fails quantitatively to explain the unusually low trans-
verse conductivity (high resistivity) reported for B-Al
composite with 60% boron fiber. This failure may be
rooted in the Rayleigh approach, which represents the
composite electric field as a multipole series (truncated at
the quadrupole term). For high fiber content the series
converges very slowly, and no finite number of terms can
account for the singularity at =78% fiber content (where
adjacent fibers touch, blocking all conducting paths).
Keller has shown how to describe this singularity analyt-
ically, and a logical extension of the present work would
attempt to include the scattering effect in Keller's treat-
ment.
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