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The contribution to the resistivity of metal-matrix composites resulting from electrons scattering from
the surface of the embedded phase has long been recognized, but quantitative assessments of this effect
are practically unknown. We present a theory that can serve as a starting point for such investigations.
The theory focuses on an effective local conductivity for scattering, which rises steadily from a minimum

at the scattering surface to the matrix value several mean-free-path lengths into the bulk. By making
suitable assumptions, we are able to give a closed-form expression for this local conductivity, which is in-

sensitive to the geometry of the scattering surface. Our analytical results compare favorably with recent
numerical calculations for the scattering of electrons from the external surface of a long cylinder.

I. INTRODUCTION

In the theory of composite we attempt to assign to a
multiple-phase (heterogeneous) material an effective con-
stant, such as the conductivity, given the properties of
the component (homogeneous) phases, and their mor-
phology. Since fu11 knowledge of structural details is
rarely available (or even desirable), a variety of models
has emerged which differ according to the structural ap-
proximations made. Nonetheless, a few features are com-
mon to all, and can be established under very general as-
sumptions. Among them we find that the effective con-
ductivity of a composite is a homogeneous function of de-
gree one of the component conductivities. ' For metal-
matrix composites formed with nonconducting fibers, this
implies that the effective longitudinal and transverse con-
ductivities are both linear functions of the matrix con-
ductivity and, hence, are linear to each other. In particu-
lar, the matrix conductivity, the longitudinal conductivi-
ty, and the transverse conductivity should all obey the
same temperature law. However, conductivity data do
not always conform to this expectation, and the temper-
ature law itself may be unfamiliar.

Discrepancies typically appear in composites with a
high fiber content and at temperatures well below room
temperature. They can be explained qualitatively by pos-
tulating an additional contribution to the sample resis-
tivity due to scattering at the fiber-matrix interface. This
scattering results in a local conductivity o(r), which is
smallest at the interface and steadily approaches the bulk
value oo for the matrix far removed from the fiber sur-
face. The characterization of interface scattering in
terms of an effective local conductivity is well suited to
composites; indeed, if the form of o (r) were known, the
effects of interface scattering could be brought within the

fold of traditional composite theories. In this paper we
will show that a closed-form expression for o(r) can be
found under certain simplifying assumptions, and that
this form is insensitive to the precise geometry of the
scattering surface.

Our goals are similar to those addressed in the classic
work by Dingle, who studied the effects of surface
scattering on the resistivity of thin wires and films. The
extension of Dingle's work to electron scattering from the
external surface of a cylinder (the fiber-matrix interface
of metal-matrix composites) was made recently by Roig
and Schoutens, although their low-temperature results
are suspect. Both of these efforts, however, were
predominantly numerical computations carried out in
special geometries, and did not emphasize the local-
conductivity concept so important for general composite
applications.

II. THE LOCAL CONDUCTIVITY
FOR INTERFACE SCA'I"I'ERING

The conductivity of metals typically is studied in the
(semiclassical) context of the Boltzmann transport equa-
tion, and the so-called relaxation-time approximation.
This is the approach adopted here, although it must be
admitted that the concept of a relaxation time may be
called into question when the mean free path for scatter-
ing becomes large, as it does in pure specimens at low
temperatures. In the semiclassical view, the phase-space
distribution of carriers [electrons] is described by a distri
bution function f (r, v), taken as the sum of an equilibri-
um term f and an "out-of-balance" component g(r, v)
arising from the application of a steady electric field E.
Since f is spatially uniform in bulk specimens (indeed,
proportional to the Fermi distribution), the out-of-
balance component g (r, v) must satisfy
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where we have written A, k =~k for the vector mean free
path of the electron. rz is that point on the bounding
(fiber) surface derived from r by extrapolation along the
direction of vk (see Fig. 1), and G(vk, rt/) is a (presumed
known) function accounting for the condition and
geometry of the fiber surface. The second term in Eq. (3)
contains the correction to the conductivity arising from
interface scattering. Indeed, ~r —r//~ ))/(. k far from the
interface, leaving the usual solution for the bulk material.
For surfaces rough on the scale of the carrier wavelength
(Fermi wavelength)we , take G = —1, independent of vk
and r~. This corresponds to disuse scattering, and is the
choice adopted here for simplicity. Other choices for
G(vk, r/s ) are computationally feasible only if the surface
geometry is sufficiently simple; in keeping with our ob-
jectives, these will not be considered further.

Here ~ denotes the relaxation time for everything but sur-
face scattering (e.g. , impurities, imperfections, thermal vi-
brations), and v/, is the velocity of carriers with wave vec-
tor k and energy E(k), as befits conduction electrons in a
metal. The steady current density J(r) is calculated from
g (r, v/, ) as

J(r)= f evkg(r, vk)d k .

Since g(r, vk ) will be proportional to the applied field, the
sample conductivity follows immediately from Eq. (2)
once the proper solution to Eq. (1) is found. Note that
the emergence of a local spatially varying conductivity
implies that g(r, vk ) will vary in a nontrivial way with r
in the neighborhood of the fiber surface.

The general solution to Eq. (1) expressed in a form con-
venient for our purposes is afForded by Chamber's formu-
la

The structure of Eq. (3) for g(r, vk) when substituted
into Eq. (2) leads to a local conductivity (tensor) of the
form

cr(r) =o o+ho (r), (4)

where Ao. , the deviation from the bulk value oo, is given
by

e —Ir —r~ ~ yakho (r) = —
3 dSFn/, n/, /(, ke

4~'A Fs

The integral in Eq. (5) is taken over the Fermi surface
(FS) of the host metal, and nk denotes the unit vector in
the direction vk. Our treatment of this integral is based
on the following observations: (i) b,o(r) is insignificant
unless the field point r lies within a few mean free paths
/(, k of the fiber surface, and (ii) sufficiently close to the
fiber, the surface appears nearly Hat; if k. sets the distance
scale for proximity to the surface, then local Aatness is as-
sured if R &&X, where 8 is the radius of curvature at any
point on this surface. Surrounding the fiber, then, we en-
vision a sheath of thickness -A, within which Ao. is ap-
preciable; our computational method assumes the fiber
surface appears nearly Hat when viewed from anywhere
in this sheath. That being so, we can approximate
~r —r~ ~

as the distance along the direction vk from r to
the tangent plane defined by the surface normal passing
through the field point I' (see Fig. 1), or

r Ig
d(r)

cos(d vk )

Here d(r) is a vector normal to the scattering surface and
drawn inward toward the bulk, as shown in the figure.

To complete the evaluation of Ao. , we assume the same
mean free path A, for a11 electrons at the Fermi surface of
the host metal, and approximate this Fermi surface with
a sphere. Then local axes at I' parallel and perpendicular
to d become principle axes for Ao. . Taking the polar axis
of spherical coordinates in k-space along d [so that
cos(d vi ) = cosO], and introducing z = ~d(r) ~

/X, we find
in the direction of d (which is actually normal to the sur-
face)

b,oi(r)= ——3croI sinOcos Oe'~"' dO

3~ e zQ du
1 u4

3
ooE~(z) . —

~Tangent
Plane

Here we have identified

e kk
ao=

3mB

FICx. 1. Construction showing the relationship between r, r&,
and vk. If the surface directly below P is locally Aat on the scale
of A, , ~r —r// ~

can be approximated by the distance from I' to the
tangent plane.

as the (scalar) conductivity of the bulk metal in the same
approximation, and E~(z) as one of a class of exponential
integral functions. In the same way, we find for the con-
ductivity change tangentia1 to the interface
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Notice that the integrals in Eqs. (7) and (9) are restricted
to polar angles 8& —,'m'; for smaller angles ~r —rid~ is
effectively infinite, since electrons moving in these direc-
tions never reach the surface.

to facilitate comparison with Ref. 4. There, I(k) was
found from numerical evaluation of a triple integral. The
results, represented by a straight line on a log-log plot,
seem to conform to the power law

III. DISCUSSIQN
I(k) =0.27, M

1

g 1.08 (15)

The expression of bo(r) in terms of exponential in-
tegral functions fulfills our prime objective laid down in
Sec. I. Not surprisingly, the natural variable for this
problem has turned out to be z=~d(r)~/A, . Deviation
from the bulk conductivity is greatest at the fiber surface
(z =0) where E„(0)=(n —1) ' leads to the limits

[ b,o, /
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(10)

The changes are not substantia1, especially for the
tangential component where the deviation is less than
10% of the bulk value. From the asymptotic forms

z
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The integrals in Eq. (12) are taken over the cross section
3, for the region of interest, and A is the area of that
cross section. In polar coordinates (r, 8) centered on a
fiber with radius a, we see that ~d(r)

~

= r —a and Eq. (12)
becomes

we see that cr(r) approaches o.
o in essentially exponential

fashion with characteristic length A., the rise being some-
what sharper for the component parallel to the fiber sur-
face.

As a check on these results, consider the geometry of
Ref. 4 wherein a single, infinitely long and perfectly
straight nonconducting fiber is embedded in a metallic
host. Electric conduction takes place along the fiber axis,
driven by a uniform fie1d E. Yet on account of interface
scattering, J(r) is nonuniform and the apparent conduc-
tivity o of the specimen becomes

This functional dependence is in close agreement with
our predicted form Eq. (14), through the latter gives
I(1)=31/80m (0.123) as compared to the numerical re-
sult 0.27. The discrepance is not at all surprising in view
of (1) the numerical problems alluded to in Ref. 4 in han-
dling the triple integral, and (2), the criterion for local
fatness, which in the present context requires k &)1 in
Eq. (14) in order to obtain reliable values. Thus it seems
safe to conclude that we are able to recover the essential
results of Ref. 4, but with a good deal less effort.

Of course, the full power of our formulation becomes
apparent only in the complex geometry of real compos-
ites, where field inhomogeneities (due to fiber arrange-
ment, local charging efFects, etc.) are prevalent. This
problem wi11 be explored further in a subsequent publica-
tion. We close this paper with the following general re-
marks and observations:

(i) The results of Eqs. (7) and (9) for o.(r) may have
greater validity than expected, i.e., even if the interface is
not locally Hat on the scale of A, . Certainly this is suggest-
ed by the success of Eq. (14) with k —1 in describing
scattering from the surface of a long cylinder. More gen-
erally, we see that points r~ on the surface directly below
r contribute most to the integral in Eq. (5), and our ap-
proach always handles those contributions correctly.

(ii) The tensor character of o(r) complicates the
theory, but is indispensible in some situations. Certainly
if the fiber were conducting, there could be current Qow
normal as well as tangential to the fiber surface. Even
nonconducting fibers crowded together in irregular ar-
rangements could easily distort any applied field enough
to produce local fields with large normal components
near (but not at) the fiber surface. To retain the simplici-
ty of a scalar description in such cases, we might consider
replacing the conductivity tensor cr(r) by its directional
average

(16)

Even this will likely prove too complicated in many com-
posite applications, where the component phases are as-
sumed to be homogeneous. In that case a single conduc-
tivity might be assigned to a layer of thickness -A, at
each interface, in effect adding an additional phase to the
composite. The conductivity to be assigned would be the
volume average of Eq. (16) over this layer.

Op

2 Q=1— I(k) . (13)

In writing the second line, we have extended the upper
limit of integration to infinity (with negligible error) and
introduced the function

3 c=1— f 2m(Az+a)[E&(z) E4(z)]Adz-
8mA p
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(iii) The treatment presented here assumes that the ac-
tive regions for scattering (the "sheaths" surrounding
each fiber) do not overlap. This restriction is expressed
directly by the limits chosen for the t9 integration in Eqs.
(7) and (9). Refinements may be possible, but are expect-

ed to yield results speci6c to a particular geometry.
Nonetheless, this limitation will have to be overcome if
we are ever to describe the transition to low temperatures
of metal-matrix composites containing a high density of
fibers.
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