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Results of self-consistent linearized-augmented-plane-wave calculations within the local-density-
functional approximation (LDA) are presented of the electron-phonon-induced linewidths and interac-
tion strength of selected phonons in La2 M„Cu04 at x =0.15. Through the use of a supercell
geometry, rigid-ion-type approximations are avoided and the full electron-phonon matrix elements are
determined from finite differences of the LDA potentials corresponding to frozen-in phonon at I X, and
Z. At the X point, all fully symmetric A~ modes (i.e., having the symmetry of the oxygen planar-
breathing mode) as well as three modes having B3g symmetry are examined. Small linewidths were
found for the three B3g modes, and moderate linewidths for the Ag modes, the largest corresponding to
ratios yq /~q =0.02 for the oxygen breathing and axial modes. The axial 0, mode at the Z point has a
very large width, yq /Nq 0 11. Unusual long-range Madelung-like interactions are found to yield
large matrix elements, especially for modes near the zone center and are responsible for couplings of the
cations (La) to the charge carriers. The linewidth of a mode also directly determines kq, the contribu-
tion of mode (q, v) to the electron-phonon coupling constant, k, and an approximate average over the
Brillouin zone yields A, =1.3, about the magnitude necessary to explain T, in La& M CuO&. In spite of
some very strong coupling to low-frequency modes, the mean frequency mi, g that is important in deter-
mining T, is large: co&,g= 321 cm '=462 K. The calculated large electron-phonon coupling arises from
a combination of weak screening and unusual nonlocal Madelung-like interactions, in concert with
strong Cu-0 hybridization that results in good metallic behavior within the planes. These features are
common to all of the layered cuprates, indicating that the entire class should show strong electron-
phonon coupling.

I. INTRODUCTION

Since the discovery of the high-temperature cuprate su-
perconductors by Bednorz and Muller, ' the number of
theories seeking to explain the exceptionally high values
of the transition temperature, T„hasgrown dramatical-
ly. Many theories, based on the Hubbard model, have
suggested that an electronic rather than a conventional
electron-phonon mechanism is responsible for the super-
conducting pairing. This development was due in part to
early experiments that failed to find evidence of a Fermi
surface in these materials and in part to the existence of
nearby insulating phases. Thus it seemed quite reason-
able to regard the superconducting phases as doped Mott
insulators.

Recently, however, the unmistakable observations of a
Fermi surface by several experimental methods and the
observation, by direct and inverse photoemission, of a
continuous spectra density above and below the Fermi
energy, EF, rule out this earlier scenario. These results,
in very good agreement with band theory, strongly sup-
port Fermi-liquid behavior in the normal state and
severely constrain possible theories of the high-
temperature superconductors. While these experiments
do not, of course, rule out an electronic mechanism, they

do require that any theory agree with the observed nor-
mal state characteristics of the metallic (and supercon-
ducting) phase. Since band theory, i.e., the local density
functional approximation (LDA), satisfies this con-
straint, it is reasonable to regard the LDA results as a
starting point for describing the low-energy electronic ex-
citations as is done in more conventional materials. This
in turn has led to serious reconsideration of the electron-
phonon mechanism as at least partly responsible for su-
perconductivity. Ironically, strong electron-phonon cou-
pling is what originally motivated investigating the tran-
sition metal oxides. There has long been evidence of
strong electronic coupling to vibrational modes from a
variety of experimental probes, and recently Landau
damping of phonon modes in YBa2Cu307 has been ob-
served that is generally consistent with the band picture.
In this paper we present ab initio linearized augmented
plane wave (LAPW)' calculations that provide evidence
of very strong electron-phonon interactions that may be
large enough to account for T, in La2 M„CuQ4.

Unfortunately, the evaluation of the electron-phonon
interaction strength for the high-T, superconductors
(HTSC) is a difficult problem. The commonly used rigid-
ion (RI) and rigid muffin-tin (RMT) approximations are
not adequate for these materials. The RI and RMT ap-
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proximations neglect changes in the potential everywhere
except on the atom that is displaced. For isotropic met-
als that have a large density of state at the Fermi energy,
p(EF), these approximations work well in many cases, "
since the efficient electronic screening limits the change
in the potential to the immediate vicinity of the atom that
is displaced. By contrast, in the HTSC s the combination
of an anisotropic structure and small p(EF) results in
large nonlocal or off-site contributions to the electron-
phonon coupling. Weak screening permits large
Madelung-like shifts in potential (and hence coupling)
from all ions. In YBa2Cu307, for example, the RMT ap-
proximation gives negligible contributions' from the Ba
atoms, because there are virtually no electronic states at
the Fermi energy on these atoms, and because the change
in potential due to their motion vanishes on other sites in
the crystal in this approximation. Self-consistent calcula-
tions that used calculated deformation potentials to esti-
mate the interaction found that these ions do indeed give
substantial contributions to the electron-phonon cou-
pling. Ionic contributions to coupling have been stressed
by other authors as well, particularly Jarlborg, ' Barisic
and co-workers, ' and Zehyer. ' Jarlborg has em-
phasized the importance of charge redistribution in
La2 Sr Cu04 due to atomic displacements. He per-
formed self-consistent calculations of both in-plane and
axial oxygen breathing mode displacements, reporting
charge redistributions as large as -0.4 electrons/a. u. of
Ozy or 0 dlsplacements. He also found that these
charge redistributions lead to important on-site shifts in
the spherical part of the potential (as discussed above),
which are screened out in conventional, high density-of-
state superconductors.

Thus it is necessary to go beyond simple rigid-ion
treatments of the electron-phonon coupling. In this pa-
per we employ an ab initio approach' that makes a
minimum of assumptions and that is based on the density
functional method. We find nearly harmonic potential
surfaces for all the modes discussed here, but anharmoni-
city would cause these modes to couple. Although there
is evidence for anharmonicity both experimentally' '
and theoretically, ' ' this is neglected in the present
calculations. In addition, the density functional eigenval-
ues and wave functions are assumed to provide a good
approximation of the quasiparticle states near Ez, and
the adiabatic approximation is assumed to be valid. The
substitution of Sr or Ba for La is described by the rigid-
band approximation so that the system is perfectly
periodic, and all other effects of alloying are neglected in
the present calculations. Although there are similar
trends in the variation of T, upon doping with Sr or Ba
there are also important differences in the maximum
value T, and other properties. The calculations present-
ed here cannot directly shed light on these other effects of
alloying.

Regarding the quality of the eigenvalues and wave
functions, the very fact that total energy calculations
yield phonon frequencies in good agreement with experi-
ment is one confirmation of the applicability of the local
density functional approximation (LDA) to these materi-
als. ' ' ' A more direct test of the LDA band structure

is provided by the recent mapping out of the Fermi sur-
face in HTSC by various experimental probes.
Angle-resolved photoemission spectroscopy (ARPES)
and inverse photoemission spectroscopy (ARIPES) show
bands crossing EF at points in the Brillouin zone in excel-
lent agreement with that predicted by the LDA calcula-
tions. ' In interpreting ARPES and ARIPES data,
the assumption is often made that the dispersion along
the k, direction is negligible. The three-dimensional
character of the band structure in HTSC (and in particu-
lar YBa2Cu307) was emphasized recently. The planar
and chain derived electronic states hybridize via the out-
of-plane oxygen atom, and there is significant c-axis
dispersion for some bands. This leads to effective
broadening of parts of the Fermi surface when projected
into the x-y plane as is done in photoemission experi-
ments. While there is some disagreement over the inter-
pretation of some aspects of these photoemission experi-
ments, the experiments generally agree with the Fermi
surface predictions of LDA band-structure calculations.
This agreement is consistent with a normal Fermi-liquid
picture of the HTSC above T, .

While the Fermi surface crossings are predicted well by
the LDA bands, the dispersion tends to be steeper than
experiment, similar to conventional transition metals.
Another possible objection to using the LDA approach is
that it does not correctly yield an insulating state for the
undoped compound, which displays antiferromagnetic in-
sulating behavior for x =0. While this is a deficiency of
the LDA for the undoped compound, it does not invali-
date its use in the metallic phases, which, as mentioned,
are not to be regarded as doped Mott insulators (despite
the apparent paradox this wording suggests). There is
evidence both from recent Hubbard model calculations
and photoemission measurements that as the insu-
lating state is doped, additional states fill in the gap re-
gion between the valence and conduction bands. In the
metallic regime, the LDA description is at least qualita-
tively correct and, as discussed above, gives an accurate
account of the Fermi-surface topology. It is certainly
reasonable to proceed on the assumption that the LDA
bands and wave functions provide a good approximation
of the quasiparticle carrier states near EF.

II. FGRMALISM
The calculational method used here is based on the fact

that the electron-phonon coupling constant A, can be ex-
pressed as an average over all phonon modes,

(l)
q~ v

where p = 3n is the number of phonon branches (where n
is the number of atoms in the primitive unit cell), N is the
number of primitive unit cells, and the contribution A,

from a single mode of wave vector q, and branch v is re-
lated to the electron-phonon-induced linewidth y
(half-width at half-maximum) by

(2)
vrp(EF )Acoq,

Here co, is the phonon frequency and p(EF ) is the den»-

ty of states per spin in each unit cell at the Fermi energy.
The linewidth, y, is given by
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nn'k %co
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y lM„„.
„„

l'5(E„„)5(E„„)
nn'k

g 5(E„q)5(E„.i, q)

where E„kis an eigenvalue (for band n and Block momentum k) measured with respect to the Fermi energy, and f is the
Fermi factor. Usually, the expression involving Fermi factors, [f(Ek) f(E—k+ +co )]/co, is replaced by 5(Ek). We
have found that this approximation is not satisfactory in La2 M Cu04 due to the combination of high-frequency
modes and the quasi-two-dimensional band structure, which is discussed further below. In what follows, it will be con-
venient to separate the expression for the linewidth into two factors, one that depends on the matrix element and a fac-
tor that describes the amount of phase space available for scattering on the Fermi surface via phonons with wave vector
q:

[f(E„~)—f(E„k+irico ) ]
g(q, coq ) =—g ' ' ' 5(E„i, q

—E„i, —iricoq ) .
nn'k Ado

2M cok

Note that in the expression for the Fermi-surface-averaged matrix elements in Eq. (5), the Fermi-function factors in the
numerator and denominator, [f(EI, ) f(Ek+ +co—)]/co, have been replaced by 5(Ek ). Numerical tests for
La& „M„Cu04have shown that this replacement is less sensitive than in g(q, co) itself, however, since the same approx-
imation is made in both the numerator and in the denominator of Eq. (5).

FinaHy, the electron-phonon matrix element is given by

M„"q„.i,. =g avn', k' e, (k —k') n, k), (7)av

where a (k —k') is a phonon eigenvector and M is the
mass of the eth ion in the primitive unit cell. The deter-
mination of the screened change in the potential BV/B~
due to moving a single atom is one of the most diScult
aspects of the problem. Consequently, most previous cal-
culations have used some form of rigid-ion approxima-
tion, which constrains the electron-phonon interaction to
be local.

A more general treatment of this problem' determines
the change in the screened (i.e., self-consistent or LDA)
potential using frozen-phonon superce11 calculations. In
this approach the matrix elements of BV/Bv. are deter-
mined from the Gnite difference potential, 6V, which is
the change in self-consistent potential corresponding to
the frozen-in phonon,

b, Vq (r)=V[[R+r +b,r q,(R)]]—V[[R+r ]],
(g)

AVq (r)=+br „„(R).c) V(r —R)
R, a a

where R is a direct lattice vector, ~ is the position vector
of the o.'th atom in the unit cell, and the frozen-in atomic
displacements of the phonon, b,r „(R), are given by

b,r
q

(R)=b,uq 2M co„

j/2

Re[a (q)e'q ],

g a (q)* e,„(q)=5„
a=1

The actual magnitudes of the ionic displacements in the
supercell calculation are controlled by the dimensionless
amplitude, Au . Alternatively, this amplitude can be
expressed in terms of the frozen-in atomic displacements,

2M'
(b.u ) =f(q) MX gM hr

q (R)

2Mmq=f(q)
' (b,r, , )

where M is the total mass in the unit cell, and f (q) is
equal to 1 if q =6/2 and equal to 2 otherwise, and G is a
reciprocal lattice vector. Substituting Eq. (9) into Eq. (8)
and using Eq. (7), the matrix elements of 6 V /b, r, , are
then given by
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(
EVq

n', k'
—,'(5i, , „q+5i,. „+q); qWO;qWG/2,

)2 ~

n, k;n', k'
~k k — q=0;q=G/2 .

1

Since real displacements of the form given by Eq. (9) are
used, the matrix elements of b V /bc, , contribute to
q =k' —k and to —

q (and these q values are the same if q
equals zero or half of a reciprocal lattice vector, G). The
matrix elements of b, V /b, r, , in Eq. (11) are evaluated
using the unperturbed wave functions, ~nk ), calculated
in the q-commensurate supercell with the atoms at their
ideal positions. Evaluating the matrix element in this su-
percell results in the simplification' that k' =k —q =k in
Eq. (3), since q is a reciprocal lattice vector in the super-
cell. Thus the matrix element in Eqs. (3)—(5) is diagonal
in k, with nAn . As discussed below, however, it is still
convenient to calculate g'(q, co) in Eq. (6) in the primitive
Brillouin zone.

There are some drawbacks to this approach. A
sufficiently large number of modes must be sampled in
the Brillouin zone to get a good estimate of the overall
coupling strength k. However, each mode that is studied
requires a separate frozen phonon calculation. For small
values of the phonon wave vector q this requires very
large supercells and is prohibitive except when applying
this method to systems containing only a small number of
atoms. In principle, one can surmount these difficulties
by using linear response theory, doing away with the
need for a superce11 calculation. Using supercells, howev-
er, one must settle for a rather coarse sampling of q. On
the other hand, the electron-phonon induced linewidth is
automatically obtained for each phonon mode studied,
and this can be directly compared with experiment.

( )=Vpw( ) I( )+ MT( ) MT(r), (12)

~here OI and OMT are equal to one in the interstitial and
MT regions, respectively, and zero otherwise, Vpw is the
plane-wave representation of the potential, and VMT is
the muffin-tin representation of the potential. The poten-
tial in the LAPW method that we employ is continuous,
and the step functions simply denote that different repre-
sentations are used in the muffin-tin and interstitial re-
gions. It is convenient to rewrite this as

VPW(r)+ V, MT(r)~MT(r) (13)

where V, MT VMT Vpw i.e., Vpw is now used every-
where in the unit cell and subtracted out again in the MT
regions, using the spherical harmonic representation.
V, MT has the desirable property that it smoothly goes to
zero at the MT sphere surface. The difference between
the distorted and undistorted potentials is then written as

configuration (corresponding to a finite amplitude
frozen-in-phonon, as described above), the interstitial re-
gion is slightly different for the two geometries, since one
or more of the atoms is displaced from its equilibrium po-
sition. In order to calculate the matrix element, the
difference in potentials b V must be evaluated and
represented with respect to the undistorted MT spheres
and interstitials region.

In the LAPW dual representation, the potential is
represented as

III. NUMERICAL IMPLEMENTATION

If the electron wave functions and potentials can be ex-
panded in plane waves as in the pseudopotential method,
the calculation of the change in the LDA potential is
given simply by an arithmetic difference of Fourier
coefficients. ' A plane wave basis, however, is not practi-
cal for the HTSC because of the presence of copper and
oxygen atoms, and although the use of the LAP W
method in the supercell approach described above is
straightforward, some additional work is required to ob-
tain the change in the LDA potential in a form that is
convenient for computing the matrix elements. In the
LAPW method' a dual representation is used for all the
relevant quantities. Space is partitioned into two regions,
nonoverlapping [muffin-tin (MT)] spheres centered on
each atom, and the remaining interstitial region. Within
the spheres the basis functions, charge density, and po-
tential are expanded in terms of numerical radial func-
tions multiplied by spherical harmonics. In the intersti-
tial region these quantities are all expanded in plane
waves. The dual representation makes it more difficult to
compute the electron-phonon matrix elements. Although
the same unit cell (i.e. , the phonon-commensurate super-
cell) is used to calculate the potential for the undistorted
atomic configuration as well as for the distorted

~ V(r) =
I Vpw(r) —Vp'w(r) l

The first term is a simple difference of plane-wave
coefficients, since the plane-wave terms now extend over
the entire unit cell (the same for both geometries). The
second term requires more care, but its treatment is now
simplified because V, MT vanishes on the MT sphere sur-
face, avoiding the necessity of dealing with surface terms.
The next step is to decompose V, MT into a rigid-ion-like
term and a deformation or self-consistent-field (SCF)
term inside the MT spheres, by writing

, MT( +~+ ) VMT( +~+ ) +~ VscFMT(r+ ~r
(15)

Since the self-consistency term AVscF MT is already first
order in the atomic displacement, A~, this term can sim-
ply be used on the undistorted MT sphere position, i.e.,
b V s(crF+6 )r=b, VscF(r)+O(br ). In order to avoid
numerical difficulties in handling the nuclear singularity
in the rigid-ion part, the exact first-order expression can
be used to express the rigid-ion term. The final expres-
sion for 6 V can then be written as
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b, V, (r) = [ Vpw(r) —Vpw(r)]

++V M'g(r) ~r +~Vs(F, MT(r) (16)

The rigid-ion term can be evaluated quasianalytically in
terms of V, MT and its radial derivative times appropriate
spherical harmonics combinations, and this is done not

I

only for the spherical part of V,' MT but for all the non-
spherical terms as well. Finally, AV is once again

represented in the standard LAPW dual representation,
and the matrix element, Eq. (11), is evaluated.

Substituting (11) into (5) and using (2), (4), and (6) we
arrive at the following expression for A.

Mco ~(EF)

hV
n', k "

n, k) 5(E„„)5(E„,„)
nWn';k +rms

X &«.,i»«. , i)
nWn';k

g(q, ai ),

where the restriction nWn' is required in the supercell. '

An approximation of the contribution of an entire pho-
non branch to the electron phonon coupling constant, A, ,

g'(q, co, E )

1=—g o(E„i,+fico E)5(E—„,i, E„„—ii—iai),
nn'k

whose integral is just g(q, ai):

(20)

can be obtained from (17) by integrating over q and
neglecting the q dependence of 6 V and co

'-': ((:.',;. ))
having used the fact that the integral over the Brillouin
zone of g(q, ai) is approximately equal to p2(EF ) to obtain
the estimate, A,

In a test of the method for Al, the delta functions in
Eq. (17) [including the delta functions in g(q, co)] were re-
placed by normalized Gaussians, and A. evaluated as a
discrete sum over a uniform sampling of k points in the
supercell Brillouin zone as was done in Ref. 16. Very
good agreement with the results of Dacorogna et al. ' for
selected q values were obtained. Similar tests for
selected phonon modes in niobium yielded good agree-
ment with the results of rigid-ion calculations of Butler
et al. and with the experimentally measured phonon
linewidths of Wakabayashi.

Using Gaussian broadening in place of the delta func-
tions, however, was found to be inadequate in
La2 M„cu04(M=Sr or Ba), the results being too sen-
sitive to the number of k points used and the size of the
broadening. The reason for this sensitivity is revealed
from inspection of Eqs. (3)—(6), especially in the co~0
limit. While (M (q, v) ) depends on the matrix elements
but not too sensitively on the k-point sampling, g(q, ai) is
independent of the matrix elements but quite sensitive to
the k-point sampling, since, in the limit that co goes to
zero, g(q, co) is a Fermi-surface line integral. Although it
is sufficiently accurate for (M (q, v) ), the replacement of
the delta functions in g(q, co) by normalized Csaussians
leads to a poor representation of g, and an alternative
method of calculation must be used. It is useful to con-
sider the related quantity g'(q, co, E),

P(q, a~)= J g'(q, co, E)dE . (21)

g(q, co) is related to the generalized susceptibility ' ' y by
g(q, co) =(~co) 'Imp(q, co), and describes the phase space
available for scattering quasiparticles within %co of EF
through wave vector q from k to k+q. This is a very
anisotropic quantity in La2 „MCu04 due to strong
Fermi-surface nesting all along the (1,1,0) line and a nest-
ing of van Hove singularities [located at
k =(1 2/, ,0)O'er a/] for q near the X point, (1, 1,0)~/a.
The Fermi surface for x =0. 15 is shown in Fig. 1. Previ-
ously, g'(q, 0,0) was found to have a strong q depen-
dence, and there is a large peak at the X point due to
strong Fermi-surface nesting ' ' between slightly
smeared van Hove singularities, as seen in Fig. 2(a) [Fig.
2(b) displays the related function, g„(q,0, 0), discussed
further below]. In addition to this expected peak, howev-
er, a strong enhancement is found all along the (110)
direction arising from scattering along the Aat sides of
the Fermi surface seen in Fig. 1.

Concerning the electron-phonon interaction, this indi-
cates much larger phonon linewidths due to electron-hole
creation for phonons along this direction than elsewhere
in the Brillouin zone and hence much larger contribu-
tions to A, from this direction, assuming that the q depen-
dence of the matrix element (M (q, v) ) does not coun-
teract this. This is discussed further below. As men-
tioned, it is usual to simply replace g(q, co) by its co=0
value, g'(q, 0, 0). Because of the quasi-two-dimensional
band structure and the van Hove singularity, however,
this approximation is not satisfactory here especially for
wave vectors near X. This is illustrated in Fig. 2(c) which
shows g(q, ai ) plotted as a function of q along
( l, q, O)ir/a for several values of co. At fixed q, g(q, co) is
generally larger for smaller co. The effect is especially
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dramatic at the X point.

(21).
We calculated g(q, co) by numerically int t' E .egra ing q.

g' (q, ru, E) was determined at about 16 different E's
for each co using the linear analytic tetrahedron

trix elements, it can be more efficiently evaluated in the
primitive Brillouin zone (rather than usual the su lle superce '

the re frequency arguments. To do this, the energy bands
were first calculated at 135 k point thpoin s in t e primitive ir-
redubicle Brillouin zone and a spline fit "tp ine to symmetrized

p ane waves was then used to generate about 10u points in
e n ouin zone, which are then used in the tetrahed-

ron method. (A rigid-band approximation is used to
determine the Fermi energy corres d'espon ing to a concen-
tration x =0.15.) Even with this many points the line in-
tegral in Eq. (20) is a rather sensitive quantity to deter-
mine. For example, g'(q, 0,0) can vary by about 40%%uo as
q varies by as little as 0.02 ~/a near the X point. The
sensitivity is reduced for nonzero ~, and we estimate the
integrated quantity g(q, ru) to be accurate to at least 10%.

aving calculated g(q, co,), the averaged matrix ele-
ment M q, v)) in Eqs. (4) and (5) is then calculated for

The band str
t e zone-boundary phonons in th f 11e o owing manner.

e and structure for the undistorted superceII is first
calculated at a large number (70) of k

' '
hpoints in the irre-
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FIG. 1. Twwo views of the Fermi surface for La&»Mo»CuO .
(a) The shaded area ds indicate low-velocity regions near the van
Hove singularities at the corners. (b) The I -Z
u ar to the page in this view, which indicates the degree of
smearing of the van Hove singularities due to k dispersion

FIG. 2. Three-dimensional plot of the Fermi-surface phase
actors (a) g'(q, 0,0) and (b) gI, (q, 0,0) for La, ,&MD „Cu04as a

x-y p ane. own here areunction of wave vectors q in the x- l . Sh
t ese functions averaged over values of q =0q, =, ~ 'c, an 2m/c.

e q~ divergence in g(q, 0,0) is cut off for clarit . c
g q —~,q~, O~m. /a for several values of co.
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ducible Brillouin zone. A spline fit (as described above) is
then used to generate a very dense uniform sampling of k
points throughout the zone. A subset of these k points is
then identified for which two bands are equal to EF (to
within about +5 mRy, roughly equal to the maximum
phonon energy); this degeneracy is due to folding of the
bands into the smaller Brillouin zone of the supercell.
For example, one band crosses E~ in the primitive Bril-
louin zone, so there are two in the q =(vr/a, m/a, 0. ) su-
percell, and these are degenerate on the points represent-
ing the line integral in Eq. (5). There were 33 k points in
this subset for the X-point phonons. The band eigenval-
ues were then calculated at these k points and used to
evaluate the line integral average, (M (q, v) ), in Eq. (5),
with the delta functions safely replaced by Gaussians.
The resulting average matrix element is less sensitive to
the number of k points and the magnitude of the Gauss-
ian broadening, as desired. By contrast, if g(q, co) were
calculated in this manner, it would be very sensitive to
these quantities. Finally, we used the experimental struc-
ture for La2Cu04 as determined by Longo and Raccah,
and the value p(EF ) = 14.2 (Ry-cell-spin) ' was also
determined using the tetrahedron method.

IV. RESULTS AND DISCUSSION

A. Matrix elements and mode coupling strengths

Results for ((b, V/b, r, , ) ), 'g(q, co), A.~, k„,„s,and

y of selected phonons are presented in Tables I—VIII.
X-point phonons in La2 „M,Cu04 are given in Tables I
and II. (The X-point eigenmode frequencies in Table I of
Ref. 19 are incorrect due to an error in converting units.
The corrected values are given here. The symmetry
mode frequencies and the eigenvectors were unaffected by
this transient error. ) All fully symmetric (A ) modes, i.e. ,

having the symmetry of the oxygen planar-breathing
mode (see also Ref. 19), as well as three modes having B3g
symmetry are examined. These two symmetries were
chosen for study partially because both are compatible
with tetragonal X

&
symmetry, which experiment has

shown to be particularly interesting. The eigenvectors

for the A (Table III) and the B3 (Table IV) modes are
also reproduced here. The 137- and 263-cm ' A modes
consist primarily of La and 0, axial displacements, re-
spectively. The 417-cm ' mode has planar oxygen atoms
vibrating in-plane and perpendicular to the Cu—0 bond
("scissors" motion), and the 642-cm ' "breathing" mode
has planar oxygens moving toward or away from the Cu
atoms. In Table II, the 329-cm ' mode is the Cu motion
along (the orthorhombic) x, while the 65-cm ' and 282-
cm modes involve La and 0, moving together or in op-
posite directions along x, respectively.

The X-point frequencies are compared with experi-
ment in Table V. Where a range of experimental
values is quoted for Ref. 46, there is a noticeable doping
dependence. Also there are two experimental modes in
Ref. 46 in the range 293—310, and the symmetry types la-
bel only the theoretical frequencies. The experimental
range labeled "extra modes" denote regions in the Bril-
louin zone near X where there is additional observed in-
tensity; these had been related to "extra modes" due to
strong anharmonic electron-phonon coupling, but are
now attributed by Pintschovius et al. to remnants of
branches of the orthorhombic phase. The fact that these
are seen is attributed to strong anharmonicity. The
effects of anharmonicity are discussed further below.

Table VI presents results for the axial apex-oxygen (0, )

and lanthanum modes at the q =(0,0, 2vr/c ) zone bound-
ary (Z). The eigenvectors for these Z-point modes are
given in Table VII. Table VIII presents matrix elements
for these modes at q =0 (I ). Results for La obtained us-
ing the RMT approximation are also shown here. By
RMT, we mean that only the rigid-ion-like term in Eq.
(16) is retained. The standard formulas for the RMT ap-
proximation implicitly include contributions from all
phonon modes, and the results are expressed in terms of
scattering phase shifts. Furthermore, cubic symmetry is
usually assumed to simplify the equations. In the present
numerical evaluation no assumptions about symmetry are
made.

The small matrix elements using the RMT approxima-
tion compared to the large values computed using the full
theory illustrate the importance of the unusual long-

TABQF. $. Frequencies, electron-phonon matrix elements, phase space factor, g( q, co ), coupling

strength, k, linewidths y~, and Brillouin zone averaged coupling strengths, A. „g,for fully sym-

metric (A~) X-point modes for concentration x =0.15.

La axial
0, axial
0 quad.
0 brea.

(cm ')

155
339
404
609

0.003
4.55
0.12
4.53

g(q, co)

[(Ry cell) j

Symmetry modes
795
552
497
360

kq

0.028
5.7
0.09
1.15

Xq, vt &q, v

0.00
0.037
0.001
0.014

0.01
2.08
0.04
0.64

Eigenmodes

137
263
417
642

0.66
1.24
0.28
7.64

829
626
486
339

7.6
2.9
0.21
1.6

0.020
0.015
0.002
0.020

1.86
0.94
0.086
0.97
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TABLE II. Same as Table I for 83~ modes at X.

La
0,
CU

(cm ')

143
258
323

0.030
0.033
0.028

g(q, co)

[(Ry cell) ']

Symmetry modes
820
633
567

kq

0.31
0.082
0.039

/COq

0.0009
0.0004
0.0002

0.075
0.026
0.014

65
282
329

0.036
0.038
0.016

Eigenmodes
1053
610
563

2.3
0.08
0.02

0.0029
0.0004
0.0001

0.45
0.026
0.008

range Madelung-like couplings that are present in these
materials. Such long-range off'-site contributions are also
important for the 0, modes. For example, the Z-point
0, symmetry mode has approximately equal additive
contributions from the O„atoms as for the on-site 0,
contributions. The contributions from the Cu atoms for
this mode are about half as large, but are of opposite sign.
Falter et al. have predicted that the apex-oxygen
breathing mode at the Z point should lead to a large non-
local electron-phonon interaction of this type by induc-
ing crystal potential changes of the same sign in the
whole CuO plane. As seen in Table VIII the matrix ele-
ment for the 0, mode at (0,0,2m. /c) is quite large, but it is
even larger at q =(0,0,0) where the induced changes in
the CuO plane would have opposite signs in their picture.

In the symmetry modes in Tables I and II, the other
atoms were kept at their equilibrium positions. This
neglects, however, the coupling between displacements of
the same symmetry. At the X point in La2Cu04„ the total
energy was calculated as a function of displacement for
the four atomic distortions that have a full A symmetry
of the X point and the three B3g modes. In addition the
energy for combinations of these symmetry modes was
also calculated in order to obtain the full dynamical ma-
trix of modes of each symmetry type. ' By diagonalizing
the respective dynamical matrices, the eigenvectors and
frequencies of all seven modes were obtained, the eigen-
vectors giving the relative displacements for each mode.
These eigenvectors are then used to form the appropriate
linear combination of the symmetry mode matrix ele-
ments, ((b, V/bw„, )), to yield the eigenmode matrix ele-
ment. The eigenvectors are given in Tables III and IV to-
gether with the frequencies. The eigenvectors for the Z-
point mode are given in Table VII. The relative displace-
ments of the atoms are obtained by dividing the eigenvec-
tor coefficients by the square root of the mass.

TABLE III. Eigenvectors for the fully symmetric modes in
Table I.

There are substantial 0 and Cu displacements in the
lower frequency (La) eigenmodes. For example, the La
and 0, displacements are nearly the same in the 121-
cm ' mode at the Z point. This coupling also raises the
frequency of the normal mode consisting mostly of
oxygen-planar breathing motion from 609 to 642 cm
More importantly it results in substantial hybridization
between this high-frequency planar oxygen mode and the
lower frequency axial oxygen mode at 263 cm '. Similar
behavior was found for I point (q =0) modes in
YBa2Cu307. In this manner, the strong coupling to 0,
motion that is most evident at high frequency is
transferred to lower frequencies.

In the normal state, q =0 phonons do not couple to the
electrons, since energy cannot be conserved: for
sufficiently small q optic phonons (specifically, for
qvk (co ), if E„is on the Fermi surface, then E„+A'co~
cannot be (barring interband transitions, which do not
occur in the high-temperature tetragonal phase of LSCO,
since only a single band cross EF). Thus k 0, is strictly
zero. However, onset of coupling occurs at phonon wave
vectors q -co /vF, which is a small fraction of the Bril-
louin zone dimension, where vF is the Fermi velocity.
(Raman measurements of this onset of Landau damping
were recently reported by Friedl et al. ) We have taken
the q =0 calculated matrix elements (assumed constant
for small q) to estimate a branch average, A, ,„,for the
corresponding phonon branch. Only symmetry modes
were considered for the q=0 0, and La A symmetry
displacements. Eigenmodes of the two A symmetry
modes at q=0 were previously calculated and the cou-
pling of these symmetry modes was found to be small. '

We have also estimated the branch contributions from
the Z-point and X-point modes.

An overall estimate of k can then be obtained by
averaging all of the values of A, ,„.In averaging these
quantities, the three axial-La modes are first averaged to

Eigenmodes

137
263
417
642

La

0.95
—0.30
—0.05
—0.03

0,
0.29
0.85
0.28
0.35

O~~ quad.

0.05
—0.32

0.94
0.05

O~~ breathing

0.07
—0.31
—0.16

0.94

Eigenmodes

65
282
329

CU

—0.10
—0.30

0.95

0,
0.44

—0.87
—0.23

0.89
0.39
0.22

TABLE IV. Eigenvectors for the B3~ modes in Table II.
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TABLE V. Comparison of X-point experimental phonon fre-

quencies with the calculated phonon modes in Tables I and II.
All frequencies are in cm '. Where a range of values is quoted,
there is noticeable doping dependence.

Symmetry

A)g
A)g
B3g
B3g
A)g

"extra modes"

A)g
B3

'Reference 46.
Reference 47.

'Reference 48.
Reference 49.

Expt.

706,' 710 680'
490a
373'

293-310'
293-310'

253'
150 157~ 137

117-120'

Calc.

642
417
329
282
263

137
65

provide an overall estimate for this branch. The same is
done with the three axial-0 modes. These values and the
overall average A, =1.37 are shown in Table IX. Dom-
inant contributions are seen to come from apex-0 and La
atoms, due to unusual non-rigid-ion long-range
Madelung-like coupling. A value of A, this large easily ac-
counts for T, in this compound. We use the Allen-
Dynes ' strong-coupling equation for T, :

~&og —1.04(1+A, )

1.20 A,
—p*(1+0.62k, )

(22)

The contributions to co&, from m =7 "branches" are
given in Table IX. Using cofpg 321 cm obtained in
Table IX and A, = 1.37 together with p* =0.1, yields
T, =49 K, which is close to the experimentally observed
value. For p*=0.15 and 0.2, T, =41 and 32 K, respec-
tively. The precise value is not especial'ly meaningful
considering the sampling of phonon modes that were

The factors f, and f2 are close to 1 for A, = 1.37, and co„
is evaluated using

In(co„)= g A, ,„gin(co „g),1

avgm

m

used, but is of the right order to account for T, in this
material.

An old question concerns the consistency of large A, 's
such as are found here with transport measurements.
Gurvitch and Fiory used early polycrystalline resistivity
data to estimate k for YBa2Cu307, assuming that A, and
k„aresimilar in magnitude as in conventional supercon-
ductors. This analysis led to unphysically small mean
free paths for the large values of k„they derived from the
data. Mazin and Dolgov have analyzed more recent
single-crystal data, using their LDA band-structure cal-
culations for the plasma frequency and mean Fermi ve-
locities to derive a smaller A,„ofabout 1.5 and a reason-
ably large mean free path of 11 A at T= 300 K. Zeyher
has also examined the question of phonon-limited resis-
tivity in the high-T, oxides. He used a screened ionic
model to calculate A,«-1 and A. -3 for YBa2Cu307. For
large A,„ork, he found that the small ratio A,„/A, is cru-
cial in obtaining agreement with the experimentally mea-
sured slope of the temperature dependence of the resis-
tivity, since for k„=k,the experimental slope would im-

ply X-0.2. '4

The matrix element for A,
„

is weighted by the square of
the difference in electron velocities between the state at k
and k +q (which accounts for the amount of current lost
by the scattering event) so that A,„canbe significantly
different from k. Recent theoretical work for Fermi sur-
faces like that of La2 M Cu04, which have the strong
nesting feature already noted along the (1,1,0) direction,
shows that the square of the difference in velocities can be
quite anisotropic and may result in a large reduction of

compared to k. We have calculated gI, (q, 0,0),
shown in Fig. 2(b), which is g (q, 0,0) weighted with the
above-mentioned square difference of the electron veloci-
ties. Unlike g'(q, 0,0) which is singular at q =0,
gI,(q, 0,0) goes smoothly to zero. It is largest along the
[1,1,0] direction as is g'(q, 0,0), but more spread out, and
it is small right at the X point where g (q, 0,0) itself is
very large. Both the very large value of g'(q =X,O, O) and
the small value of gI, (q =X,O, O) can be accounted for by
nesting of van Hove singularities (slightly broadened by k
dispersion). The model calculation of Crespi and
Cohen suggests that such behavior, coupled with strong
q dependence of matrix elements, can result in A, being
significantly larger than k„.We are pursuing this ques-
tion.

TABLE VI. Same as Table I for fully symmetric Z-point modes for concentration x =0.15. Rigid-
muKn-tin (RMT) values are also given for the lanthanum symmetry mode.

(cm ')
((av/a~, , )')

[(eV/a. u. ) ']
g(q, co)

[(Ry cell) '] /COq

La
La (RMTj
0, axial

202
202
396

0,79
0.08

13.9

Symmetry modes
948
948
621

4.8
0.48

14

0.02
0.00
0.1 1

1.0
0.1

4.7

121
414

0.18
'14.4

Eigenmodes
1054
598

3.3
13

0.01
0.1 1

0.64
44
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Eigenmode La 0,

TABLE VII. Eigenvectors for the Z-point modes in Table
VI.

TABLE VIII. Matrix elements and A, ,„g for axial apex-
oxygen and lanthanum modes at q =0. Rigid-muffin-tin (RMT)
values are also given for the lanthanum modes.

121
414

0.95
0.30

B. Mode linewidths

—0.30
0.95

La (RMT)
La
0,

COq, v

(cm ')

224
224
415

0.11
4.33

38.3

0.12
4.54

1 1.7

We turn now to a discussion of the results for the cal-
culated linewidths. While quite small linewidths are
found for the three 83g modes at the X point, moderate
linewidths are found for the fully symmetry modes at the
X point, the largest being y /co, -0.02. This corre-
sponds to k =7.6, 2.9, and 1.6 for the La, O„and
breathing modes, respectively. These linewidths may be
difficult to detect by neutron scattering. By contrast, the
axial-O, mode at the Z point in Table VI has a very large
linewidth of y, /co -0.1 (1, =13) and should be
easier to observe. An experimental difficulty may be that
if there are nonsuperconducting phases present in the
sample, they would yield sharp phonon lines, and the
broader signal from the superconducting phase may be
overlooked as part of the background.

Since the phase space factor g'(q, 0,0) is so strongly q
dependent and peaks at the X point, the total contribu-
tion of a given phonon branch to A, may be smaller than
implied by the linewidths at the X point. Thus, if one as-
sumes a q-independent matrix element, i.e., ((b, V(q)/

, ) ) —( [b, V(q =(vr/a, n/a, 0) )/hr, , ] ) and ne-

glects dispersion for this phonon branch, the expression
in Eq. (19) yields an estimate for this entire branch. This
estimate is also made for the other calculated phonon
modes and is shown in the respective Tables. For exam-
ple, as seen from Table I, the 642-cm ' mode has

zvg 0.9'7 compared to Arq & 1 ~ 6. This would tend to
lower its contribution to A, , assuming that
((b, V(q)/br„, ) ) for this mode does not increase for
smaller q.

From Tables VI and VIII, however, it is clear that in

fact the matrix elements do increase for smaller q, at least
for the axial-La and -O, modes. For example, the La
symmetry-mode matrix element is greatly reduced at the
X point in Table I [0.003 (eV/a. u. ) ] compared to its
values at q =0 and (0,0, 2'/c) in Tables VIII and VI [4.33
and 0.79 (eV/a. u.), respectively]. Similarly, the axial-O,
symmetry mode is increased at q =0 and (0,0, 2'/c) [38.3
and 13.9 (eV/a. u.), respectively] compared to its value at
the X point [4.55 (eV/a. u. ) ] in Table I. Since g(q, co) is
strongly peaked along the q =(1,1,0)vr/a direction, this
suggests that phonon modes along this direction yield the
largest contributions to A, . Thus the estimate of A. ob-
tained from sampling points only at X and near q =0 (I
and Z) may not be unreasonable.

C. Character of electron-phonon coupling

The wave functions that contribute to the matrix ele-
ments for the X-point modes are antibonding Cu-Q states
that have about equal weight on the copper and the pla-
nar and apex oxygen atoms. The charge density corre-
sponding to the sum over the subset of 33 k points used
to determine the average matrix elements at q=X is
shown in Figs. 3 and 4 (the total charge is equal to one
electron). Individually, the states at these different k
points have similar spatial behavior. These states have
about equal weight on the 0, as on the O„atoms (for the
charge density displayed in Figs. 3 and 4, there are only
10% less electrons within the 0, muffin-tin spheres than
within the O„spheres). Correspondingly, there is also
substantial density of states on the 0, atom (only about

TABLE IX. 1, and coi,
„

from 7 "branches. " The axial La and 0, values are averages of I, Z, and X.

Mode

La-ax (1 )

La-ax (Z)
La-ax (X)
La-ax avg
O, -ax (I )

O, -ax (Z)
O, -ax (X)
O, -ax avg
0-quad
0-br
La-B3g
0-B3g
Cu-B3g
ka y g

coi, (cm ')

co, ,„(cm ')

224
121
137

415
414
263

417
642

65
282
329

4.54
0.64
1.86
2.35

11.7
4.40
0.94
5.68
0.09
0.97
0.45
0.03
0.01
1.37

'v, avgln(rg)v, avg )

24.6
3.1

9.2
12.3
70.5
26.5

5.24
34.1

0.52
6.30
1.88
0.17
0.06

321
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fW~

100&
FIG. 3. Charge density contour plot in the x-z plane cor-
responding to the sum over the subset of 33 k points used
to determine the average matrix elements at q =X. The
small circles locate the copper atoms and the large circles
locate the oxygen atoms. The contour levels run from
0.005 to 0.030 in steps of 0.005 electrons/a. u.

40% less' than on the 0, atom). Recent oxygen K- and
copper L-edge absorption spectra of Chen et ai.
confirm this, showing a significant amount of 0 2p, char-
acter for doping induced holes. However the calculated
RMT electron-phonon parameter, g(0, ), was previously
found to be about an order of magnitude smaller than for
the Oxy atom. The principal reason for this is that the
oxygen contributions in the RMT all come from p~d
scattering, and the d density of states on the 0, site (aris-
ing from the l =2 symmetry combinations of tails of or-
bitals on neighboring atoms) is about a factor of 6 lower
than on the 0 site. Additional factors due to muffin-tin
potential differences further reduce the RMT contribu-

tion on the 0, atom. Long-range Madelung-like contri-
butions (discussed above) are large in these materials,
however, and result in much strong coupling than pre-
dicted by the RMT approximation which neglects off-site
contributions to 5V

The self-consistent change in the LDA potential,
b, V, or the 642-cm ' planar-oxygen breathing mode at
the X point (Table I) is shown in Fig. 5, and b. V for the
417-cm ' planar-oxygen quadrupolar ("scissors") mode
at the X point (Table I) is shown in Fig. 6. Examination
of the charge density in Figs. 3 and 4 and AVq for the
quadrupolar mode in Fig. 6 explains why the planar-0
quadrupolar mode has such a small linewidth compared
to the planar-0 breathing mode, since there is poor over-
lap of the wave functions with 6V for this mode. By con-
trast, the planar-0 breathing mode Fig. 5 and the apex-0

modes overlap strongly with 6V.

In the RMT approximation, the La modes should not
couple at all, since there are no electron states at EF that
have significant weight on the La site. Because long-
range Madelung-like interactions are included in this cal-
culation, however, there are strong contributions from La
modes. The poor screening in the high-temperature su-
perconductors normal to the Cu-0 planes is a novel
feature of these materials and is responsible for this
unusual behavior. The coupling to La displacements is
further enhanced for the X-point eigenmodes by coupling
with higher frequency symmetry modes that have larger
matrix elements. The relative importance of a mode for
T, is given not simply by A, , which can be greatly
enhanced by low frequencies, but rather by a quantity be-
tween co A, and cu A. . Thus, hybridization can
play an important role in determining at which frequency
the electron-phonon coupling occurs. Furthermore, hy-

C 3
(.

C 3

Ocj

FIG. 4. Same as Fig 3 but in the x-y (Cuo) plane.

FIG. 5. EVq /A~„, contour plot for the 642-cm ' planar-
oxygen breathing mode at the X point. Negative contour values
are represented by dashed lines. The small circles locate the
copper atoms and the large circles locate the oxygen atoms.
The contour levels run from —1.50 to 1.50 in steps of 0.25
Ry/a. u. —6.5 eV/A.
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C 3

C 3
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effect on the band structure at EF, and a low-frequency
mode that corresponds to changes in tilt direction toward
the LTT structure. Recent results by Cohen et al.
show that though the linear electron-phonon coupling for
small rotations (relative to the HTT structure) is essen-
tially zero, there is a significant quadratic coupling. For
rotations relative to the LTT minima, however, the linear
coupling may also become significant.

It is difBcult to assess the effect of such anharmonic
modes, but they can reasonably be expected to affect the
coupling since the most significant anharmonicity occurs
at the X point, just where the important phase space fac-
tor g(q, co) peaks. This question requires further work
beyond the scope of the present study.

E. Quasi-two-dimensionality

FICx. 6. b, V~ /A~, , contour plot for the 417-cm ' planar-
oxygen quad. mode at the X point. Negative contour values are
represented by dashed lines. The small circles locate the copper
atoms and the large circles locate the oxygen atoms. Contour
levels are the same as in Fig. 5.

bridization of light-ion and heavy-ion symmetry modes
can lower the expected isotope effect for oxygen. '

D. Questions of anharmonicity

An important element left out of this analysis is the
effect of anharmonicity. Several of the modes not con-
sidered here are very anharmonic, including at least two
at the X point that are unstable. ' ' Anharmonic modes
have also been found in YBazCu307. ' Of particular in-
terest are the instabilities of X-point tilts of the Cu06 oc-
tahedra that are responsible for the high-temperature
tetragonal (HTT) to low-temperature orthorhombic
(LTO) structural transition. ' In addition, Axe et al.
established that the previously observed strong suppres-
sion of T, in La2 Ba Cu04 near x =0.12 is correlated
with a further structural phase transition from the LTO
structure to a low-temperature tetragonal (LTT) struc-
ture. We have reported earlier the energy surface in the
space spanned by the two degenerate LTO order parame-
ters. An eight-well potential was found with HTT being
a local maximum and the LTT structure the absolute
minimum, and LTO being a local minimum, which is just
the energy surface required to account most easily for the
phase diagram of Lai 88Bap i2Cu04. This energy surface
is indicative of strongly anharmonic lattice dynamics,
especially near the X point, and this may account for
what has been seen in the form of "extra modes" (Table
V) by Reichardt et al. '

Unlike the case for the LTO phase, where the band
structure near EF is not much changed, the LTT distor-
tion splits the bands at EF (for EF corresponding to
x =0.12 in a rigid-band calculation). In the LTO struc-
ture, two normal modes arise from the tilt modes. The
high-frequency mode corresponds to tilt amplitude
modulations, which our calculations show to have little

The possibility of achieving strong electron-phonon
coupling. without a large Fermi-level density of states is
enhanced by the quasi-two-dimensionality (quasi-2D) of
the cuprate superconductors. From Table IX it is clear
that atomic displacements polarized perpendicular to the
Cu-0 layers tend to be very strongly coupled, no doubt
partially the result of weak screening of the resulting
electric fields. This effect is indirectly a result of the
quasi-2D nature of the underlying band structure.

Another, more direct, implication of the quasi-2D elec-
tronic structure is the concentration of, or enhancement
of, phase space for scattering by nesting, by van Hove
singularities, or a combination thereof. These features
have been noted above and are under more extensive
study. However, a general feature of layered materials
with quasi-2D Fermi surfaces is that scattering for all q
along the axial direction will tend to have large phase
space, since if E(k) is on the Fermi surface, then
E(k +q) will also be on the Fermi surface. For a precise-
ly 2D Fermi surface g(q, co) will diverge for q along the
axial direction', however in this limit the perpendicular
bandwidth vanishes and the application of standard for-
mulas must be reexamined. But before this limit is
reached, scattering for axially directed q's will be greatly
enhanced. We suggest that neutron scattering should be
applied to study this possibility.

F. Other calculations of electron-phonon coupling
in high-T, materials

Rodriguez et aI. ' have also undertaken similar ab ini-
tio studies of the electron-phonon coupling strength in
the high-T, superconductors. Using the theory of Zehyer
and Zwicknagl for small q phonon self-energies, they
calculated the frequency shifts and broadenings of the
five 2 optical phonons in YBa2Cu307 upon cooling
below T, . Observed frequency shifts and broadenings
were found to be well accounted for by these calculations.
Using a similar constant matrix element approximation,
they obtained X-1, which is probably not big enough to
account for T, in YBa2Cu3O7 but, of course, derives from
only 5 of the 39 branches and only near q -0. Andersen
et al. ' also examined the fully symmetric S zone-corner
phonons in YBa2Cu307 and found relatively small
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linewidths there. In Ref. 21 the matrix elements were ob-
tained from splittings in the eigenvalues induced by the
frozen-in phonon rather than by the direct calculation of
the matrix elements of the change in the LDA potential
that was used here. Electron-phonon matrix elements
were also obtained by us from splittings of zone center
phonons in YBa2Cu307, and A. 's as large as 1.9 were
found; the importance of long-range nonlocal contribu-
tions to the electron-phonon interaction were ern-
phasized.

The importance of long-range interactions was also
noted in a model calculation by Zehyer' for YBa2Cu307.
He used rigidly displaced ionic potentials that are
screened by the dielectric background constant of the un-
doped material and by intraband scattering of holes
conAned to the CuO planes. The imperfectly screened
long-range Coulomb interaction in this model gives rise
to the large value of A, -3.

or rigid muffin-tin approximation. We have found
moderate linewidths for O breathing modes and O,
modes at the X point and a very large linewidth for the
0, mode at the Z point. It may be possible to observe
this latter mode linewidth experimentally. If, however,
there are nonmetallic phases present in the sample these
phases would yield sharp phonon lines, and the broader
signal from the superconducting phase may be over-
looked as part of the background. An overall coupling
strength was found that is sufficient to account for T,
without the need to augment this with coupling to other
excitations. The calculated large electron-phonon cou-
pling arises from a combination of weak screening and
unusual nonlocal Madelung-like interactions, in concert
with strong Cu-O hybridization that results in good me-
tallic behavior within the planes. These features are com-
mon to all of the layered cuprates, indicating that the en-
tire class should show strong electron-phonon coupling.
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